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Abstract—In a way similar to the string-to-string correction problem, we address discrete time series similarity in light of a time-series-

to-time-series-correction problem for which the similarity between two time series is measured as the minimum cost sequence of edit

operations needed to transform one time series into another. To define the edit operations, we use the paradigm of a graphical editing

process and end up with a dynamic programming algorithm that we call Time Warp Edit Distance (TWED). TWED is slightly different in

form from Dynamic Time Warping (DTW), Longest Common Subsequence (LCSS), or Edit Distance with Real Penalty (ERP)

algorithms. In particular, it highlights a parameter that controls a kind of stiffness of the elastic measure along the time axis. We show

that the similarity provided by TWED is a potentially useful metric in time series retrieval applications since it could benefit from the

triangular inequality property to speed up the retrieval process while tuning the parameters of the elastic measure. In that context, a

lower bound is derived to link the matching of time series into downsampled representation spaces to the matching into the original

space. The empiric quality of the TWED distance is evaluated on a simple classification task. Compared to Edit Distance, DTW, LCSS,

and ERP, TWED has proved to be quite effective on the considered experimental task.

Index Terms—Pattern recognition, time series, algorithms, similarity measures.
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1 INTRODUCTION

MORE and more computer applications are faced with
the problem of searching large data sets for time

series that are close to a given query element under some
similarity criteria. Financial and stock data analysis [37],
moving objects identification [5], [27] astronomy, medicine
[19], meteorology, data mining [1], time-stamped event data
processing [36], and network monitoring [28] are but a few
of the numerous examples that could be cited. All these
applications embed time series in a representation space
and exploit some similarity measure defined for this space.
Similarity measures fall basically into three categories:

1. nonelastic metrics such as Lp-norms that do not
support time shifting, such as Euclidean Distance
(ED) and Correlation,

2. elastic similarity measures that tolerate time shifting
but are not metrics, such as Dynamic Time Warping
(DTW) [33], [31] or Longest Common Subsequence
(LCSS) [6], [34], and

3. elastic metrics that tolerate time shifting, such as
Edit distance with Real Penalty (ERP) [4].

When considering time series information retrieval,
working in a metric space can be appealing because a lot
of data structures (essentially tree-based structures) and
algorithms (partitioning, pivoting, etc.) have been opti-
mized and made available for efficiently indexing and
retrieving objects in metric spaces: see [3] for a review. All

these structures and algorithms take advantage of the
triangle inequality that allows for the efficient pruning of a
large number of time series that are too far away from the
query. For some nonmetric measures, all these data
structures can still be used if a lower bounding approxima-
tion, which needs to be a metric, is available. A lower bound
of the sort exists for both LCSS and DTW, as detailed in [34].
Furthermore, the need for processing time-stamped data
(event data or data that are not sampled coherently) is
becoming particularly significant [36], [28] in stock analysis,
network monitoring, fault analysis, etc. In this paper, we
address the case of elastic metrics, namely, elastic similarity
measures that jointly exploit time shifting (measured using
time stamps or sample indices) and possess all the proper-
ties of a distance, in particular, the triangle inequality. Our
contribution is basically fourfold:

. The first contribution of this paper is the proposal of
a new elastic metric, which we call Time Warp Edit
Distances (TWED). This contribution has to be
placed in the perspective of former works that seek
to combine Lp-norms with the edit distance, in
particular, in the light of the ERP distance [4] that
can support local time shifting while being a metric.
Other elastic similarity measures that belong to the
DTW category are not metrics since they do not
satisfy the triangle inequality. Section 2 promotes the
need for triangle inequality to process time series in
a data compression context based on a downsam-
pling perspective.

. The second contribution is related to the introduc-
tion of a parameter we call stiffness, which controls
the elasticity of TWED, placing this kind of distance
in between the ED (somehow a distance with infinite
stiffness) and DTW (somehow a similarity measure
with no stiffness at all). One of the differences
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between TWED and former similarity measures is
the use of time-stamp differences between compared
samples as part of the local matching costs. The
motivation for such a characteristic is also given in
Section 2.

. The third contribution proposes a lower bound for
the TWED measure, which allows one to link the
evaluation of the matching of two time series into
downsampled representation spaces to the evalua-
tion of their matching into their original representa-
tion spaces.

. The fourth contribution of the paper is an empiric
evaluation of the quality of TWED based on a simple
classification experiment that provides some high-
lights on the effectiveness of TWED compared to the
ED, DTW, LCSS, and ERP. The influence of the
stiffness parameter on classification error rates is also
analyzed.

The paper is organized as follows: Section 2 addresses

the motivation aspects. Section 3 briefly presents the main

relevant founding works on elastic distances for time series

matching. Section 4 details the definition and implementa-

tion of the TWED with stiffness adjustment that is proposed

in this paper. Section 5 details a lower bounding procedure

we suggest to speed up range queries processing. Section 6

describes a classification experiments that shows the

empirical effectiveness of TWED comparatively to the ED

and other classical elastic measures. Section 7 concludes the

paper and proposes some perspectives.

2 MOTIVATION FOR A SIMILARITY MEASURE THAT

VERIFIES THE TRIANGLE INEQUALITY AND TAKES

TIME-STAMP DIFFERENCES INTO ACCOUNT

The use of elasticity theory to model the behavior of

nonrigid curves, surfaces, and solids as function of time

has given rise to a lot of applications in medical image

analysis, vision, or computer graphics (see [32] and [25] for

surveys). These models are fundamentally dynamic and

unify the description of shape and the description of

motion. On the another hand, elastic distances have been

proposed to define similarity measures that are tolerant to

object deformations, in particular stretching or shrinking.

Although the analogy with physical models of deformable

objects makes sense, we do not extend it too far, since, in

the physical sense, the laws that should govern the

matching of deformable objects are not always available

or costly to cope with. Our motivation for using time

stamps (or sample indices) is related to the way we want to

control the elasticity of the measure. Differences of indices

between match samples have been successfully used to

improve elastic measures such as DTW [31] or LCSS

measures [11]. The general idea is to limit the elasticity of

the measure by using a threshold: If the index difference

between two samples that are candidates for a match is

lower than the value of the threshold, then matching is

allowed; otherwise, it is forbidden. This binary decision

might, in some cases, limit the effectiveness of the measure.

