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Abstract—Time-series classification is an active research
topic in machine learning, as it finds applications in numerous
domains. The k-NN classifier, based on the discrete time
warping (DTW) distance, had been shown to be competitive
to many state-of-the art time-series classification methods.
Nevertheless, due to the complexity of time-series data sets,
our investigation demonstrates that a single, global choice
for £ (> 1) can become suboptimal, because each individual
region of a data set may require a different £ value. In this
paper, we proposed a novel individualized error prediction
(IEP) mechanism that considers a range of k-NN classifiers (for
different k. values) and uses secondary regression models that
predict the error of each such classifier. This permits to perform
k-NN time-series classification in a more fine grained fashion
that adapts to the varying characteristics among different
regions by avoiding the restriction of a single value of k. Our
experimental evaluation, using a large collection of real time-
series data, indicates that the proposed method is more robust
and compares favorably against two examined baselines by
resulting in significant reduction in the classification error.
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I. INTRODUCTION

Time-series classification is an active research topic in
machine learning and data mining, because it finds several
applications including finance, medicine, biometrics, chem-
istry, astronomy, robotics, networking and industry [11]. The
increasing interest in time-series classification resulted in a
plethora of different approaches ranging from neural [16]
and Bayesian networks [22] to genetic algorithms, support
vector machines [6] and frequent pattern mining [7], [1].
Nevertheless, despite its simplicity, the 1-nearest neighbor
(1-NN) classifier based on the dynamic time warping (DTW)
distance [21] has been shown to be competitive, if not
superior, to many state-of-the art time-series classification
methods [20], [2], [13]. Due to its good performance, this
method has been examined in depth (a thorough summary
of results can be found at [18]) with the aim to improve its
accuracy [19] and efficiency [12].

The wide acceptance of 1-NN in time-series classification
has been supported also by its lack of parameters. Nev-
ertheless, it is known that the choice of parameter k in
the k-NN classifier affects the bias-variance trade-off [9].
Smaller values of k& may result in increased variance due to
overfitting, whereas larger values of k increase the bias by
capturing only global tendencies. Recent studies [17] have
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indicated that, due to intrinsic characteristics in time-series
data sets, such as the mixture between the different classes,
the dimensionality, and the skewness in the distribution of
error (i.e., the existence of “bad hubs” [17] that account for
a surprisingly large fraction of the total error), significant
improvement in the accuracy of the k-NN time-series clas-
sification can be attained with £ being larger than 1. In such
cases, k can be determined using a hold-out subset of the
training data.

Since time-series data sets tend to be complex, their
intrinsic characteristics, such as those mentioned above, may
vary over different regions. As a consequence, setting a
single, global choice for k (> 1) can become suboptimal,
since each individual region of a data set may require
a different value of k. Therefore, the motivation in our
study is to investigate how to perform k-NN time-series
classification in a more fine grained fashion that adapts to the
varying characteristics among different regions by avoiding
the restriction of a single value of k.

In this paper, we propose a mechanism that considers a
range of values for k£ and estimates for each time-series,
t, that has to be classified, the likelihood of erroneous
classification (henceforth called simply error) of ¢ by the k-
NN classifier. The estimation is computed for each k in the
examined range, in order to select the one that minimizes the
error for £. Since we propose the classification of time-series
by predicting the error individually for each of them, the
proposed approach is called time-series classification based
on individualized error prediction (IEP). IEP is performed
by regression models that are trained in order to make
accurate estimations for the error of the k-NN classifier. In
summary, our contribution are described as follows:

1) We introduce the notion of IEP, which can be generally
applied in classification problems (i.e., not just for the
k-NN classification of time-series).

We propose a novel mechanism for IEP, which is
applied to the task of classifying time-series data based
on the k-NN classifier.

We perform a thorough experimental evaluation, with
a large number of commonly used benchmark data
sets, which indicates significant improvement in accu-
racy attained by the proposed method when compared
with the widely used 1-NN classifier and with the
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k-NN classifier that determines a single optimal k
(k > 1). The attained improvement happens especially
when the characteristics of the data sets become chal-
lenging for these two baselines.

