Approximating the Longest Approximate Common Subsequence Problem

Wen-Chen Hu, Gerhard X. Ritter, Mark S. Schmalz
Center for Computer Vision and Visualization

and
=11

+ Af Cammitar and Infarmatian Caianane and En
Uil WVITIPJUIUT QI VT IRUVTT DLVITTHILEO Qv 1 iyinico

mAinaaria

University of Florida, Gainesville, Florida 32611-6120
{wenchen, ritter, mssz}@cise.ufl.edu

a lonaest common subseauence of two

a ! T T LUNTRIUTr ety Rl U

Abstract —. Fi tnfln;

strings is a well-known problem. We generalize this prob-
lem to a longest approximate common subsequence problem
that pmduces a maximum-gain approximate common sub-
sequence of two strings. An approximate subseguence of a
string X is a string edited from a subsequence of X. String
Z is an approximate common subsequence of two strings X
and Y if Z is an approximate subsequence of both X and Y.
The gain function, g assigns a nonnegative real number to
each subsequence. The problem is divided into smaller seg-
ments in order to lessen its complexity with some of these
segments having been proven to be NP-hard. A heuristic ap-
proximation algorithm and an optimization neural network
are constructed to find a near-optimal solution for the prob-
lem, where a ratio bound of the approximation algorithm is
given, and a technique of interception is used to determine
the values of the network weights. Some experimental re-
sults and the comparative performance of the two methods
also are discussed.

longest common euhseauence of two strings

ﬂ
occurs in a number of computing and data-processmg apph-
cations. A classical longest common subsequence problem
[2] (abbreviated LCS) is, given two strings X and Y, to find
a maximum length common subsequence of X and Y. A
subsequence of a given string is just the given string with
some symbols (possibly none) left out. String Z is a com-
mon subsequence of X and Y if Z is a subsequence of both
X and Y. Finding an LCS is mainly used to measure the

Permission to make d1g1tal/hard copy of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, the copynght
notice, the title of the publication and its date appear, and notice is given

that cnnvino ic hv nermiccion of ACM. Inc. To conv atherwise, to
that copying is by permission of ACM, Inc. To copy o s

republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

NGO AL s F0114 AN OMOINNNA & EN
U 1”5 ﬂ\—M 1-0081 12*UDU-ZI 70N DI IV

166

discrenancies between twao strinas, An 1.CS. howaver doeg

MiSwivpRavive UviiYvwa LYY v Sl Adridy REU VYW VWA Y WUV

not always reveal the degree of difference between two
strings that some problems require. For example, if s; =
(a,b) s = (b, b) ands2=(b a), anLCS(b) ofsoand
51 is the same as an LCS of s, and s,. From the viewpoint
of LCS, the resemblance of s; and s, is the same as the
resemblance of 52 and s,. However, s, has more symbols
in common with s, than s; does, although not in the same
order. Approximating an LCS may better characterize the
discrepancies between two strings.

This paper addresses the longest approximate common
subsequence problem (abbreviated LACS) that produces a
maximum-gain approximate common subsequence of two
strings. An approximate subsequence of a string X is a
string edited from a subsequence of X. The only editing
operation allowed here is an adjacent symbol interchange.
String Z is an approximate common subsequence of two
strings X and Y if Z is an approximate subsequence of both
X and Y. The gain function g, which will be described later,
assigns a nonnegative real number to each subsequence.
Formally, the LACS problem is defined as follows: Given
two strings X and Y, a weight W,,>0 for a symbol in an
approximate common subsequence, and a weight W,<0 for
an adjacent symbol interchange operation, a string Z is a
longest approximate common subsequence of X and Y if Z

satisfies the xouowmg two conditions:

1 Z is an annroximate common subseauence of X

£ 23 831 SR AlTIste O U &

and Y, and

the gain g(X,YZW_ W,) = 1AW +8(X TIW,+
6(Y,Z)W is maximum among all approx:mate
common subsequences of X and Y, where §(X.Z)

xsﬂlemlmmumed:td:smncefromasuwequenoe
of Xto Z, sois §(Y.Z) to Y and Z.