Keeping in mind the mechanical analogy of a spring (for

which the deformation effort is proportional to the

stretching or the shrinking), instead of using a threshold,

we suggest using the range of the sample index difference

to linearly penalize the matching of samples for which the

index values are too far and to favor the matching of

samples for which the index values are close. In the case

where time series are sampled using nonuniform or

varying sampling rates, one can benefit from time stamps

instead of sample indices since this approach does not

require sampling of the data. The second motivation for

defining a measure that exploits time stamps (or sample

indices) while verifying the triangle inequality is twofold:

First, it provides an effective solution for comparing

approximated representations of time series but not

necessarily by using uniform downsampling methods;

second, it establishes a useful relationship between the

matching performed in the downsampled space and the

matching performed in the original space (Fig. 2). Approx-

imation of multidimensional discrete curves has been

widely studied [7], [14], [29] essentially to speed up the

data processing required by resource demanding applica-

tions. Among other approaches, polygonal approximation

of discrete curves has been quite popular recently [29], [17].

The problem can be informally stated as follows: Given a

digitized curve X of N � 2 ordered samples, find K (in

general, K � N) dominant samples among them that

define a sequence of piecewise linear segments that most

closely approximate the original curve. This problem is

known as the min-� problem [12]. Numerous algorithms

have been proposed for more than 30 years to solve this

optimization problem efficiently. Most of them belong

either to graph-theoretic dynamic programming or to

heuristic approaches. See, for instance [14], [29], [17], [24],

among others for details. Such approaches can be used to

adaptively downsample time series. For instance, in [23],

polygonal curves approximations have been used to

downsample gesture signals optimally, and in [24], an

elastic matching procedure has been proposed to compare

two time series with a linear time complexity. For these

approaches, a downsampled time series is a reduced

sequence of tuples (sample and time stamps) that corre-

sponds to the end extremities of the polygonal segments.

The sampling rate for such downsampled time series is not

generally uniform, and time-stamps differences between

two successive samples are varying. Downsampling time

series can be used to drastically reduce the dimension of

the space in which we could potentially process the time

series. Nevertheless, one difficulty emerges: How can we

compare downsampled time series using nonuniform (e.g.

varying) sampling frequencies? Not taking into account the

occurring time of the samples could introduce discrepan-

cies between the original space and the downsampled

space. For instance, phase or frequency information is

potentially lost or at least damaged, as well as the slope of

spikes. In this context, the triangle inequality is also of

great importance since it maintains distance relations

between the original space and the downsampled space.

Let X and Y be two time series in the original space and
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their downsampled counter parts. If � is a measure for

which the triangle inequality holds, then we have

�ðX;Y Þ � �ð ~X; ~Y Þ
�� �� � �ðX; ~XÞ þ �ðY ; ~Y Þ In the case where

�ðX; ~XÞ and �ðY ; ~Y Þ are maintained small by the similarity

measure, �ðX; ~XÞ and �ðY ; ~Y Þ are comparable, and the

following inequality gives an exploitable lower bound to

the �ðX;Y Þ measure:

�ð ~X; ~Y Þ � �ðX; ~XÞ � �ðY ; ~Y Þ � �ðX;Y Þ: ð1Þ

This lower bound can be used to significantly speed up

the time series information retrieval process since a pruning

strategy can be proposed in the downsampled space. We

will come back to this issue in Section 5.

3 ELASTIC SIMILARITY IN LIGHT OF THE SYMBOLIC

EDIT DISTANCE

In this section, we succinctly present the main elastic
measures developed in the literature, from founding work
to more recent studies. The Levenshtein Distance (LD)
proposed in 1966 [18], also known as the edit distance, is
the smallest number of insertions, deletions, and substitu-
tions required to change one string into another. For more
than 30 years, the ideas behind LD have been largely reused
and extended by various research communities. The main
contributions are rapidly reviewed below. In 1974, Wagner
and Fisher [35] developed a computationally efficient
algorithm to calculate LD in Oðn:mÞ using dynamic
programming [2]. Meanwhile, DTW, which shares many
similarities with LD despite the fact that it is not a metric,
was proposed in 1970 [33] and 1971 [31] to align speech
utterances, namely, time series with time shift tolerances.
The LCSS similarity measure initially defined for string
matching [11] has also been adapted for time series
matching [6], [34]. Recently, a lot of fruitful research
dealing with DTW and LCSS has been carried out to
propose efficient computation and pruning strategies that
are required to process massive data [34], [15], [37]. Some
work has also been conducted to provide the triangle
inequality to DTW: The ERP VII has been proposed as an
edit distance-based metric for time series matching with
time shift tolerance. The edit distance principle has also
been proposed to develop 1D-Point-Patterns Matching
(PPM) (point patterns are ascending lists of real values)
[20], [21]. The measure proposed to match 1D-PPM is
shown to be a metric that can be extended to the
multidimensional case at the price of a nonpolynomial
complexity. Hereinafter, we present DTW, ERP, and LCSS
in the light of the edit distance and develop the TWED
metrics as an alternative to ERP.

3.1 Definitions

Let U be the set of finite time series: U ¼ fAp
1jp 2 Ng. A

p
1 is a

time series with discrete time index varying between 1 and

p. We note � the empty time series (with null length) and by

convention A0
1 ¼ � so that � is member of set U . Let A be a

finite discrete time series. Let a0i be the ith sample of time

series A. We will consider that a0i 2 S � T , where S � Rd

with d � 1 embeds the multidimensional space variables,

and T � R embeds the time-stamp variable, so that we can

write a0i ¼ ðai; taiÞ, where ai 2 S and tai 2 T , with the

condition that tai > taj whenever i > j (time stamp strictly

increase in the sequence of samples).
Aj
i with i � j is the sub time series consisting of the ith

through the jth samples (inclusive) of A. Therefore,

Aj
i ¼ a0ia0iþ1; . . . ; a0j. jAj denotes the length (the number of

samples) of A. � denotes the null sample. Aj
i with i > j is

the null time series noted �.
An edit operation is a pair ða0; b0Þ 6¼ ð�;�Þ of time series

samples, written as a0 ! b0. Time series B results from the

application of the edit operation a! b into time series A,

written as A) B via a0 ! b0, if A ¼ �a0� and B ¼ �b0� for

some time series � and � . We call a0 ! b0 a match

operation if a0 6¼ � and b0 6¼ �, a delete operation if

b0 ¼ �, and an insert operation if a0 ¼ �. Similarly, to the

edit distance defined for string [18], [35], we define the

similarity between any two time series A and B of finite

length, respectively, p and q, as

�ðAp
1; B

q
1Þ ¼Min

�ðAp�1
1 ; Bq

1Þ þ �ða0p ! �Þ delete;