The rest of this paper is organised as follows: in Section II
we overview the related work, in Section III we outline IEP,
whereas in Section IV we describe the proposed algorithm.
In Section V we present our experimental evaluation. We
provide our conclusions in Section VI.

II. RELATED WORK

Despite the development of a large variety of models
for time-series classification [16], [6], [7], the k-nearest
neighbor (k-NN) classifier (especially for £ = 1), has been
shown to be competitive to many other, more complex mod-
els [20], [2], [13]. Nearest-neighbor classification of time
series uses Dynamic Time Warping (DTW) [21], because it
is an elastic distance measure, i.e., it is robust w.r.t. shiftings
and elongation in the time series. Recent works aimed at
making DTW more accurate and scalable [19], [12]. DTW
was analyzed from a theoretical-empirical point of view
in [18], whereas Ding et al. found no other distance measure
that significantly outperforms DTW [2].

Our proposed approach, i.e., using IEP to select the best &k
for £-NN time-series classification, could be related to works
that perform local adaptation of k-NN classifier. A locally
adaptive distance measure was proposed by Hastie and
Tibshirani [8], while Domeniconi and Gunopulos [3] used
SVMs to define a local measure of feature relevance, i.e.,
feature weights depending on the location of a data point to
be classified. In [4] adaptive nearest neighbor classification
in high-dimensional spaces was studied. In contrast to these
works, our IEP approach adapts by selecting the proper value
of k and not by determining a localized distance function.

Ougiaroglou at al. [15] presented 3 early-break heuristics
for £-NN which can be interpreted as adapting the num-
ber of nearest neighbors. Their heuristics, however, aimed
at speeding-up k-NN, while we focus on making nearest
neighbor classification more accurate using the principled
framework of IEP.

Error-prediction methods are usually applied globally in
order to estimate the overall performance of a classification
model [14], [10]. In our approach, we focus on individ-
ualised error prediction. This is similar to learning the
residuals, i.e., the difference between predicted and actual
labels. Duffy and Helmbold followed this direction and
incorporated residuals into boosting of regression models
[5]. In contrast to this work, we do not focus on boost-
ing. Similarly to our work, Tsuda et al. [23] proposed
an individualised approach for predicting the leave-one-out
error of vector classification with support vector machines
(SVM) and linear programming machines (LPM). Compared
to this work, our proposed approach performs general in-
dividualised error prediction (not just for leave one out).
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More importantly our approach exploits error prediction to
improve accuracy of classification and not as a per se task,
as done in [23].

A set of earlier approaches to localized error prediction for
the k-NN classifier was proposed by Wettschereck and Di-
etterich [24]. However, these approaches were based solely
on heuristics such as using different k& values per class or
per cluster (after clustering the training set). Our proposed
framework is principled and more generic than these simple
approaches: we distinguish between the error prediction step
and classification step, our framework supports systematic
usage of the predicted error-likelihoods, and our framework
allows various classification and regression models.

Finally, all aforementioned works concerned with classifi-
cation of vectors (point data), while we focus on time-series
classification.

IITI. INDIVIDUALIZED ERROR PREDICTION

In this section, we introduce the concept IEP, which is
the basis of the proposed algorithm that will be detailed in
Section IV. We first provide a motivating example and then
outline the approach we take for IEP.

A. Motivating example

As mentioned in Section I, the selection of a single value
of k for the k-NN time-series classification, can lead to sub-
optimal accuracy, because of varying characteristics among
different regions of the data. We investigate this phenomenon
in more detail by first presenting a motivating example for
the simple setting of binary classification of a 2-dimensional
data set.!