A string Z is said to be of edit distance. k to a string Z’ if
Z can be transformed to be equal to Z’ with a minimum
sequence of k adjacent symbol intemlmnges Thefollowing

is an LACS exampie. Let X = (B, A, C, E, A, B), Y=(A, C,
D, B, B, A), Wy = 3, and W, = -1. A longest approximate

)
I4

2)
L4

common subsequence of X and Y is Z = (A, B, C, B, A)
with the gain g(X,Y,Z,W,,,W,) = |2W,,+6(X,Z)W+6(Y Z)W,
= SX342x(-I)+1x(-1) = 12,

This paper is organized as follows. Analysis of the
computational complexity of the LACS problem is pro-
vided in Section 2. Section 3 introduces a heuristic ap-
proximation algorithm for the LACS problem, including a
ratio bound. An optimization neural network is designed in
Section 4. Section 5 gives experimental results and a com-
parative performance of the above two methods. The final
section examines further research directions and develops
conclusions.

2 Computational Complexity

This section breaks up the complication of the LACS
by sorting the problem into LACS;, 0 < i < min{IX1,i1}-1
categories, where X and Y are input strings. Subsequently,
we prove that LACS in(i,1)-7 problem is NP-hard and con-
jecture that the problems from LACS; to LACSmin(man-2
are at least as hard as the NP-complete problems.

2.1 LACS Categories

The LACS problem fits into categories according to
the relation between the weights W,, > 0 and W, < 0:

* LACS;—when 0 < W, < -W,, LACS, is reduced
to an LCS problem since no adjacent symbol in-
terchanges are allowed for any symbol in LACS,;

* LACS;—when -W, < W, < -2W,, any symbol in
LACS; makes no more than ! adjacent symbol
interchange;

e LACS;—when -2W; < W,, < -3W,, any symbol
in LACS; makes no more than 2 adjacent symbol
interchanges;

e LACS,—when -iW, < W,, < -(i+1)W,, any symbol
in LACS; makes no more than i adjacent symbol
interchanges; and

* LACSuinxmj--—when -min{lX1,IN}-HW; <
Wm, X and Y are input strings, any symbol in
LACS yin(ix1in)-1 makes no more than min{1X1,i1}-
1 adjacent symbol interchanges, which is the
maximum number of interchanges a symbol is
allowed to make.

Another useful abbreviation is that an LACS;(X,Y) equals
an LACS; of X and Y. The LACS; problem can be inter-
preted in another way called a trace [6]. Diagrammatically
aligning the input strings X and Y and drawing lines from
symbols in X to their matches in Y provides the trace of X
and Y. Figure 1 illustrates the example in Section 1 through
trace. In an LACS; trace, each line is allowed to have a
maximum of i line-crossings, i.e. the symbol touched by

167

the line may make no more than i adjacent symbol inter-
changes. The total number of line-crossings in a trace is
6(X.2) + 6(Y,2).

X=(B A C E A B)

Y=(A C D B B A)

LACSAX,Y)=Z= (A B C B A)
g(XY,.Z3-1) = 5x3+3x(-1) = 12

Figure 1: An LACS; Hlustrated Through Trace

2.2 The LACSuuum.; Problem is NP-Hard

In Theorem I, we show that any instance of extended
string-to-string correction problem, which was proven to be
an NP-complete problem by Wagner in 1975 [5], can be re-
duced in polynomial time to an instance of LACSwinyn)-1-
The extended string-to-string correction problem (ES-
SCP)—given finite alphabet X, two strings X and ¥ €
T, and a positive integer k—determines whether there is
a way to derive the string ¥ from the string X by a se-
quence of k or fewer operations of single symbol deletion
or adjacent symbol interchange.

Theorem I (LACSwinpxivy-; is NP-hard)

If X and Y are input strings, then the LACSwin(m)-1
problem is NP-hard.

Proof We first show that LACSm(me.I does
not belong to NP. Given an instance of the prob-
lem, we use as a certificate an LACSwinymn)-1 Z of
X and Y. A verification algorithm checks if the gain
g(X,Y ,Z,mes) = mwm"'a(x’z)wlw(yz)wl 2 k,o a
nonnegative real number. From the ESSCP, we know
it is unlikely to find 6(X’,Z) and 6(Y",Z) in polynomial
time, where X’ and Y’ are subsequences of X and Y,
respectively. If 6(X’,Z) and §(Y",Z) cannot be found
in polynomial time, then §(X,Z) and 5(Y,Z) definitely
cannot be found in polynomial time. Therefore, we
could say with certainty that a polynomial-time verifi-
cation algorithm does not exist.