�ðAp�1
1 ; Bq�1

1 Þ þ �ða0p ! b0qÞ match;

�ðAp
1; B

q�1
1 Þ þ �ð�! b0qÞ insert;

8><>:
where p � 1, q � 1, and � is an arbitrary cost function,

which assigns a nonnegative real number �ða0p ! b0qÞ to each

edit operation a0p ! b0q. The recursion is initialized by setting

for i > 0 and j > 0:

�ðA0
1; B

0
1Þ ¼ 0;

�ðA0
1; B

j
1Þ ¼1;

�ðAi
1; B

0
1Þ ¼1:

DTW and ERPs and 1D-PPM and LCSS are special cases of

the previous definitions that we present below.

3.2 The DTW Special Case

The DTW similarity measure �dtw [33], [31] is defined

according to the previous notations as

�dtwðAp
1; B

q
1Þ ¼ dLP ðap; bqÞ

þMin

�dtwðAp�1
1 ; Bq

1Þ;
�dtwðAp�1

1 ; Bq�1
1 Þ

�dtwðAp
1; B

q�1
1 Þ;

8><>: ;
ð2Þ

where dLP ðap; bqÞ is the Lp norm in Rd, and so, for DTW,

�ða0p! �Þ ¼ �ða0p! b0qÞ ¼ �ð�! b0qÞ ¼ dLP ðap; bqÞ. One may

note that the time-stamp values are not used; therefore, the

costs of each edit operation involve vectors a and b in S

instead of vectors a0 and b0 in S � T . One of the main

restrictions of �dtw is that it does not comply with the

triangle inequality as shown by the following example [4]:

A1
1 ¼ ½1�;B2

1 ¼ ½1; 2�;C3
1 ¼ ½1; 2; 2�ð	Þ;

�dtwðA1
1; B

2
1Þ ¼ 1; �dtwðB2

1; C
3
1Þ ¼ 0; �dtwðA1

1; C
3
1Þ ¼ 2

) �dtwðA1
1; C

3
1Þ > �dtwðA1

1; B
2
1Þ þ �dtwðB2

1; C
3
1Þ:

ð	Þ 1D time series with no stamp value given.
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3.3 The ERP Special Case

�erpðAp
1; B

q
1Þ ¼Min

�erpðAp�1
1 ; Bq

1Þ þ �ða0p ! �Þ;
�erpðAp�1

1 ; Bq�1
1 Þ þ �ða0p ! b0qÞ;

�erpðAp
1; B

q�1
1 Þ þ �ð�! b0qÞ;

8><>: ð3Þ

with

�ða0p ! �Þ ¼ dLP ðap; gÞ;
�ða0p ! b0qÞ ¼ dLP ðap; bqÞ;
�ð�! b0qÞ ¼ dLP ðg; bqÞ;

where g is a constant in S, and dLP ðx; yÞ is the Lp norm of
vector ðx� yÞ in S.

Note that the time stamp coordinate is not taken into
account; therefore, �erp is a distance on S but not on S � T .
Thus, the cost of each edit operation involves vectors a and
b in Rd instead of vectors a0 and b0 in Rdþ1.

According to the authors of ERP [4], the constant g
should be set to 0 for some intuitive geometric interpreta-
tion and in order to preserve the mean value of the
transformed time series when adding gap samples.

3.4 The LCSS Special Case

The LCSS similarity measure has been first defined for
string matching purposes [11] and then extended for times
series [6], [34]. LCSS is recursively defined in [34] as
follows:

LCSS�;�ðAp
1; B

q
1Þ ¼

Min

0 if p < 1 or q < 1;

1þ LCSS�;�ðAp�1
1 ; Bq�1

1 Þ if
dLP ðap; bqÞ < � and

jp� qj < �;

�
Max

LCSS�;�ðAp�1
1 ; Bq

1Þ
LCSS�;�ðAp

1; B
q�1
1 Þ

(
otherwise:

8>>>>>><>>>>>>:
ð4Þ

For LCSS, the match reward is 1, while no reward is
offered for insert or delete operations. The LCSS measure is
transposed into a normalized dissimilarity measure D�;�,
which is close in its formal structure to the ERP measure:

D�;� ¼ 1� LCSS�;�ðA
p
1; B

q
1Þ

Minfp; qg : ð5Þ

3.5 The 1D-PPM Special Case

For Point-Pattern matching problems [20], Ap
1 and Bq

1 are
1D ascending lists of real values:

�ppmðAp
1; B

q
1Þ ¼Min

�ppmðAp�1
1 ; Bq

1Þ þ �ða0p ! �Þ;
�ppmðAp�1

1 ; Bq�1
1 Þ þ �ða0p ! b0qÞ;

�ppmðAp
1; B

q�1
1 Þ þ �ð�! b0qÞ;

8><>: ð6Þ

with

�ða0p ! �Þ ¼ ap � ap�1;

�ða0p ! b0qÞ ¼ jðap � ap�1Þ � ðbq � bq�1Þj;
�ð�! b0qÞ ¼ bq � bq�1;

for p > 1 and q > 1.

Mäkinen [20] shows that �ppm is a metric that calculates

the minimum amount of space needed to delete or insert

between pairs of points to convert one point pattern into

another. It can be noted that if successive increments are

considered instead of the initial values, �ppm coincides with

�erp when applied to the sequence of positive increments.

Here again, time stamps are not used.