Figure 1 depicts a set of labeled instances from two
classes that are denoted by triangles and circles. The density
in the class of triangles (upper region) is larger than in
the class of circles (lower region). We consider two test
instances, denoted as ‘1’ and ‘2’°, that have to be classified.
We also assume that the ground-truth considers test instance
‘1’ as a triangle, whereas ‘2’ as a circle. For ‘1’, its 1-NN
is a circle. Thus, the 1-NN method classifies ‘1’ incorrectly.
Using the k-NN classifier with £ > 1 (e.g., in the range
between 3 and 6), we can overcome this problem. However,
the selection of a single £ from the above range results in
incorrect classification of test instance ‘2’. Due to the lower
density in the circles’ class, by setting k¥ > 1 (e.g., inside
the above range), we detect neighbors of 2’ whose majority
belongs to the triangles’ class (we assumed ‘2’ is a circle).
This can be observed in Figure 1, where the large dashed
cycle around ‘2’ shows that among all its 6-NN, only 1
belongs to the circles’ class. Thus, unlike for ‘1°, k =1 is
a good choice for 2°, because its 1-NN (shown inside the
smaller dashed cycle) has the correct class.

n this example, we use a 2-dimensional data set, thus we depart for the
moment from the examination of time-series data that are in general high-
dimensional, in order to ease the presentation with an illustrative figure.
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Figure 1. The optimal choice of the number of nearest neighbors is not

unique for the entire data, but it may be different from region to region: in
case of the classification of the unlabeled instance denoted by ‘1’, k& > 1
(e.g., k = 3) is required; whereas for ‘2’ we should choose k = 1.

The exemplified problem is amplified with time-series
data due to their higher dimensionality and complexity.
We propose to choose the value of k£ on an individualized
basis, i.e., separately for each test instance to be classified.
Following this approach in the example of Figure 1, besides
the k-NN classifier, we need an additional model, which
will allow for predicting that k; = 3 is a good choice, when
we classify instance ‘1’, whereas ko = 1 is an appropriate
choice for the classification of instance ‘2. In the following
we outline how the proposed approach can be developed.

B. Outline of IEP

We propose a mechanism for individualized prediction of
the error with which the k-NN classifier will misclassify
each test instance, ¢. This mechanism considers a range of
k values and predicts the error of each corresponding k-
NN classifier.> Error prediction is performed by introducing
secondary regression models that are trained to predict the
error of each considered k-NN classifier.

The examined range of n values for k is denoted as
{ki}?_,. E(t, k;) denotes the error, i.e., the likelihood with
which the k;-NN classifier (1 < ¢ < n) will misclas-
sify ¢. We select k* that minimizes the predicted error:
k* =argming, 1<;<n{FE(t, k;)}. Finally, the k*-NN classi-
fier is used to classify ¢. This is shown in Fig. 2.

2 Although this range is user-defined, its determination is much simpler
and intuitive compared to selecting a single k. This will be asserted by our
experimental results, which indicate that the range 1 — 10 was appropriate
for all examined benchmark data sets.
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Figure 2. Summary of IEP for k-NN classification.

The previous description provides only the outline of
IEP. A concrete algorithm for times-series classification is
described in the following, by specifying also the secondary
models that perform error prediction.

IV. TIME-SERIES CLASSIFICATION BASED ON IEP

The proposed mechanism for IEP-based classification
involves two types of models:

o Primary models, which classify time series with the k-
NN classifier (based on the DTW distance).

o Secondary models, which predict the error of the pri-
mary models.

To train the secondary models, we partition the original
training data set, D, in two disjoint subsets D and D» (i.e.,
Dy UDy = D, DN Dy = (). D, is called hold-out set. For
each time series t € Do, and for each examined value of k;
in a range {k;}"_,, we use D; to classify ¢ with the k;-NN
classifier. Based on the class label of ¢ that is given in Do,
we determine if the k;-NN classifier (for each 1 < i < n)
has correctly classified ¢. In case of correct classification, we
associate with ¢ an error value of 0, otherwise we associate
an error value of 1. Thus, from the hold-out set D> we
can generate n new data sets D, 1 < ¢ < n. Each D)
contains all time-series of the hold-out set Dy along with
their associated error values (0 or 1) for the corresponding
k;-NN classifier.