To prove that LACSgua(maun)-; is NP-hard, we
show that ESSCP <, LACSwiaqiin)-2- In other words,
any instance of ESSCP can be reduced in polyno-
mial time to an instance of LACSm(mm,.). Let the
two input strings be the same at both problems. We
now show that string X needs k operations of dele-
tion or interchange to derive string Y if and only if
the corresponding LACSminqaun}-1(X,¥) problem has
an LACS Z with a gain g(X,Y,Z,W,,W;) 2 INWp+(k-
X1+IY)W,. Suppose that string X needs k operations
of single symbol deletion or adjacent symbol inter-
change to derive string Y. The number of deletions

hac tn ha IYLIVI malina tha niumhar af intarnhanaae b,
Tdly nlmu.ls UiV MLV VR lllWlUlla.usUa L5

IX+IN. Thus, for an LACSinqn)-1(X,Y) trace, there

are IVI_I7| ltnnn Imo' hinec) and k-1X1+ IV lin

AT ASIIED) HAAS VAT I l.luv‘v.vanlusn

(interchanges). Therefore, the gain g(X.,Y,Z,W,,W;)
is INW,+(k-IXIHMW,, Conversely, suppose that Z

Gt WVEAVVASWAY Y Swppvew wil

= LACSm(Ixum-I(X Y) has a gain g(X,Y,Z,W,,,W,) =
INW_.+(k-IX1+IMMW,. Because X has Il symbols in
common with ¥, Z could equal Y. X then needs IXI-IY1
deletions and k-IXI+¥1 interchanges to derive Z, i.e., Y.
Thus, for the ESSCP, string X needs IXI-IN1 deletions
and k-IV1+1X1 interchanges to derive string Y. The to-
tal number of operations required to derive Y from X,
therefore, is k = (IXI-1Y)+(k-{V1+1XT). 0

[P ISPV PR gy 1 1 FyeeN

N A Lila...fa A
9 M neull b ApPPIVATNIaGuun HIgU nin

Despite the unlikelihood of finding a polynomial-time
algorithm for solving the LACS problem exactly, near-
optimal solutions in polynomial time may still be possible.

& LRE252RA0 Siomw = SSSsess
An approxxmatlon algonthm finds an approxxmate

hﬂbs \BDDWVRIIW ALAVY) Ul tWO bll'lllgs 1[15 proceaure

APPROX_LACS repeatedly calls an LCS-routine [W,/-

W] timas hasinains with allaomtes cans af adle

PRvy Pty
Trg| WILd, UVELLLLILE Wi auvwilyg Luiu NUMoCT 01 COIt

operations for each selected symbol Each round, the al-

ln“n:l\ln numhar Af nr‘-' anaratinn
AV BUILIUWE UL vpwi

symbols selected are marked off from the mput strings to

nrevent consideration in the next round. Sunnose X and ¥

pAv v wils SULISINTVIRAUVIL 251 WiV SOAL UGS, LuppVov A ane £

are input strings, and the trace T is empty and i = 0 at first.

It executes the following steps.

Find an LCS of X and Y.
Select symbois from the LCS such that each sym-
bol makes no more than i line-crossings in trace

ne i inorsacad l\u nna Tha
AGUVIID 10 MVAVASVU Uy Vv, auv

1.
2.

I.
3. Eliminate the selected symbols from X and ¥, and

ndd than. ¢~ T
aJu uiviil w 1.

4. i=i+ 1.
5. Repeat the above steps until i 2 [W,/-W,].
The procedure uses two arrays m[0..1X1] and n[0..111] to flag
which symbols in X and Y are selected. If a symbol is
selected, it stores the index of matching symbol of the
other string. If the symbol is not selected, it stores 0. An
LCS function LCS_LENGTH is borrowed from [1], and is
modified to inciude checking whether symbols in X and ¥
are selected.
APPROX_LACS (X, Y, Wy, W;)
/* X and Y: input strings */
/* Wp: weight for a symbol in an approximate
common subsequence */
/* W,: weight for an adjacent common symbol
interchange operation %/

o L .. Nsa Mz 717 7
W~ UW | Wy/-We| - 1

do for i — I to IXI
do m[i] — 0
fnrth-nfnlﬂ

s

do n[j] — 0
LCS_LENGTH (X, Y, m, n, b)
SELECT SYM (X. Y, X\, IV, m, n, b, h)

N O AW N

Procedure SELECT_SYM finds an LCS and selects
symbols from it. It makes sure the selected symbols do not
make more than the maximum allowable number of edit
operations.

