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Abstract

Center particle swarm optimization algorithm (CenterPSO) is proposed where a center particle is incorporated into linearly decreasing

weight particle swarm optimization (LDWPSO). Unlike other ordinary particles in LDWPSO, the center particle has no explicit velocity,

and is set to the center of the swarm at every iteration. Other aspects of the center particle are the same as that of the ordinary particle,

such as fitness evaluation and competition for the best particle of the swarm. Because the center of the swarm is a promising position, the

center particle generally gets good fitness value. More importantly, due to frequent appearance as the best particle of swarm, it often

attracts other particles and guides the search direction of the whole swarm. CenterPSO and LDWPSO are extensively compared on three

well-known benchmark functions with 10, 20, 30 dimensions. Experimental results show that CenterPSO achieves not only better

solutions but also faster convergence. Furthermore, CenterPSO and LDWPSO are compared as neural network training algorithms. The

results show that CenterPSO achieves better performance than LDWPSO.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Particle swarm optimization (PSO) [11] is an emerging
evolutionary computation technique, inspired by social
behavior simulations of bird flocking and fish schooling.
Since it has fast convergence and promising performance
on nonlinear function optimization, PSO has received
much attention. Many researchers have devoted to
improving its performance in various ways and developed
many interesting variations. Most variations can be
roughly grouped into the following categories.

(1) The improvement depends on incorporating the new
coefficient into the velocity and position equations of the
PSO algorithm or rationally selecting the values of the
coefficients. Angeline [1] pointed that the original version
of PSO had poor local search ability. In order to overcome
this disadvantage, Shi and Eberhart [23] proposed linearly
decreasing weight particle swarm optimization (LDWPSO)
where a linearly decreasing inertia factor was introduced
into the velocity update equation of the original PSO.
e front matter r 2006 Elsevier B.V. All rights reserved.
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Because the inertia factor effectively balances the global
and local search abilities of the swarm, performance of
PSO is significantly improved. Clerc [5] presented constric-
tion PSO where a constriction factor was introduced
into PSO to control the magnitude of velocities. It was
mathematically proved that the resulting algorithm could
guarantee the convergence even without clamping the
velocity. However, if the strategy of clamping the velocity
was combined into the algorithm, the performance could
be improved further [6]. The constriction PSO has faster
convergence than LDWPSO, but it is prone to be trapped
in the local optima when multi-modal functions are
presented.
(2) A key feature of PSO algorithms is social sharing

information among the neighborhood. Therefore, various
information sharing mechanisms were proposed to im-
prove the performance. Kennedy [12] investigated the
impacts of various neighborhood topologies and pointed
out that the von Neumann topology results in superior
performance. Suganthan [26] introduced a variable neigh-
borhood operator. During the initial stages of the
optimization, the neighborhood will be an individual
particle itself. As the number of generations increases, the

www.elsevier.com/locate/neucom
dx.doi.org/10.1016/j.neucom.2006.10.002
mailto:particleswarm@126.com


ARTICLE IN PRESS
Y. Liu et al. / Neurocomputing 70 (2007) 672–679 673
neighborhood will be gradually extended to include all
particles. Mohais [19] proposed dynamically adjusted
neighborhood where randomly generated, directed struc-
tures were used as the topology of the initial population
and then edges of the structures were randomly migrated
from one source node to another during the course of run.
Liang et al. [15] presented a new learning strategy to make
particles have different learning exemplars for different
dimensions. Van den Bergh and Engelbrecht [27] proposed
to split the solution vector into several sub-vectors which
were then allocated their own swarms. Peram et al. [20]
proposed to utilize the additional information of the
nearby higher fitness particle that was selected according
to fitness-distance-ratio (FDR) that denoted the ratio of
fitness improvement over the respective distance. Baskar
and Suganthan [3] proposed a novel concurrent PSO
algorithm where modified PSO and FDR-PSO algorithms
were simulated concurrently with frequent message passing
between them. Janson [10] used dynamic hierarchy to
define the neighborhood structure. He [8] introduced an
additional component, passive congregation, into the
velocity update equation.

(3) The operators of other evolutionary algorithms were
combined with PSO. Angeline [2] used selection operator to
improve the performance of the PSO algorithm. Løvbjerg
et al. [17] combined the PSO algorithm with the idea of
breeding and subpopulations. Poli et al. extended PSO via
genetic programming [21]. Zhang and Xie [28] introduced
differential evolution operator into PSO. Krink and
Løvbjerg [13] combined PSO, genetic algorithms and hill
climbers. Various mutation operators were also incorpo-
rated into PSO [7,9,25].