Next, each generated D) acts as the training set for the
corresponding secondary model. Thus, based on the associ-
ated error values in each D, the corresponding secondary
model is trained as a regression model in order to predict the
error of the k;-NN classifier (i.e., the corresponding primary
model). This procedure is summarized in Figure 3.

We implement each secondary level model as a k'-NN
regression model based on the DTW distance. (We denote
k' in order to distinguish from k that is used in the primary
k-NN classification models.) The secondary level prediction
for a time series ¢ is calculated the following way:

> ae(tn, ki)

tNEN ()
k./
where N (t) C Dy is the set of k’-NNs of ¢ and a.(tn, k;)
is the associated error value of each ¢ € N (t).
Similar to the primary models, the secondary models also
have to determine the value of &’. Nevertheless, the proposed
approach has the advantage that, as will be asserted by our

E(t, k;)
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experimental results, it suffices to specify a single value of &’
that will be used by all secondary models. More importantly,
the selection of %’ is simple due to the small variance that
can be inspected in the accuracy of the secondary models.?
Thus, while for the primary models the best k varies among
different regions inside a dataset, at the secondary level, due
to the different learning task performed by the secondary
models, we can observe a stable tendency regarding &'.
Finally, the classification of a time series is done by
the primary model that is predicted (based on the IEP
mechanism) to result in the smallest error for this time
series. We have to clarify that the training of secondary
models is being performed in an off-line fashion, i.e., using
only the training sets that are generated by the hold-out set.
Therefore, the use of the IEP mechanism produces a small
overhead to the (online) time needed to classify a time series,
as we need to probe the n trained secondary models to
retrieve their estimated errors. Moreover, our experimental
results we will demonstrate that also the overhead in the
off-line time for the training of the secondary models, is
manageable even for large time-series data sets.

V. EXPERIMENTAL EVALUATION
A. Experimental configuration

To assist reproducibility, we provide a detailed description
of the configuration of our experiments.

Methods. We compare the proposed method, denoted as
IEP, against two baselines: the 1-NN classifier and the k-NN
classifier that selects k using a hold-out set from the training
data. The latter baseline uses the same hold-out set as the
proposed method, examines the same range of values for &,
and selects the one that produces the smallest average error
for all time series in the hold-out set. All examined methods

3In our experimental results, we found that &’ = 5 was appropriate for
all examined benchmark data sets.
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Schema of IEP-based time series classification.

are based on the same DTW distance that constrains the
warping window size at 5% around the matrix diagonal [18].

Data-sets. Out of all the 38 data sets used in [2], we
examined 35 data sets: we excluded 3 of them (Coffee,
Beef and OliveQOil) due to their tiny size (Iess than 100 time
series). The names of the remaining data sets and their size
(number of time series they contain) are listed in the first
and second columns of Table I.

Parameters. For the £-NN classifiers at the primary level
of the proposed method, we examine all k£ values in the
range 1 —10. We experimented with larger k values as well,
but we observed that they increase the bias and deteriorate
the resulting accuracy. For the &’-NN regression models at
the secondary level of the proposed method, as mentioned
in Section IV, it is sufficient to determine a single value of
k' for all secondary models and for all examined data sets.
In the following, we use the default value of ¥’ = 5, but we
also test the sensitivity against k’.

Comparison protocol. We measure the misclassification
error using 10-fold cross validation, with the exception of
three data sets (FaceFour, Lighting2, and Lighting7) for
which we used the leave-one-out protocol due to their small
size. In each round of the 10-fold cross validation, out of
the 9 training splits, we used 5 to train the primary models
(Dy), the rest 4 splits served as hold-out data (D,).* For
classifying test data, i.e., after selecting for IEP and k-NN
the best k, we can again use all training splits.