3.6 Symbolic Sequence Alignment with Affine Gap
Penalty

In biomolecular sequences (DNA, RNA, or amino acid

sequences), high sequence similarity usually implies sig-

nificant functional or structural similarity. The basic

mutational processes behind the evolution of such se-

quences are substitutions, insertions, and deletions, the

latter two giving rise to gaps. Various similarity models

based on dynamic programming have been developed by

the bioinformatics community. Among them, the affine gap

model [10], [8] that extends the Needleman-Wunsch

algorithm [26] should be mentioned. The originality of this

model is to penalized gap sequences according to the affine

equation �ðgÞ ¼ �d� ðg� 1Þ 
 e, where g is the length of the

gap, d is the open-gap penalty, and e is the gap-extension

penalty. The recursion is given in (8):

MðAp
1; B

q
1Þ ¼ �ða0p ! b0qÞ þMax

IxðAp�1
1 ; Bq�1

1 Þ;
MðAp�1

1 ; Bq�1
1 Þ;

IyðAp�1
1 ; Bq�1

1 Þ;

8<: ð7Þ

IxðAp
1; B

q
1Þ ¼Max

MðAp�1
1 ; Bq

1Þ � d;
IxðAp�1

1 ; Bq
1Þ � e;

(

IyðAp
1; B

q
1Þ ¼Max

MðAp
1; B

q�1
1 Þ � d;

IyðAp
1; B

q�1
1 Þ � e:

(

Here, �ða0p ! b0qÞ ¼ �ðap ! bqÞ (since time stamps are not

used) is an integer value either positive when ap and bp are

similar symbols or negative when ap and bp are dissimilar

symbols. MðAp
1; B

q
1Þ is the best score up to ðap; bpÞ, given that

ap is aligned to bq. IxðAp
1; B

q
1Þ is the best score up to ðap; bpÞ,

given that ap is aligned to a gap. Finally, IyðAp
1; B

q
1Þ is the

best score up to ðap; bpÞ, given that bp is aligned to a gap. The

previous recursions are initialized as follows:

MðA0
1; B

0
1Þ ¼ 0; IxðA0

1; B
0
1Þ ¼ IxðA0

1; B
0
1Þ ¼ 1

MðAi
1; B

0
1Þ ¼ IxðAi

1; B
0
1Þ ¼ �d� ði� 1Þe;

IyðAi
1; B

0
1Þ ¼ �1; for i ¼ 1; . . . ; p

MðA0
1; B

j
1Þ ¼ IyðA0

1; B
j
1Þ ¼ �d� ðj� 1Þe;

IxðA0
1; B

j
1Þ ¼ �1; for j ¼ 1; . . . ; q:

4 THE TWED DISTANCE

We propose an alternative way of defining the edit
operations for time series alignment, which leads to the
definition of the new similarity measure TWED. To under-
stand the semantic associated to the edit operations for
TWED, we reconsider the editing analogy with strings and
suggest some differences. The edit distance between two

MARTEAU: TIME WARP EDIT DISTANCE WITH STIFFNESS ADJUSTMENT FOR TIME SERIES MATCHING 309



strings is defined as the minimal transformation cost
allowing for the transformation of the first string into the
second one. For string edition, a transformation is a finite
sequence of edit operations whose associated cost is the
sum over the sequence of edit operations of the elementary
costs � associated to each edit operation.

4.1 Graphical Editor Paradigm

For discrete time series, we are seeking a sequence of edit
operations allowing for the simultaneous transformation of
two time series to superimpose them with a minimal cost. If
we use a graphical editor paradigm, we can imagine a
2D representation of time series for which the horizontal
axis represents the time scale or the time-stamp coordinate,
and the vertical axis represents a spatial coordinate scale
displaying the projection of the d spatial coordinates of the

samples onto a 1D scale. In this display, discrete time series

are considered as a sequence of linear segments between

successive samples. The graphical editor we have imagined

allows for the editing of two time series A and B using three

elementary edit operations depicted in Figs. 1a, 1b, and 1c.
Instead of the classical delete, insert, and match opera-

tions, we introduce deleteA, deleteB, and match operations

as follows:

1. The deleteA (deletion into the first time series)
operation (Fig. 1b) consists of clicking on the dot
that represents the sample in A to delete ða0iÞ and of
dragging and dropping this dot onto the previous
sample dot ða0i�1Þ. We suggest that the editing effort
or cost associated with this delete operation is
proportional to the length of vector ða0i � a0i�1Þ to
which we add a constant penalty � � 0.

2. The deleteB (deletion into the second time series)
operation (Fig. 1c) consists of clicking on the dot
that represents the sample in B to delete ðb0jÞ and of
dragging and dropping this dot onto the previous
sample dot ðb0j�1Þ. Here again, we suggest that the
editing effort or cost associated with this delete
operation is proportional to the length of vector
ðb0j � b0j�1Þ to which we add a constant penalty
� � 0. Due to sampling rate variations or process
variability, one could be faced with a situation
where, in time series data, one event is either
registered many times or only a few times when
recording different utterances; this would justify
that the deletion cost be proportional to the distance
to the previous sample. Nevertheless, outliers (e.g.,
spurious data points) deletion cannot be covered by
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this argument. According to TWED, the deletion
cost for such sample depends on the previous
sample in the time series, and there is no specific
argument to justify it. The other elastic measures
(DTW, ERP, LCSS) do not offer better justification
for the deletion cost of outliers.

3. The match operation (Fig. 1a) consists of clicking on
the segment to match in the first time series ða0i; a0i�1Þ
and then of dragging and dropping this segment
onto the graphic position corresponding to the
matching segment ðb0j; b0j�1Þ in the second time series.
We can suggest that the editing effort or cost
associated with the match operation is proportional
to the sum of the lengths of the two vectors ða0i � b0jÞ
and ða0i�1 � b0j�1Þ.

This provides the basis for the TWED distance we
propose.