SELECT_SYM (XY ijmnbh)

then return

if blijl = "\

then if "OVER_CROSSING(X Y, i,

jJmmnh)
then mfi] — j
nlj] — i
SELECT SYM(X. Y, i-1, j-1, m, n, b, h)
elseif b(ij] = '’
then SELECT_SYM(X, Y, i-1, j, m, n, b, h)
else SELECT SYM(X, Y, i, j-1, m, n, b, h)

G NN O v A W N

O
()

Procedure OVER_CROSSING checks a line from the
ith symbol of X to the jth-symbol of Y does not cross more
than h other lines in trace.

OVER_CROSSING (X, ¥, t,],m,n,h)
hl =0
for il — I toi-I
do if m[il] > j
then hl = hl + 1

fom 31 . 1 8n 3.1
RUR ji YT I W j-i

do if n[jl] > i
thenhl = hl + 1
ifhl > h
then return TRUE
10 else return FALSE

Do N A W A W N~

-]

For this approximation algorithm, the running time
is O([W,/-W,](IX1+i11)*) and the space needs is O(IXIY)
for the LCS_LENGTH function. Figure 2 illustrates the
progress of the approximation algorithm on an instance.

We name the trace T after executing the ith LCS-routine

X=(Q A B E B A)

Y=(B A D A C B)

ALACSoX,Y)= Z'= (C B)
g(Xyv,zZ3-=2x3= 6

v

X=(CQ A B E B A)

Y=(B A D A C B)

ALACS/(X,Y)= Z= (A C B)
gXY.Z,3-1)= 3x3+1x(-N=8

v

X A

= (E B A)

Y=(B A D A C B)

ALACSAX,Y)= Z= (A C B B)
g(XY.Z3-)= 4x3+3x(-)=9

Figure 2: The Sequence of ALACS, ; Produced
by APPROX_LACS on an Instance of LACS Problem

as an ALACS;,, I<i<Smin(iX1,iN1}. The ALACS; means
a symbol in ALACS; can make no more than i adjacerit
symbol interchanges. Figure 3 is an instance of an LACS;
problem. The difference between the optimal gain and
approximate gain is J.

X=(C A.B E B A)

Y=(B A D A C B)

LACSAX,Y)=Z=(A B A B)
g(XY,Z3-)= 4x3+2x(-1)=10

Figure 3: An LACS;

3.2 The Ratio Bound

For a maximization problem, we say that an approx-
imation algorithm for the problem has a ratio bound p(n)
if for any input of size n, the gain G of the solution pro-
duced by the approximation algorithm is within a factor of
p(n) of the gain G* of an optimal solution, namely, G*/G

169

< p(n). For an ALACS;(X,Y), 0<i<min{IX1,I1}-1, problem,
the worst ratio bound is:

maz gain of LACS;
min gain of ALACS;’

pi(n) = 1

The next two lemmas show how to compute the min-
imum gain of ALACS; and the maximum gain of LACS;,
respectively.

Lemma I (Minimum gain of ALACS;)

If Z is an LCS of strings X and Y, the minimum gain
of an ALACS(X.Y), 0<ismin{IX},I1}-1, is |2AW,, for
any i.

Proof The procedure APPROX_LACS is imple-
mented by calling the LCS-routine [W,/-W,] times.
Bach time, they select symbols from the LCS, add
them to the ALACS, and remove them from input
strings. Since it selects every symbols from the first
LCS, the minimum gain of the approximation algo-
rithm is IZAW,,. O

Before discussing Lemma II, some terminologies need
introduction. A set of lines is completely-crossing if each
line crosses every other line in the set. If a set of lines is
independent, then every line in the set does not cross any
line in the other set.

Lemma II (Maximum gain of LACS;)

If Z is an LCS of strings X and Y, the maximum gain

of an LACS;(X.Y), 0<ismin{iX],IV1}-1, is (i+2)IZ1W,/2.

Proof We show that an. LACS; has a maximum gain

when there are |Z] independent, completely-crossing

and i+I-line sets in its trace. The requirement can
be broken into four conditions which are examined
separately.

1. |2 sets: Every independent set contributes at
least one symbol to an LCS. If the number of
independent sets is more than {Zl, then the length
of the LCS of X and Y is longer than 1Z]. It
contradicts the assumption that Z is an LCS of
X and Y. On the other hand, the gain is not
maximum if the number of independent sets is
less than 1Z] since each set contributes a fixed
gain, which will be explained later. Therefore,
the number of independent sets is IZ] when LACS;
has a maximum gain.