After using the above evaluation procedure, we made a
striking observation about the performance of all examined
methods (proposed and baselines): in the majority of data
sets, the misclassification error was rather low (less than
5%). To have a challenging comparison with non trivial
classification, we choose to affect intrinsic characteristics

4Ratios other than the examined 5-4, gave similar results. In case of
leave-one-out, the training data was split according to 5 to 4 proportion.



of the data sets. According to the findings in [17], time-
series data sets usually have high intrinsic dimensionality
and, thus, some of their instances tend to misclassify a
surprisingly large number of other instances when using the
k-NN classifier (k > 1). These instances are called “bad
hubs” and are responsible for a very large fraction of the
total error. For this reason, for each time series, ¢, in a
data set, we measured two quantities: the badness B(t) of
t and the goodness G(t) of t. B(t) (G(t), resp.) is the total
number of time series in the data set, which have ¢ as their
first nearest neighbor while having different (same, resp.)
class label from ¢. For each data set, we sort all time series
according to the G(t) — B(t) quantity in descending order.
Then we change the label of first p percent time series in
this ranking (p varies in range 0-10%).> Since the above
procedure results in data sets that have stronger “bad hubs”
and a less clear separation between classes, the comparison
among the examined methods becomes more challenging
and can characterize better the robustness of the methods.

B. Experimental Results on Classification Accuracy

The results on classification error are summarized in
Table 1. For brevity, we only report results at p = 1%, 5%,
and p = 10% noise, however we observed similar tendencies
at all other noise ratios in the examined range of p. Bold
font denotes the winning method for each data set. In case
where winner is IEP, we also provide two symbols in the
form: /= to denote the result of statistical-significance test
(t-test at 0.05 level) against 1-NN and k-NN, respectively,
where a + denotes significance and — its absence. In case
where the winner is not IEP, we provide only the result
(again in form of +) of statistical-significance test of the
winner against IEP.

Table II summarizes these results by reporting the number
of cases, per noise level and in total, that IEP wins/looses
against 1-NN and k-NN (in parenthesis we report in how
many cases wins/looses are statistically significant).

p=1% p=5% p=10% total
Wins against 1-NN 30 (20) 34 (29) 34 (31) 98 (80)
Looses against 1-NN 5(1) 1 (0) 1 (0) 7 (1)
Wins against k-NN 30 (15) 30 (9) 28 (14) 88 (38)
Looses against k-NN 5(1) 5(1) 7 (1) 17 3)
Table II

NUMBER IEP’S WINS/LOOSES AGAINST 1-NN AND k-NN.

As shown, in the vast majority of the cases IEP outper-
forms its competitors, often significantly, whereas when it
looses, the difference is usually non-significant. In several
cases, the error of IEP is an order of magnitude lower (e.g.,

5The time series whose labels were changed by this procedure, are
assigned to an additional class (not included in the original data set). To
keep our experimental evaluation meaningful, the time series with changed
labels were excluded from the test set.
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for TwoLeadECG at p = 1%, for GunPoint and Trace at
p = 5%, furthermore for Plane at p = 10%).

C. Secondary model’s quality

We also examined the quality of the secondary model’s
error prediction. To gain insight in the role of &', Figure 4 de-
picts the root mean squared error (RMSE) of the secondary
models as function of k' for two characteristic datasets.
Increasing k' leads to improvement of the secondary models
first. However, after a point (k" = 5 in this cases) the quality
of the secondary models becomes stable, i.e. it does not
change significantly. This tendency is similar in the range
5 < k' < 10 for all data sets. The difference of the meta
models’ performance between k' = 5 and k¥’ = 10 is very
small in general, which is shown in Fig.5. Further, in the last
column of Table I shows for each dataset the overall standard
deviation of the secondary models for all k¥’ values in the
range 5 < k' < 10. The small resulting values in all cases
indicate the stability of the approach w.r.t. ¥’ and validate
the use of k' =5 as the default value in our experiments.
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Figure 4. RMSE of the secondary models for various values of &’ for

Adiac and SwedishLeaf at p = 5 % noise. (Error bars show standard
deviations.)