4.2 Definition of TWED

��;�ðAp
1; B

q
1Þ ¼

Min

��;�ðAp�1
1 ; Bq

1Þ þ �ða0p ! �Þ deleteA;

��;�ðAp�1
1 ; Bq�1

1 Þ þ �ða0p ! b0qÞ match;

��;�ðAp
1; B

q�1
1 Þ þ �ð�! b0qÞ deleteB;

8>><>>:
ð8Þ

with

�ða0p ! �Þ ¼ dða0p; a0p�1Þ þ �;
�ða0p ! b0qÞ ¼ dða0p; b0qÞ þ dða0p�1; b

0
q�1Þ;

�ð�! b0qÞ ¼ dðb0q; b0q�1Þ þ �:

The recursion is initialized as follows:

��;�ðA0
1; B

0
1Þ ¼ 0;

��;�ðA0
1; B

j
1Þ ¼1 for j � 1;

��;�ðAi
1; B

0
1Þ ¼1 for i � 1;

with a00 ¼ b00 ¼ 0 by convention:

It is interesting to note that the penalties for deleteA or
deleteB operations are similar to those proposed in the
�ppm measure if we do not consider the time stamps
coordinate and address the matching of 1D monotone
increasing time series. Furthermore, using the graphical
editor paradigm, we define the time series matching game
as follows: Two time series, A and B, are displayed on the
graphic. The goal is to edit A and B to completely
superimpose the two curves. The editing process is
performed from left to right: If i is an index on the
segments of A and j on the segments of B, then the process
initial setting is i ¼ j ¼ 1. A match operation will increment
i and j simultaneously: i iþ 1 and j jþ 1. A deleteA
operation will increment i only: i iþ 1. A deleteB
operation will increment j only: j jþ 1. According to
the above-mentioned constraint, once segment i in A has
been processed using either a match or a deleteA operation,
it is impossible to edit it again: This rule applies for all
previous segments r in f1; . . . ; i� 1g. Similarly, once a
segment j in B has been used either in a match or in a
deleteB operation, it is impossible to use former samples r

in f1::j� 1g for future match or deletion operations.
Therefore, according to this game, the editing process
provides a sequence of edit operations, as well as ordered
pairs of indices ði; jÞ, where i is an index in the sequence of
segments of A, and j is an index in the sequence of
segments of B. In other words, the process provides an
ordered sequence of triplets ðopk; ik; jkÞ, where opk is the
kth edit operation selected, and ik and jk are the values of
the index in A and B, respectively, when the edit operation
is performed. A partial order can be defined on the triplets
as follows: ðopk1; ik1; jk1Þ < opk2; ik2; jk2Þ if and only if (iff)
ik1 � ik2 and jk1 � jk2 and either ik1 6¼ ik2 or jk1 6¼ jk2. Since,
for each step of the editing game, one of the indices is
increased by one while the other is either incremented by
one or remains unchanged, all the triplets in the output
editing sequence are ordered in increasing order. Suppos-
ing that the game editing process has provided a sequence
of edit operations up to ik and jk index values, if the
sub- bAik�1

1 ( bAik�1

1 refers to the sequence obtained from A

after the first k� 1 edit operations) and bBjk�1

1 are not
superimposed, then, as there is no possibility to process the
former samples so that they may be superimposed, the
game process cannot be successful. It is easy to show that
��;� , as defined in (8), provides a successful sequence of
editing operations at a minimal global cost for all pairs of
time series in U2.

4.3 Some Properties of TWED

Proposition 4.1. ��;� is a distance on the set of finite discrete time
series U :

. P1. ��;�ðA;BÞ � 0 for any finite discrete time series A
and B.

. P2. ��;�ðA;BÞ ¼ 0 iff A ¼ B for any finite discrete
time series A and B.

. P3. ��;�ðA;BÞ ¼ ��;�ðB;AÞ for any finite discrete time
series A and B.

. P4. ��;�ðA;BÞ � ��;�ðA;CÞ þ ��;�ðC;BÞ for any finite
discrete time series A, B, and C.

The proof of Proposition 4.1 is given in [22]. The proofs
for P1 and P3 are straightforward. P2 and P4 are proved
inductively. The induction relies on the sum of the lengths
of time series A, B, and C.

Proposition 4.2. ��;� is upper bounded by twice the Minkowski’s
distanceDLP . 8��0, 8X, Y 2U2, ��;�ðX;Y Þ�2 
DLP ðX;Y Þ
whenever X and Y have the same length.

The proof of Proposition 4.2 is given in [22]. Basically, if
X and Y have the same length, the direct sequence of match
operations (without any deletion or insertion) applying on
samples pairs ðx0i; y0iÞ has a global cost equal to twice the
Minkowski’s distance between X and Y . The result follows:

Proposition 4.3. ��;� is an increasing function of � and �:

8� � 0; 8� > 0; 8�0 � �; 8�0 > �; 8X; Y 2 U2

��;�ðX;Y Þ � ��0;�0 ðX;Y Þ:

The proof, given in [22], is a straightforward conse-
quence of the definition of ��;� .
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4.4 Providing Stiffness into ��;�
Going back to the graphical editor game, we have envisaged
that the penalty or cost associated with each edit operation
should be proportional to the mouse pointer displacement
involved during the edition. If we separate the spatial
displacement in S from the temporal displacement in T ,
then we have to consider a spatial penalty that could be
handled by a distance measured in S and a temporal
penalty more or less proportional to some distance
measured in T . By doing so, we could parameterize a
distance in between the Minkowski’s Distance, which is
characterized by a kind of “infinite stiffness,” and DTW,
which is characterized by a “null stiffness.”

In practice, we choose dða0; b0Þ ¼ dLP ða; bÞ þ � 
 dLP ðta; tbÞ,
where � is a non-negative constant, which characterizes the
stiffness of the ��;� elastic measures. Notice that � > 0 is
required for ��;� to be a distance. If � ¼ 0, then ��;� will be a
distance on S but not on S � T . The final formulation of ��;�
is shown as follows:

��;�ðAp
1; B

q
1Þ ¼

Min

��;�ðAp�1
1 ; Bq

1Þ þ �ða0p ! �Þ deleteA;

��;�ðAp�1
1 ; Bq�1

1 Þ þ �ða0p ! b0qÞ match;

��;�ðAp
1; B

q�1
1 Þ þ �ð�! b0qÞ deleteB;

8>><>>:
ð9Þ

with

�ða0p ! �Þ ¼ dLP ðap; ap�1Þ þ � 
 ðtap � tap�1
Þ þ �;

�ða0p ! b0qÞ ¼ dLP ðap; bqÞ þ dLP ðap�1; bq�1Þ
þ � 
 ðjtap � tbq j þ jtap�1

� tbq�1
jÞ;

�ð�! b0qÞ ¼ dLP ðbq; bq�1Þ þ � 
 ðtbq � tbq�1
Þ þ �:

Some analogy can be found between the parameters � and

� of ��;� and parameters e and d of the affine model defined

for symbolic sequence matching (see Section 3.6). Never-

theless, some major differences exist: The penalties in ��;�
are, for one part, proportional to the time-stamp difference

between matching, deleted, or inserted samples. A constant

penalty is added for the two deletion operations that

correspond to gaps. Conversely, the affine model proposes

a penalty proportional to the gap length corresponding to

series of successive insertions or deletions, with a constant

penalty for the first operation in the sequence of deletions.
The iterative implementation of ��;� using the Lp metrics

to evaluate the distance between two samples is depicted in
Algorithm 1.