Completely-crossing: Suppose one independent
set is not completely-crossing, then there must
have some lines not crossing one another, i.c.,
the lines are parallel in the sense of LCS. Each
of the parallel lines contributes one symbol to an
LCS. Since the length of the LCS is fixed, an
LACS; achieves the maximum total gain only by
having the maximum gain from each line. For an
LACS;, the maximum gain one line can reach

is when the set of this line and other i lines
is completely-crossing. Therefore, each set has
to be completely-crossing in order to have the
maximum gain of an LACS;.

3. Independent: Every set is independent, otherwise
it is not completely-crossing.
4. i+l-line: From the above discussion, we know

each set is completely-crossing. For a line in the
set, it is only allowed to have no more than i
line-crossings because of the limitation of LACS;.
Therefore, the maximum lines (also the maximum
gain) a set can own is i+1.

In short, there are IZ] sets in the trace, where each
set has i+] lines and I+2+ ... +i = i(i+1)/2 line-
crossings, when an LACS; has a maximum gain.
Consequently, the maximum gain of an LACS;
is A[(i+)Wnti(i+1)W,/2] < (i+2)lZIW,/2 since -
W, <WyS-(i+1)W;. O

Theorem II gives the worst ratio bound of ALACS;
by applying the above two lemmas. Since we take a very
conservative approach to find p;(n), the actual ratio bound
is expected to be much less than (i+2)/2 when i > iy, a
positive constant.

Theorem II (The worst ratio bound of ALACS;)

The worst ratio bound p;(n) of an ALACS(X.,Y),
0<i<min{IX1,iN}-1, is (i+2)/2 for any input size n.

Proof From Equation 1 and Lemmas I and II,
the worst ratio bound p;(n) of an ALACSi(X.,Y),
0<i<min{IX1,IN}-1, is [(i+2IZAW,2(ZAW,,) = (i+2)/2
no matter what the input size n is. a

4 An Optimization Neural Network

A modified Hopfield neural network is designed to
solve the LACS problem. A technique of interception is
used to determine the values of network weight.

4.1 The Hopfield-Style Network

Hopfield (3] discovered a Liapunov function as the
energy function of the network:

1
=(-5) T F W00 - Tio+ Too

In solving an LACS problem, this energy function is com-
pared with another function built from LACS constraints in
order to determine the network weights. Let strings X = (x;,
X2, ..., Xm) and Y= {y1, y2, . . . , yn) be an instance of an
LACS problem. The Hopfield net involves mn units repre-
sented as an mxn array. The energy function constructed
from the LACS problem constraints is

E=E; +Es+ Ey

170

where
E = %E (z’:ﬂzyozv - hIz)zr
Be=5% (ng,,o,y—hz,,)z, and
B=ST % L ¥ 0u0u.

A, B and C are constants. Oy, with] S i <m and I <
Jj S n, indicates whether x; matches y;. Functions gy, hl;

and h2; are
ifzi # 9

95 = { 1ifz; =g’

b = (Y], /IX],,, and K2 = |X],_/IY],.,
where | X|,. is the number of symbol x; in string X. E;
and E; reflect the constraints that each row (X) or column
(Y) contains a fraction kI or h2 of a single 1. E; reflects
the constraint that the minimum number of line-crossings
is favored. By comparing this energy function with the
Liapunov function, the weight and the external input are
given by

Wey,oty'= — Aoy 9oy 6zat — Bgoygzrybyy —
CA;:' A”'y and
Izy = Agzyhlz + Bgzyh2y + 0:1;
ifi >3

{0 T a2 {0 Hi2S

Some results are not valid when the input string is be-
yond a certain length, e.g. about 7. The validity can be
improved by changing the coefficient values, but this may
have the undesirable effect of sacrificing the gain. There-
fore, the validity of results is checked after convergence,
and two actions are taken to preserve the validity. When
a line makes more than [W,/-W,] - I line-crossings, it is
canceled; and when a symbol is picked more than once,
only the first pick is accounted for.

0
1

0 ifi#3j
1 ift =

4.2 A Coefficient Value Determined
by Interception

It has been observed that the convergence and the
results of Hopfield net to the LACS problem is highly
dependent upon the coefficients, and different input strings
may have different optimal coefficient values. The values
of coefficients A and B relative to the value of C affect
the net, i.e. A/C (or B/C) affects the net. With sufficiently
large values for A and B, the low-energy states will represent
valid results and the maximum number of matchings, while
a large value for C ensures a minimum number of line-
crossings. The threshold value §; is fixed. Thus only the

value of coefficient A needs to be decided. Figure 4 shows
a typical curve of gains and coefficient values. It resembles
the shape of a trapezoid with the top slowing declining, and
eventually becoming a constant. The value of coefficient
A is determined by the interception of two lines, which are
extrapolated from the two sides of the curve. From some
random instance experiment, the peak of the curve occurs
at about A = I0, and the curve becomes constant at A 2
200. So A =1 and A = 5 are picked for deciding the line
on the left hand side of the curve, and A = 100 and A = 200
are picked for the other line. It turns out that the value of
A is almost always selected correctly. This is because the
curve shown in Figure 4 applies to most strings.