D. Execution Time

To investigate the overhead produced by IEP both in the
off- and online computation, in Table III we report the
execution times (on a Xeon 2.3 GHz processor) for three
among the largest datasets: Wafer, Two-Patterns, and Chlo-
rineConcentration. Please note that the off-line time refers to
the time required for training the secondary regression level,
which has to be performed only once. Online time refers to
the actual time needed to classify a new time-series. IEP has
almost the same off-line time (reported in minutes) as k-NN.
This is because training is dominated by the classification
of the hold-out set Dy in both cases. Although the data
sets in Table III are rather large, the resulting off-line time
is reasonable in all cases. Regarding the online time, it is
evident that IEP is able to maintain the fast classification of
new time series.



Dataset size p=1% p =5% p =10% Ot
IEP 1-NN k-NN IEP 1-NN k-NN IEP 1-NN k-NN

50 Words 905 0.239 -/- 0.249 0.242 0.270 0.388 0.260 - 0.321 +/-  0.505 0.338 0.021
Adiac 781 0.373 -/- 0.381 0.384 0415 +/-  0.508 0.451 0476 +/-  0.614 0.519 0.018
Car 120 0.279 0.278 - 0.303 0.310 +/-  0.416 0.353 0.330 +/-  0.514 0.358 0.051
CBF 930 0.004 +/+  0.106 0.047 0.043 +/-  0.328 0.057 0.139 +/+  0.496 0.174 0.044
ChlorineConcentration 4307 0.053 0.021 + 0.021 + 0.077 0.075 - 0.075 - 0.121 0.115 - 0.115 - 0.021
CinC 1420 0.003 +/+ 0.033 0.011 0.008 +/-  0.143 0.021 0.019 +/-  0.242 0.029 0.048
DiatomSizeReduction 322 0.006 +/+  0.031 0.038 0.010 +/+  0.141 0.049 0.021 +/+ 0.276 0.055 0.058
ECG200 200 0.136 -/- 0.171 0.156 0.150 0.313 0.134 - 0.201 0.442 0.141 + 0.073
ECGFiveDays 884 0.013 +/+  0.041 0.045 0.020 +/+ 0.164 0.136 0.028 +/+ 0.273 0.097 0.041
FaceFour 112 0.063 0.108 0.072 0.075 0.234 0.112 0.099 0.386 0.198 n/a

FacesUCR 2250 0.029 +/+  0.059 0.039 0.044 +/-  0.193 0.046 0.070 +/-  0.316 0.083 0.028
Fish 350 0.228 -/- 0.254 0.239 0.244 +/-  0.386 0.280 0.329 +/-  0.512 0.392 0.042
GunPoint 200 0.010 -/+  0.036 0.061 0.016 +/+ 0.162 0.176 0.043 +/+  0.258 0.207 0.107
Haptics 463 0.490 +/-  0.582 0.532 0.540 +/-  0.681 0.553 0.632 0.774 0.622 - 0.026
InlineSkate 650 0.469 0.461 -  0.483 0.523 -/- 0.562 0.570 0.602 +/+  0.679 0.661 0.025
TtalyPowerDemand 1096 0.038 +/+  0.087 0.081 0.059 +/-  0.237 0.060 0.096 +/+  0.389 0.117 0.030
Lighting2 121 0.192 0.133 0.125 0.209 0.270 0.209 0.257 0.422 0.239 n/a