4.5 Algorithmic Complexity of ��;�

The time complexity of ��;� is the same as DTW and ERP,

namely, Oðp:qÞ, where p and q are the lengths of the two

time series being matched. The space complexity is also the

same as DTW, i.e., Oðp:qÞ, but as for the ERP distance, the

costs �ða0p ! �Þ and �ð�! b0qÞ can be tabulated to speed up

the calculation leading to an extra space complexity of

Oðpþ qÞ for ��;� .

Algorithm 1. Iterative implementation of TWED
float TWED(float A[1..n], float timeSA[1..n],

float B[1..m], float timeSB[1..m],

float �, float �) {
DECLARE int DP[0..n,0..m];
DECLARE int i, j;
DECLARE float cost;
DECLARE float A½0� :¼ 0; float timeSA½0� ¼ 0;
DECLARE float B½0� :¼ 0; float timeSB½0� ¼ 0;
FOR i :¼ 1 to n

DP½i; 0� :¼ 1;
FOR j :¼ 1 to m

DP½0; j� :¼ 1;
DP½0; 0� :¼ 0;
FOR i :¼ 1 to n {

FOR j :¼ 1 to m {
cost :¼ DLP ðA½i�; B½j�Þ;
DP½i� 1; j� :¼ minimum (

// DeleteA
DP½i� 1; j� þDLP ðA½i� 1�;A½i�Þ þ
� 
 ðtimeSA½i� � timeSA½i� 1�Þ þ �,

// DeleteB
DP½i; j� 1� þDLP ðB½j� 1�;B½j�Þ þ
� 
 ðtimeSB½j� � timeSB½j� 1�Þ þ �,

// match
DP½i� 1; j� 1� þDLP ðA½i�;B½j�Þ þ
DLP ðA½i� 1�;B½j� 1�Þ þ
� 
 ð ¼ jtimeSA½i� � timeSB½j�j þ

|timeSA[i-1]-timeSB[j-1]|);
} //END FOR j

} //END FOR i
Cost :¼ DP½n;m�;
RETURN Cost;
}

4.6 Bounding the TWED Measure

In this section, we get back to our third motivation about
defining a measure that exploits time stamps while
verifying the triangle inequality. We show how piecewise
constant approximations (PWCA) with few segments of
time series can be used to improve the efficiency of range
queries. Various methods exist to get polygonal curve
approximations of time series, in particular, heuristic [7],
[9], [14], [13], near optimal [17], [24], or optimal [29]
solutions. Most of them can be adapted to provide PCWA
approximation of time series.

We define A
p;r

1 as a PWCA of time series Ap
1 containing

r� 1 constant segments and p samples. This approximation

can be obtained using any kind of solution (from heuristic

to optimal solutions), say, the optimal solution similar to

the one proposed in [29]. A
p;r

1 and Ap
1 have the same number

of samples, namely, p. Let ~Ar
1 be the time series composed

with the r segment extremities in A
p;r

1 . ~Ar
1 contains r

samples. Let us similarly define B
q;r0

1 and ~Br0

1 from Bq
1

time series.

Proposition 4.4. 8� � 0, 8� > 0, 8Xp
1 2 U , 8r 2 ½1; p½,

��;�ðX
p;r

1 ; ~Xr
1Þ � � 
 ðp� rÞ þ � 
�T 
 ð2p� rÞ, where �T is

the time difference average between two successive samples

inside the piecewise constant segments of the approximation.

The proof of this proposition is given in [22]. The

matching consisting of ðp� rÞ deletions in X
p;r

1 and the

matching of the r corresponding samples in X
p;r

1 and ~Xr
1 has

312 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 31, NO. 2, FEBRUARY 2009



a global cost equal to � 
 ðp� rÞ þ � 
�T 
 ð2p� rÞ. The
result follows.

From Propositions 4.2, 4.3, 4.4, and the triangular
inequality property, we get an upper bound for
j��;�ðAp

1; B
q
1Þ � ��;�ð ~Ar

1;
~Br0

1 Þj that quantifies the difference of
the distance of two time series evaluated in the original
space with the distance of their approximations evaluated
in the downsampled space (see the Appendix for details):

j��;�ðAp
1; B

q
1Þ � ��;�ð ~Ar

1;
~Br0

1 Þj �
� 
 ðpþ q � r� r0Þ
þ � 
�T 
 ð2ðpþ qÞ � r� r0Þ

þ 2 
DLP ðA
p;r

1 ; Ap
1Þ þ 2 
DLP ðB

q;r0

1 ; Bq
1Þ:

ð10Þ

This shows that ��;�ðAp
1; B

q
1Þ and ��;�ð ~Ar

1;
~Br0

1 Þ are potentially
close when two conditions are satisfied:

1. The PWCA approximations of A and B are close to
the original time series in the sense of the
LP -distance. This should be ensured by the optimal
solution of the min-� problem using piecewise
constant segments whenever the number of seg-
ments r is not too small.

2. � and � 
�T are small compared to 2 
 ðpþ qÞ � r� r0.
Hence, we get the following lower bounds that can be

considered tight if the two previous conditions are satisfied:

8� � 0; 8� > 0; 8�0 > �; 8�0 > �; 8Ap
1; B

q
1 2 U2;

8r 2 ½1; p½; 8r0 2 ½1; q½
��;�ð ~Ar

1;
~Br0

1 Þ �� � ��;�ðAp
1; B

q
1Þ

� ��0;�0 ðAp
1; B

q
1Þ;

ð11Þ

where � ¼ � 
 ðpþ q � r� r0Þ � � 
�T 
 ð2ðpþ qÞ � r� r0Þ �
2 
DLP ðA

p;r

1 ; Ap
1Þ � 2 
DLP ðB

q;r0

1 ; Bq
1Þ.