(4) Some mechanisms were designed to increase the
diversity in order to prevent premature convergence to
local minimum. Silva et al. [24] presented a predator–prey
model to maintain population diversity. Zhang et al. [29]
proposed to re-initialize the velocities of all particles at a
predefined extinction interval, which simulated natural
process of mass extinction in the fossil record. Krink [14]
proposed several collision strategies to avoid crowding of
the swarm. Løvbjerg [16] used self-organized criticality
(SOC) to add diversity. Riget et al. [22] introduced
attractive and repulsive PSO where the two phases,
attraction and repulsion, alternated during the search
according to a diversity measure.

Although variations of PSO have applied different
strategies and parameters, all of them follow the same
principle of swarm intelligence. Therefore, all variations
appear similar features of social behavior. Within a swarm,
individuals are relatively simple, but their collective
behavior becomes quite complex. A group of particles in
a swarm move around in the defined search space to find
the optimum. Each particle relies on direct and indirect
interaction and cooperation with other particles to
determine the next search direction and step-size, so the
swarm will move around and gradually converge toward
the candidates of global optima or local optima. Thus the
center of the swarm is probably near to the optimum.
While this position changes during the search process, it
can supply very useful information for capturing the
optimum.
In this paper, a center particle, whose position is updated

with the center of the swarm at every iteration, is
incorporated into the PSO algorithm. Among variations
of PSO, LDWPSO has been regarded as the most
representative one, so LDWPSO is selected to demonstrate
the effectiveness of the center particle. After a center
particle is introduced into LDWPSO, it frequently becomes
the best particle of the swarm during the search and then
guides the whole search process. Consequently, the center
particle greatly influences the performance of the PSO
algorithm.
The rest of this paper is organized as follows. In Section 2,

the center PSO is described in detail, and then the effect of
the center particle on the performance of PSO is also
discussed. In Section 3, firstly center particle swarm
optimization (CenterPSO) and LDWPSO are compared
on function optimization problems, and then they are
compared on neural network training. Finally, Section 4
gives conclusions.

2. Center particle swarm optimization

2.1. LDWPSO

A swarm consists of N particles moving around in a
D-dimensional search space. The ith particle at the tth
iteration has a position X

ðtÞ
i ¼ ðxi1;xi2; . . . ;xiDÞ, a velocity

V
ðtÞ
i ¼ ðvi1; vi2; . . . ; viDÞ, the best solution achieved so far

by itself (pbest) Pi ¼ ðpi1; pi2; . . . ; piDÞ. The best solution
achieved so far by the whole swarm (gbest) is represented
by Pg ¼ ðpg1; pg2; :::; pgDÞ. The position of the ith particle at
the next iteration will be calculated according to the
following equations:

V
ðtþ1Þ
id ¼ w � V

ðtÞ
id þ c1 � randðÞ � ðPid � X

ðtÞ
id Þ

þ c2 � randðÞ � ðPgd � X
ðtÞ
id Þ, ð1Þ

X
ðtþ1Þ
id ¼ X

ðtÞ
id þ V

ðtþ1Þ
id , (2)

where c1 and c2 are two positive constants, called cognitive
learning rate and social learning rate, respectively; rand() is
a random function in the range ½0; 1� ; w is inertia factor
which linearly decreases from 0.9 to 0.4 through the search
process. In addition, the velocities of the particles are
confined within ½Vmin;Vmax�

D. If an element of velocities
exceeds the threshold Vmin or Vmax, it is set equal to the
corresponding threshold.

2.2. CenterPSO

The motivation for developing CenterPSO derives from
the observation on search behavior of the swarm. From
formula (1), it can be seen that the velocities of particles are