Lighting7 143 0.254 0.254 0.289 0.279 0.426 0.338 0.341 0.558 0.310 n/a

Mallat 2400 0.014 +/-  0.055 0.018 0.019 +/+ 0.178 0.034 0.048 +/-  0.308 0.067 0.030
Medicallmages 1141 0.212 -/- 0.228 0.234 0.228 +/-  0.339 0.256 0.248 +/-  0.457 0.277 0.023
Motes 1272 0.059 +/+  0.090 0.078 0.073 +/+  0.206 0.107 0.093 +/+ 0.316 0.148 0.038
OSULeaf 442 0.320 0.287 - 0292 0.363 0.402 0.345 - 0.407 0.523 0.383 - 0.028
Plane 210 0.005 +/+  0.034 0.038 0.020 +/+  0.148 0.114 0.021 +/+ 0.304 0.225 0.093
SonyAIBORobotS. 621 0.026 +/+ 0.073 0.068 0.035 +/+ 0.234 0.083 0.083 +/+  0.365 0.143 0.047
SonyAIBORobotS.IT 980 0.034 +/+  0.063 0.067 0.037 +/-  0.212 0.119 0.071 +/+  0.362 0.166 0.031
StarLightCurves 9236 0.076 0.119 0.073 - 0.096 +/-  0.253 0.098 0.151 0.388 0.149 - 0.003
Symbols 1020 0.023 +/-  0.061 0.031 0.029 +/-  0.196 0.036 0.066 +/-  0.332 0.069 0.040
SyntheticControl 600 0.020 0.076 0.017 - 0.028 +/-  0.227 0.058 0.068 +/+  0.355 0.096 0.057
SwedishLeaf 1125 0.170 +/+  0.206 0.197 0.189 +/+  0.328 0.216 0.247 +/-  0.461 0.257 0.023
Trace 200 0.005 -/- 0.046 0.036 0.005 +/-  0.180 0.064 0.034 +/-  0.322 0.094 0.074
TwoLeadECG 1162 0.001 +/+ 0.041 0.052 0.005 +/+  0.175 0.025 0.025 +/-  0.315 0.028 0.042
TwoPatterns 5000 0.001 +/+  0.065 0.007 0.014 +/-  0.236 0.019 0.068 +/+ 0.384 0.079 0.026
Wafer 7164 0.003 +/-  0.042 0.004 0.006 0.160 0.005 + 0.015 +/+ 0.279 0.020 0.025
WordSynonyms 905 0.224 -/- 0.238 0.241 0.270 +/-  0.379 0.287 0.332 +/-  0.510 0.349 0.032
Yoga 3300 0.071 +/+  0.099 0.114 0.085 +/-  0.223 0.115 0.123 +/+ 0.332 0.190 0.020

Table I

CLASSIFICATION ERROR.

Figure 5. Average difference of the secondary models’ performace (in RMSE) between using k’=5 and k’=10 for p = 5 % noise for each data set.

Wafer Two-Patterns Chlorine
1IEP 129m/022s 198m/051s 68m/023s
k-NN 129m/0.06s 198m/0.18s 68 m/0.04s
Table III

EXECUTION TIMES: TRAINING TIME (OFFLINE) IN MINUTES AND

PREDICTION TIME (ONLINE) IN SECONDS.
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VI. CONCLUSION

We examined the problem of time-series classification
based on the k-NN classifier and the DTW distance. Al-
though the 1-NN classifier had been shown to be compet-
itive, if not superior, to many state-of-the art time-series
classification methods, we argued that in several cases we



may not only consider k¥ > 1 for the k-NN classifier, but
also select k in an individual base for each time series that
has to be classified.

We proposed an IEP mechanism that considers a range
of k-NN classifiers (for different k values) and uses sec-
ondary regression models that predict the error of each such
classifier. The proposed approach selects separately for each
time series the classifier with the minimum predicting error.
This allows for adapting to characteristics that are varying
among the different regions in a data set and overcoming
the problem of selecting a single & value.

Our experimental evaluation used a large collection of real
data sets. Our results indicate that the proposed method is
more robust and compares favorably against two examined
baselines by resulting in significant reduction in the classifi-
cation error. Other advantageous properties of the proposed
method are its small sensitivity against the parameters it uses
and the small overhead it adds in execution time.

It is important to state that the proposed IEP approach has
several generic features. For the k-NN classifier, IEP can be
employed for learning other parameters than £, such as the
distance measure or the importance of nearest neighbors.
More importantly, IEP is not only limited for the problem
of k-NN classification of time-series data, since it can be
used in combination with other classification algorithms and
data types, whenever the complexity of the data requires
such an individualized approach. Therefore, our future work
involves the examination of IEP in a more general context
of classification problems.
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