This last inequality is still potentially useful to design
fast and dirty filters (FDFs) dedicated to range query
searching, typically for applications for which �0 and �0

cannot be small enough, while � and � can be set up small.
For range query search, if R is the radius of the range query
and Ap

1 is the center of the query ball, then Bq
1 is outside the

search range if one of the following conditions is verified:

��;�ð ~Ar
1;

~Br0

1 Þ > Rþ�: ð12Þ

��;�ð ~Ar
1;

~Br0

1 Þ > Rþ ��;�ð ~Ar
1; A

p
1Þ þ ��;�ð ~Br0

1 ; B
q
1Þ: ð13Þ

For time series information retrieval applications, inequal-
ities (12) and (13) are potentially useful. If ��;�ð ~Ar

1; A
p
1Þ and

��;�ð ~Br0
1 ; B

q
1Þ are precomputed during the indexing phase,

the tighter bound (13) can be used. Otherwise, the second
bound (12) can be evaluated during the retrieval phase
through the computation of LP -distances.

Note that if r ¼ r0 ¼ ð1=KÞ 
minðp; qÞ, the complexity for
evaluating ��;�ð ~Ar

1;
~Br0

1 Þ is lower than Oðp:q=K2Þ.

5 EXPERIMENTATIONS

5.1 Classification Experiment

To empirically evaluate the effectiveness of the TWED

distance compared to other metrics or similarity measures,

we address a simple classification task experiment. The
classification task we have considered consists of assigning
one of the possible categories to an unknown time series for
the 20 data sets available at the UCR repository [16]. For each
data set, a training subset is defined, as well as a testing
subset. The classification is based on the simple nearest
neighbor decision rule: First, we select a training data set
containing time series for which the correct category is
known. To assign a category to an unknown time series
selected from a testing data set (different from the train set),
we select its nearest neighbor (in the sense of a distance or
similarity measure) within the training data set and then
assign the associated category to its nearest neighbor.

Given a data set, we adapt the stiffness parameter as
follows: We use the training data set to select the best
stiffness ð�Þ value, as well as the best � value, namely, the
ones leading to the minimal error rate on the training data,
according to a leave-one-out procedure (that consists of
iteratively selecting one time series from the training set and
then in considering it as a test against the remaining time
series within the training set itself).

Finally, the testing data set is used to evaluate the final

error rate (reported in Tables 1 and 2) with the best � and

� values estimated on the training set. This leads to

OTWED, the optimized versions of TWED. The same

procedure is used to set up the parameters defined for the

other parametric measures, i.e., optimized DTW (ODTW)

and LCSS.
Tables 1 and 2 show the results obtained for the tested

methods, e.g., ED on the original time series, ODTW with
best warping windows, as defined in [30], classical DTW
(DTW) with no warping window, LCSS, as defined in [11],
ERP, as defined in [4] and OTWED. In Table 1 and Fig. 3,
the time series are not preprocessed, while in Table 2 and
Fig. 3, time series are downsampled using an optimal PCA
procedure similar as the one described in [29] for polygonal
approximation. In this last experiment, each down sampled
time series has exactly 50 percent less samples than the
original time series. The sampling rate for the down
sampled time series is indeed varied since the size of the
constant segments used to approximate the time series is
not generally constant.

For parameterized measures, best values are selected

from the training data in order to minimize the error rate

estimated for the training data. More precisely, the settings

are listed as follows:

. ODTW. The best corridor value is selected for each
data set among the set f0;maxðp; qÞg so as to
minimize the classification errors estimated for the
training data. If different corridor values lead to the
minimal error rate estimated for the training data,
then the lowest corridor value is selected.

. LCSS. The best � and � values are selected for
each data set, respectively, among the sets
fn; n=2; n=4; . . . ; n=2kg, w i t h n ¼ maxðp; qÞ a n d
n=2k � 1=2� n=2kþ1, and f20; 20=2; 20=4; . . . ; 20=2kg,
with 20=2k � 1e�2 < 20=2kþ1 so as to minimize the
classification errors estimated for the training data.
If different ð�; �Þ values lead to the minimal error
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rate estimated for the training data, then the pairs
having the highest � value are selected first, and the
pair with the highest � value is finally selected.

. OTWED. For our experiment, the stiffness value (�)
is selected from f10�5; 10�4; 10�3; 10�2; 10�1; 1g and �
is selected from f0; :25; :5; :75; 1:0g. The � and �
parameter values are selected for each data set so as
to minimize the classification errors estimated on the
training data. If different ð�; �Þ values lead to the

minimal error rate estimated for the training data,
then the pairs containing the highest � value are
selected first, and the pair with the highest � value is
finally selected.

For the ERP and OTWED, we used the L1-norm, while
the L2-norm has been implemented in DTW and ODTW, as
reported in [30]. The gap value used in the ERP has been set
equal to the distance between the deleted or inserted
sample and 0, as suggested by Chen and Ng [4].
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TABLE 2
Comparative Study Using the UCR Data Sets VII: Classification Error Rate Obtained Using the First Near Neighbor

Classification Rule on Downsampled Time Series for ED, DTW, ODTW, LCSS, ERP, and OTWED Distance

TABLE 1
Comparative Study Using the UCR Data Sets VII: Classification Error Rate Obtained Using the

First Near Neighbor Classification Rule for ED, DTW, ODTW, LCSS, ERP, and OTWED Distance



Finally, as time is not explicitly given for these data sets,

we used the index value of the samples as the time stamps

for the whole experiment. This experiment shows that the

TWED distance is effective for the considered task com-

pared to ED, DTW, ODTW, ERP, and LCSS measures, since

it exhibits, on the average, the lowest error rates for the

testing data, as shown in Table 2 and Fig. 3. The gain, on the

average, is relatively significant: around 2.5 percent against

ODTW, 4.7 percent against LCSS, 3 percent against ERP,

9.4 percent against ED, and 8.8 percent against DTW.
The same experiment carried out for downsampled time

series (Table 2 and Fig. 4) shows that the error rates drop

more than twice as fast for ED, DTW, ERP, LCSS, and

ODTW than for TWED. In that experimental context, using

time stamps when matching nonuniform downsampled
time series seems to be quite effective.