An exampie of a cosfiiclent valus determined by indercaplion

Gain = imaichings! x Wm + icrossings! x Ws

5 10 1%
Cosliicient (A) valus

Figure 4: An Example of a Coefficient
Value Determined by Interception

5 Experimental Results of the Two
Approximation Methods

Figure 5 draws a relation of gains and running times
for Wp=6 and W,=-1. The output gains of ALACS and

Gains of random instances of LACS problem for Wines and We=-1

-

3

8 8
L am—

$

Gain « Imatchings) x Wm + icrossings x Ws

......
-

........

-
(-]

Figure 5: Gains and Running Time of Random
Instances of LACS Problem for W,=6 and W;=-1

171

Hopfield net are pretty much the same, though the Hopfield
net is a little bit poorer. The Hopfield net is much slower,
but it requires less memory. The relation distance between
LACS and ALACS (or Hopfield net), and also the distance
between ALACS (or Hopfield net) and LCS, increases with
increasing W,,/-W; or [LACS\. Table 1 lists the gains and
running times of some random instances of LCS, ALACS,
Hopfield net and LACS for W,,=3 and W,=-1. The experi-

Gains and running times for LACS
with Wen3 and W,=-1
ILACSI ™ s ALACS | Hopfield net | LACS
3ILCS! | gain | time | gain | time | gain
e—

1 3 3 Jow| 3] o2 3

2 3 5 fowe| s Joww| s

3 6 8 o7} 8 | o2 8

4 9 1m Jois] 11 Jos | 1

5 9 10 |o17] 12 Jo3 | 13

6 12 15 o016 | 14 J 038 | 15

7 12 16 | o017] 11 o3| 16

8 18 20 | o018 | 20 J 063 | 20

9 12 13 Jois | 13 Joes | 22

10 24 25 o6 | 25 J 089 | 25

Table 1 Gains and Running Time of Some Random
Instances of LACS Problem for Wy=3 and W,=-1

mental results also show the ratio bound p;(n) = (i+2)/2 of
an ALACS; is exaggerated.

6 Discussions and Conclusions

This paper is a preliminary look at the LCS approxi-
mation problem, but several open questions need answers
before it becomes definitive. Thus far, only the last case of
LACS(X,Y), 1<i<min{iX],iY1}-1, has been proven to be NP-
hard. The other cases remain open, but it is likely that the
vertex-cover problem [4] may be reduced in NP-hard proofs
for these cases. For the heuristic approximation algorithm,
an enduring difficulty is the worst ratio bound. Either it
must prove to have a good average ratio bound, or another
good ratio bound algorithm must be designed. Presently,
only the worst ratio bound exists for the algorithm, which
is (i+2)/2 for ALACS;. It is believed that the actual ra-
tio bound is a much smaller number. The performance of
Hopfield-style net is slightly worse than the heuristic algo-
rithm. This is due to the problem of local minima. Adding
noise terms to the net input of each neuron is being inves-
tigated as a way to avoid this problem.

References

(1]

2]

3]

T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Intro-
duction to Algorithms, pages 314-319. The MIT Press,
1990.

D.S. Hirschberg. Algorithms for the longest common
subsequence problem. J. ACM, 24(4):664-675, Octo-
ber 1977.

1.J. Hopfield. Neurons with graded response have
collective computational properties like those of two-
state neurons. In Proceedings of the National Academy
of Science, 81:3088-3092, 1984.

172

[4]

(5]

(6]

R. Karp. Reducibility among combinatorial problems.
In R. Miller and J. Thatcher, editors, In Complexity of
Computer Computations, pages 85-103. Plenum Press,
1972.

R.A. Wagner. On the complexity of the extended
string-to-string correction problem. Proc. Seventh An-
nual ACM Symp. on Theory of Computing, pages 218—
223, 1975. :

R.A. Wagner and M.J. Fischer. The string-to-string
correction problem. J. ACM, 21(1):168-173, January
1974,