ARTICLE IN PRESS
Y. Liu et al. / Neurocomputing 70 (2007) 672–679674
determined by their previous velocities, cognitive learning,
and social learning. Due to social learning (the third part of
the formula), all the particles are attracted by gbest and
move toward it. While the other two parts, previous
velocities and cognitive learning, are corresponded to the
autonomy property, which makes particles keep their own
information. Therefore, during the search all particles
move in the certain region where gbest locates, but their
positions are usually different and approximately around
gbest. For convenient observation, two-dimensional func-
tion optimization is illustrated. Figs. 1(a)–(f) show the
distribution of the particles at the first, 10th, 40th, 60th,
80th, 100th iterations when the two-dimensional Rastrigrin
function was optimized with LDWPSO. The signs: point,
circle, star, and diamond denote the positions of the
particle, optimum, gbest, and the center of the swarm,
respectively. As shown in these figures, the following fact
can be seen. The region of swarm activity is constantly
changing. The gbest is near the center of the swarm, but it
is not exactly the center of the swarm for reasons of many
stochastic factors. In order to prove that the above fact
happens in general optimization problems, 30-dimensional
Rastrigrin function optimization is conducted. Fig. 2(a)
shows the distances between gbest and the optimum, the
center and the optimum at every iteration during optimiza-
tion process. Fig. 2(b) shows the distance between gbest

and the center of the swarm. From Fig. 2(a), it appears
that the center is usually closer to the optimum during
the search than the gBest. On the other hand, Fig. 2(b)
indicates that at early iterations the center of the swarm
and the gBest locate in different positions while at the end
of iterations they converge to the same position. To sum
up, the center of the swarm is a very important position
and the swarm statistically shrinks to it through the
iterations, but it is not explicitly visited in previous PSO
algorithms.

In present paper, a center particle is proposed to
explicitly visit the center of swarm at every iteration. After
N � 1 particles update their positions as the usual PSO
algorithms at every iteration, a center particle is updated
according to the following formula:

X
ðtþ1Þ
cd ¼

1

N � 1

XN�1
i¼1

X
ðtþ1Þ
id . (3)

Unlike other particles, the center particle has no velocity,
but it is involved in all operations the same as the ordinary
particle, such as fitness evaluation, competition for the best
particle, except for the velocity calculation. The resulting
algorithm is called CenterPSO. The pseudo-code of
CenterPSO is as follows:
BeginPSO

Initialize();

for t ¼ 1 to max iteration
FitnessðtÞc ¼ EvaluationFitnessðX ðtÞc Þ;
if needed, update Pi and Pg;
for i ¼ 1 : N � 1
Fitness
ðtÞ
i ¼ EvaluationFitnessðX

ðtÞ
i Þ;
UpdateVelocityðV
ðtþ1Þ
i Þ according to formula (1);
LimitVelocityðV
ðtþ1Þ
i Þ;
UpdatePositionðX
ðtþ1Þ
i Þ according to formula (2);
if needed, update Pi and Pg;
End

Update the position of center particle according to

formula (3);

Terminate if Pg meets problem requirements;
End

EndPSO

The center particle has potential to get good solutions,
as mentioned above. If the effect of center particle is
just to try good positions, it will not influence the
performance greatly. One particle is too few in contrast
to a swarm of ordinary particles. More importantly, the
center particle has more opportunities to become the gbest

of the swarm. Hence it can guide the whole swarm to
promising region and accelerate convergence. Fig. 3 shows
the ratio of the number of iterations (where a particle
serves as gbest) to the predefined maximum iteration in
every run. One hundred runs of CenterPSO with 19
ordinary particles and one center particle, maximum
iteration of 2000 were conducted on 30-dimensional
Rastrigrin function. The center particle and a randomly
selected ordinary particle were recorded. It is clear that the
center particle has higher probability to be gBest. There-
fore, the center particle often guides the search process.
Although it is only one particle, it imposes great effect on
the swarm.
3. Experiments

3.1. Function optimization

Three well-known benchmark functions (all minimiza-
tion) were used in our experiments.
The first function is the Rosenbrock function:

f 1ðxÞ ¼
Xn�1
i¼1

ð100ðxiþ1 � x2
i Þ

2
þ ðxi � 1Þ2Þ ð�100pxip100Þ.

(4)

The second function is the generalized Rastrigrin function:

f 2ðxÞ ¼
Xn

i¼1

ðx2
i � 10 cosð2pxiÞ þ 10Þ ð�10pxip10Þ. (5)

The third function is the generalized Griewank function:

f 3ðxÞ ¼
1

4000

Xn

i¼1

x2
i �

Yn

i¼1

cos
xiffiffi

i
p

� �
þ 1 ð�600pxip600Þ.