5.2 Range Query Experiment

Using the multiresolution approach defined in [24] to get
nested PCWA approximations of time series in linear time
complexity, the FDF that we propose iteratively evaluates
the inequality (13) from the crudest level of resolution to
the finest (which corresponds to the original time series).
Between two successive levels of resolution, halves of the
samples are eliminated. Given a radius R and a reference
time series A, the FDF rejects candidate time series B as
early as possible, i.e., as soon as two approximations of A
and B satisfy inequality (13). The experiment consists in
evaluating the processing time required to extract all the
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versus ERP, (d) OTWED versus ODTW, and (e) OTWED versus LCSS.



times series B located inside a ball of radius R centered

on the reference time series A, which is drawn randomly

from a database. We compare the FDF against a Linear

Scanning (LS) procedure applied in the original time

series space.
The first experiment is carried out from a heterogeneous

database composed of the 20 data sets available at UCR [16].
This database comprises 23,999 time series. The second
experiment is carried out from a homogeneous database,
which is composed only of the Two_patterns data set
available at UCR [16]. This database comprises 5,000 time
series. For both experiments, parameters � and � are set
constant, equal to the intermediate value 0.01. Fig. 5 shows
that the FDF performs well for small radius for both
databases. The FDF is by an order of magnitude faster than

the LS procedure for radius varying from 1 to 4. The FDF
matches LS for a radius R in between values 16 and 32. The
FDF isperforming worse than LS for greater radius, mainly
because inequalities (12) and (13) no longer efficiently apply.

6 CONCLUSION

From a graphical curve editing perspective and from earlier

work on symbolic edit distance and DTW, we have

developed an elastic similarity measure called TWED to

match time series with some time shifting tolerance. We

have proven that the TWED measure is a metric, and as

such, TWED can be used complementarily with methods

developed for searching in metric spaces as potential

solutions for time series searching and retrieval applications
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Fig. 4. Comparison of distance pairs ð�x; �yÞ applied on downsampled times series. The x- and y-axes show the error rates for the two compared
distances. The straight line has a slope of 1.0 and dots correspond to the error rate for the selected distance pair and tested data sets. A dot below
(respectively, above) the straight line indicates that distance �y has a lower (respectively, higher) error rate than distance �x. Plot (a) shows OTWED
versus ED, plot (b) shows OTWED versus DTW, plot (c) shows OTWED versus ERP, plot (d) shows OTWED versus ODTW, and plot (e) shows
OTWED versus LCSS.



when time shift tolerance is concerned. The originality of

TWED, compared to similar elastic measures, apart from

the way insertions and deletions are managed, lies in the

introduction of a parameter that controls the stiffness of the

measure, thus placing TWED in between the EDs (infinite

stiffness) and the DTW similarity measure (null stiffness).

Moreover, TWED involved a second parameter that defines

a constant penalty for insert or delete operations, similarly

to the edit distance defined for string matching. These two

parameters can be straightforwardly optimized for each

application or data set as far as training data are available.
Furthermore, a procedure has been drawn up to lower

bound the TWED metric. This procedure consists in
approximating the time series using polygonal or piecewise
constant approximations. It takes benefits from the triangle
inequality to link the TWED measure evaluated on the
approximated representations of time series to the TWED
measure evaluated on the original time series. The
computational cost reduction of TWED when evaluated in
the approximated representation space is quadratic with the
compression rate of the approximation. Nevertheless, this
kind of lower bound has no linear complexity. Experimen-
tation shows that one can expect to gain an order of
magnitude in processing time using a very simple FDF
based on this lower bound. The search for a lower bound
whose complexity is effectively linear and that could be
efficiently used in conjunction with downsampled approx-
imation of time series is still a perspective.

The empirical quality of the distance has been evaluated

through a classification experiment based on the first near

neighbor classification rule for 20 different data sets.

Globally, for this experiment, TWED performs, on the

average, significantly better than the ED and Dynamic Time

Warp measure and slightly better than the LCSS measure,

the ERP, and the DTW measure with optimized search

corridor size. When the classification experiment is applied

to downsampled time series, TWED is more robust than the

other tested measures. This is mainly because the time

series are not uniformly sampled in this experiment, in

which case, it is particularly relevant for time stamps.

APPENDIX

UPPER BOUND FOR THE TWED DISTANCE

BETWEEN A TIME SERIES AND ITS DOWNSAMPLED

APPROXIMATION

From Propositions 4.2 to 4.4, we can upper-bound the

matching of two time series evaluated in the original space

with the matching of their approximations evaluated in the

downsampled space as follows:

8� � 0; 8� > 0; 8�0 > �; 8�0 > �; 8Ap
1; B

q
1 2 U2; 8r

2 ½1; p½; 8r0 2 ½1; q½

��;�ðA
p;r

1 ; Ap
1Þ � 2 
DLP ðA

p;r

1 ; Ap
1Þ Prop: 4:2;

��;�ðA
p;r

1 ; ~Ar
1Þ � � 
 ðp� rÞ þ � 
�T 
 ð2p� rÞ Prop: 4:4;

��;�ðB
q;r0

1 ; Bq
1Þ � 2 
DLP ðB

q;r0

1 ; Bq
1Þ Prop: 4:2;

��;�ðB
q;r0

1 ; ~Br0
1 Þ � � 
 ðq � r0Þ þ � 
�T 
 ð2q � r0Þ Prop: 4:4:

From these inequalities and the triangle inequality

verified by ��;� , we get

��;�ð ~Ar
1; A

p
1Þ �� 
ðp� rÞþ � 
�T 
ð2p� rÞþ 2 
DLP ðA

p;r

1 ; A
p
1Þ;

��;�ð ~Br0

1 ; B
q
1Þ �� 
ðq� r0Þ þ � 
�T 
 ð2q� r0Þ þ 2 
DLP ðB

q;r0

1 ; B
q
1Þ:
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Fig. 5. Processing time (in seconds) required to filter 100 random queries as a function of the radius R for (a) the heterogeneous database and
(b) the homogeneous database. The rhombuses constant line refers to the LS procedure, while the square line refers to the FDF procedure.
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