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Ah&act - Finding a kmgest common subsequence of two 
strings is a well4nown pmbktu We genemlize this ptvb- 
km to a longest approximate common subse!+wnceprobkm 
that produces a nuuhum-gain appnximate common sub- 
sequence of two strings. An apptvximate subsequence of a 
string X is a string edited from a subsequence of X String 
Z is an appnximate common subsequence of two strings X 
and Y if Z is an apptvximate subsequence of both X and Y. 
The gain jibnc* g assigns a nonnegatkve real number to 
each subsequence. The ptvbkm is divided into smaller seg- 
ments in on&r to kssen its compkxity with some of these 
segments having been ptvven to be NP-hatd A heuristic ap- 
ptvximation algorithm and an optimization neural network 
are constructed to jind a near-optimal solution for the ptob- 
km, where a ratio bound of the apptvximation algorithm is 
given, and a technique of interception is used to determke 
the values of the network weights. Some experimental m- 
sults and the comparative performance of the two methods 
also are discussed 

1 Introduction 

Finding a longest common subsequence of two strings 
occurs in a number of computing and data-processing appli- 
cations. A classical, longest common subsequence problem 
[2] (abbreviated LCS) is, given two strings X and Y, to tind 
a maximum length common subsequence of X and Y. A 
subsequence of a given string is just the given string with 
some symbols (possibly none) left out. String Z is a com- 
mon subsequence of X and Y if Z is a subsequence of both 
X and Y. Finding an LCS is mainly used to measure the 
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discrepancies between two strings. An LCS, however, does 
not always reveal the degree of di&ence between two 
strings that some problems requite. For example, if ss = 
(a, b), SJ = (b, b) and s2 = (b, a), an LCS (b} of so and 
SI isthesameasanLCSofssandss. Fromtheviewpohn 
of LCS, the resemblance of SI and SO is the same as the 
rcscmblance of ss and so. However, q has more symbols 
in common with SO than SI does, althcntgh not in the same 
order. Approximating an LCS may better chamckxe the 
discrepancies between two strings. 

This paper addresses the longest rrppmximate common 
subsequence problem (abbreviated LACS) that pmduces a 
maximum-gain approximate common subscquencc of two 
strings. AnapproximatesubaequearceofashingXisa 
string edited from a subsequence of X. Thc only editing 
operation allowed here is an adjacent symbol interchange. 
String Z is an approximate common’s&3equence of two 
stringsXandYifZisanapproximates~~n~ofboth 
X and Y. The gain function g, which will be described later, 
assigns a nonnegative real number to each subsequence. 
Formally, the LACS problem is defined as follows: Given 
two string8 X and Y, a weight W,>o for a symbol in an 
approximate common suwq and a weight W&O for 
an adjacent symbol interchant operation, a string Z is a 
longest approximate common subsequence of X and Y if Z 
Wisfics the following two conditions: 

1) zisanapproximatecommonsubsequenceofx 
and Y, and 

2) the gain g(X,YzW,,W,) = lZIW,+a(X,Z)W,+ 
G(YJJW, is maximum among all approximate 
common subsequences of X and Y, where a(XZ) 
istheminimumeditdismncefIomasubsequence 
ofXtoZ,sois6(YZ)toYandZ. 

AstringZissaidtobeofeditdiscance~ttoastringZ’if 
ZcanbetransformedtobeequaltoZ’withaminimum 
sequence of k adjacent symbol interchanges. Ihe kbllowing 
isanLACSexample. LetX=(&A,C,E,A,B),Y=(A,C, : 
D, B, B, A), W,,, = 3, and W, = -1. A longest approximate 
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common subsequence of X and Y is 2 = (A, B, C, B, A) 
with the gain g(X,YJ,W,,W,) = lZlW,+6(X~W,+s(Y~W, 
= 5x3+2x(-1)+1x(-Z) = 12. 

This paper is organized as follows. Analysis of the 
computational complexity of the LACS problem is pro- 
vided in Section 2. Section 3 introduces a heuristic ap 
proximation algorithm for the LACS problem, including a 
ratio bound. An optimization neural network is designed in 
Section 4. Section 5 gives experimental results and a com- 
parative performance of the above two methods. The final 
section examines furtber research directions and develops 
conclusions. 

2 Computational Complexity 

This section breaks up the complication of the LACS 
by sorting the problem into LACSi, 0 < i 5 min(tXl,lYl}-I 
categories, where X and Y are input strings. Subsequently, 
we prove that LACS~tmml-1 problem is NI-hard and con- 
jecture that the problems from LAGS] to LACS~~tmtm-2 
are at least as hard as the NP-complete problems. 

2.1 LACS Categerks 
The LACS problem fits into categories according to 

the relation between the weights W, > 0 and W, S 0: 

. LAC&-when 0 < W, S -W,, LAC!!& is reduced 
to an LCS problem since no adjacent symbol in- 
terchanges are allowed for any symbol in LACS,; 

. LACSI-when -W, c W,,, S -2W,, any symbol in 
LAC!& makes no more than 1 adjacent symbol 
interchange; 

. LACSs-when -2W, < W,,, 5 -3W,, any. symbol 
in LACSs makes no more than 2 adjacent symbol 
interchanges; 

. LAC!+when -iW, < W,,, 5 -(i+I)W,, any symbol 
in LACS, makes no more than i adjacent symbol 
interchanges; and 

. LACS~t~tru.l-when -@in{ IX&M}-l)W, < 
W,,,, X and Y are input strings, any symbol in 
LACS~i,(~lnte, makes no more than min( lXl,lYl}- 
I adjacent symbol interchanges, which is the 
maximum number of interchanges a symbol is 
allowed to make. 