(6)
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Fig. 1. The distribution of particles: (a) at the first iteration; (b) at the 10th iteration; (c) at the 40th iteration; (d) at the 60th iteration; (e) at the 80th

iteration; and (f) at the 100th iteration.
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Fig. 2. The distances: (a) between the center of the swarm, gbest and optimum; (b) between the center of the swarm and gbest.
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In our experiments, LDWPSO and CenterPSO were
compared. The same set of parameters was assigned for
two algorithms: inertia weight w linearly decreased from 0.9
to 0.4; the learning rates were c1 ¼ c2 ¼ 2; Vmin was equal to
Xmin; Vmax equal to Xmax. For each function three
dimensions were tested: 10, 20 and 30; correspondingly, the
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Fig. 3. The ratio of the number of iterations where a particle is the gbest

to the predefined maximum iteration.

Table 1

Search space and initialization range

Function Search space Initialization range

f 1ðxÞ �100pxip100 15pxip30

f 2ðxÞ �10pxip10 2:56pxip5:12
f 3ðxÞ �600pxip600 300pxip600

Table 2

The best fitness values for the Rosenbrock function f 1ðxÞ

Size Dim Max iteration CenterPSO LDWPSO

20 10 1000 52:4964� 99:3027 149:6743� 321:0806
20 1500 111:5968� 173:3808 198:2874� 364:0810
30 2000 131:9323� 135:8345 271:7280� 368:5546

40 10 1000 25:1575� 65:3048 63:0347� 117:2544
20 1500 59:7008� 57:2410 169:0082� 307:6407
30 2000 87:1757� 63:6501 234:9583� 342:3578

80 10 1000 17:6040� 25:2435 34:5463� 67:8022
20 1500 61:0385� 56:2370 118:6109� 235:0387
30 2000 62:3455� 59:4016 221:7500� 392:2834

160 10 1000 15:5263� 25:4743 20:5899� 39:8360
20 1500 47:6311� 46:4689 79:3686� 140:9803
30 2000 42:9959� 44:9927 104:3028� 194:7433

Table 3

The best fitness values for the generalized Rastrigrin function f 2ðxÞ

Size Dim Max iteration CenterPSO LDWPSO

20 10 1000 4:5308� 2:2246 5:3124� 2:7026
20 1500 17:5823� 6:4463 23:0965� 6:9425
30 2000 33:5934� 9:5629 48:6432� 11:1707

40 10 1000 2:9592� 1:7284 3:9407� 2:0244
20 1500 12:5039� 4:5840 16:5678� 5:5229
30 2000 26:6870� 7:7643 38:8859� 10:1198

80 10 1000 1:8696� 1:1424 2:4810� 1:3439
20 1500 10:6870� 3:8770 13:1075� 4:2326
30 2000 22:7680� 6:7589 29:3049� 7:4000

160 10 1000 1:0558� 0:9584 1:5337� 1:1121
20 1500 8:2121� 2:2916 9:3754� 3:1535
30 2000 21:4185� 5:9499 23:9643� 5:7055

Table 4

The best fitness values for the Griewank function f 3ðxÞ

Size Dim Max iteration CenterPSO LDWPSO

20 10 1000 0:0831� 0:0466 0:0996� 0:0568
20 1500 0:0258� 0:0266 0:0312� 0:0293
30 2000 0:0120� 0:0165 0:0186� 0:0197

40 10 1000 0:0856� 0:0440 0:0882� 0:0511
20 1500 0:0276� 0:0239 0:0314� 0:0265
30 2000 0:0088� 0:0119 0:0166� 0:0193

80 10 1000 0:0798� 0:0370 0:0746� 0:0326
20 1500 0:0326� 0:0266 0:0348� 0:0334
30 2000 0:0093� 0:0120 0:0118� 0:0132

160 10 1000 0:0597� 0:0277 0:0634� 0:0288
20 1500 0:0295� 0:0279 0:0301� 0:0253
30 2000 0:0120� 0:0168 0:0122� 0:0150
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maximum numbers of iterations were set to 1000, 1500 and
2000. For investigating the scalability of algorithms, four
population sizes (N ¼ 20; 40; 80; 160) were used for each
function with different dimensions. CenterPSO included one
center particle and N � 1 ordinary particles. For each
experimental setting, 100 runs of the algorithm were
performed. In order to give right indications of relative
performance, an asymmetric initialization was adopted
according to literature [1]. The search space and initialization
range for each of the test functions were listed in Table 1.

Tables 2–4, respectively, listed the mean fitness value and
standard deviation of the best solutions averaged over 100
trails on Rosenbrock, Rastrigrin, and Griewank functions
with each experimental setting. As shown in these tables, it
is clear that CenterPSO algorithm outperforms LDWPSO
algorithm on all the benchmark problems on which we
have conducted experiments so far. CenterPSO achieves
the smaller fitness value and standard deviation than
LDWPSO. Figs. 4–6 show fitness evolution curve of
CenterPSO and LDWPSO with 20 particles on three
30-dimensional functions. The results in each figure were
averaged over 100 trials. Here, we can see that faster
convergence is achieved and an improvement in the best
solution is found by CenterPSO. It can be concluded that
the introduction of center particle not only accelerates
convergence but also improves the solution quality.
3.2. Neural network training

Neural network training is a complex optimization
problem. Usually, the objective is the mean sum of squared
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Fig. 4. Performance on 30-dimensional functions: (a) Rosenbrock; (b) Rastrigrin; and (c) Griewank.
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errors (MSE) over all training patterns. The variables
consist of neural network weights and biases. Suppose a
standard network architecture with D input units, M

hidden units and C output units, the number of the
variables is W ¼ ðDþ 1Þ �M þ ðM þ 1Þ � C. In brief,
neural network training is a high dimensional optimization
problem with many local minima.

LDWPSO and CenterPSO were compared as neural
network training algorithms. Two benchmark data sets: the
Australian credit card assessment problem and the diabetes
problem were used. Both data sets are available from
the UCI repository of machine learning databases [4]. The
following is a brief description of each data set. The
Australian credit card assessment problem is to assess
applications for credit cards based on a number of
attributes. This data set contains 690 patterns with 14
attributes; Six of them are number and eight are discrete.
The output has two classes. One is to award the credit card,
and the other is not. The diabetes data set is a two-class
problem that has 500 examples of class 1 and 268 of class 2.
There are eight attributes for each example. The objective
is to test if a patient has a diabetes or not.

For neural network training, n-fold cross-validation
technique [18] was used where the data are randomly
divided into n mutually exclusive data groups of equal size.
One data group is selected as the testing set, and the other
groups become the training set. In our experiment n is set
to 10. Three-layer feedforward neural networks with
sigmoidal transfer functions were adopted for classification
tasks. For credit card, the neural network was set to 14
input units, five hidden units, and two output units,
therefore, the dimension of each particle was 87. For
diabetes, the neural network was set to eight input units,
five hidden units, and two output units, thus the dimension
of each particle was 57. The parameters of CenterPSO and
LDWPSO were the same as those in above experiments for
function optimization except that Vmin ¼ �2, Vmax ¼ 2;
the maximum number of iteration was set to 1000;
population size was set to 20.
The values of MSE of two algorithms on training sets are

listed in Table 5. The results were averaged on 10-fold
cross-validation. The measures Mean, SD, Min, and Max
indicate the mean value, standard deviation, minimum, and
maximum value, respectively. The values of mean accuracy
rates averaged on 10-fold cross-validation are listed in
Table 6. Tables 5 and 6 show that CenterPSO achieves
better performance than LDWPSO as neural network
training algorithms. This further indicates the effectiveness
of the center particle.

4. Conclusions

In this paper, we proposed CenterPSO algorithm where
a center particle was introduced into LDWPSO. The
position of the center particle was updated with the center
of swarm that consists of ordinary particles at every
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Table 6

The accuracy rates on two benchmark data sets

Training set Test set

LDWPSO CenterPSO LDWPSO CenterPSO

Credit card 0.8059 0.8526 0.7439 0.7900

Diabetes 0.6971 0.7110 0.6645 0.6703

Table 5

The MSE of two algorithms on training sets

Credit card Diabetes

LDWPSO CenterPSO LDWPSO CenterPSO

Mean 0.2904 0.2361 0.3969 0.3918

Std 0.0616 0.0601 0.0159 0.0124

Min 0.1893 0.1818 0.3752 0.3747

Max 0.3620 0.3558 0.4379 0.4157

Y. Liu et al. / Neurocomputing 70 (2007) 672–679678
iteration. Due to characteristic of swarm activity, all
particles oscillate around the center of the swarm and
gradually converge toward it. The center particle usually
gets good position and often becomes the gBest of the
swarm during the run. Therefore, despite only one center
particle present, it has more opportunities to guide
the search of the whole swarm, and influences the
performance greatly. Experimental results show that
CenterPSO achieves better performance than LDWPSO.
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