Another us&l abbreviation is that an LACSi(X,y) equals 
an LACSi of X and Y. The LACSi problem CZUI be inter- 
preted in another way called a trace [a]. Diagrammatically 
aligning the input strings X and Y and drawing lines from 
symbols in X to their matches in Y provides the trace of X 
and Y. Figure 1 illustrates the example in Section 1 through 
trace. In an LACSi trace. each line is allowed to have a 
maximum of i line-crossings, i.e. the symbol touched by 

the line may make no more than i adjacent symbol inter- 
changes. The total number of line-crossings in a trace is 
4xz) + 4u,z). 

x=‘%c Y’ 
Y=(A C D B B A) 

LACSz(X,Y)=Z= (A B C B A) 

g(X,y,z,3,-7) = 5x3+3x(-l) = 72 

Figme 1: An LACS2 Illustrated Through Trace 

2.2 The LAC&wnE, Problem is NP4Iax-d 
In Theorem I, we show that any insmnce of extended 

string-to-string correction problem, which was proven to be 
an NP-complete problem by Wagner in 1973 [5], can be n+ 
duced in polynomial time to an instance of LAC&tm,tnl.l. 
The extended string-to-string corm&ion problem (Es- 
SCP)-given finite alphabet C, two strings X and Y E 
E*, and a positive integer &determines whether there is 
awaytoderivethestringYfromthestringXbyase- 
quence of k or fewer operations of single symbol deletion 
or adjacent symbol interchange. 

Theorem I (LMS~~luy-1 is NP-hani) 
If X and Y are input strings, then the LACZ&,,tm~n)-~ 
problem is NP-hard. 
PTf We tirst show that LACf&tm,ml.l does 
not belong to NP. Given an insmnce of the prob 
lem, we use as a certificate an LAC!&t~nl-1 2 of 
X and Y. A verification algorithm checks if the gain 
g(X,YZW,,W,) = lZlW,+a(X~W,+s(YZ)W, 2 k’, a 
nomgative real numher. Pmm the ESSCP, we know 
it is unlikely to tind a(X’,Z) and b(Y.2) in polynomial 
time, where X’ and Y’ am subsequences of X and Y, 
respectively. If a(X’,Z) and b(Y’,Z) cannot be found 
in polynomial time, then b(X,Z) and b(Y,Z) definitely 
cannot be found in polynomial time. Therefore, we 
could say with certainty that a polynomial-time veri6- 
cation algorithm does not exist. 

To prove that LACf&tm,ml-~ is NP-hard, we 
ShOW that ESSCP S, LAC*lxlJyj)-1. In Other Words, 

any instance of IISSCP can be reduced in polyno- 
mial time to an instance of LA(Z&tmml.~. Let the 
two input strings be the same at both problems. We 
now show that string X needs k operations of dele- 
tion or interchange to derive string Y if and only if 
the corresponding LAC&,t~m)-I(x,y)ru~~(X,Y) problem has 
an LACS Zwith a gain g(X,YZW,,W,)> IYlW,+(k- 
lXl+IYl)W,. Sup that string X needs k operations 
of single symbol deletion or adjacent symbol inter- 
change to derive string Y. The nmber of deletions 

167 



has to be lXl-IM, making the number of interchanges k- 
lXl+lYl. Thus, for an Lf4CS~tm~nl.,(X,Y) trace, there 
are IYHZl lines (matchings) and k-lXl+lYl line-crossings 
(interchanges). Therefore, the gain g(X,Y,Z, W,,,, W,) 
is IYlW,+(MXl+lYl)W,. Conversely, suppose that Z 
= LACStin(~n)-~KY) has a gain gKYZW,,W,) = 
IYlW,,,+(k-lXl+lYl)Ws. Because X has IYl symbols in 
common with Y, Z could equal Y. X then needs Ufl-IYI 
deletions and HXl+IYl interchanges to derive Z, i.e., Y. 
Thus, for the RSSCP, string X needs lXl-III deletions 
and k-lYl+lXl interchanges to derive string Y. The to- 
tal number of operations required to derive Y from X, 
tllerefore, is k = (IXI-lYl)+#-lYl+lXl). Cl 

3 A Heuristic Approximation Algorithm 
Despite the unlikelihood of tlnding a polynomial-time 

algorithm for solving the LACS problem exactly, near- 
optimal solutions in polynomial time may still be possible. 

3.1 ALACS Algorithm 
An approximation algorithm finds an approximate 

LACS (abbreviated ALACS) of two strings. The procedure 
APPROX-LACS repeatedly calls an LCS-routine [W,,,/- 
W;l times, beginning with allowing xero number of edit 
operations for each selected symbol. Each round, the al- 
lowable number of edit operations is increased by one. The 
symbols selected are marked off from the input strings to 
prevent consideration in the next round. Suppose X and Y 
are input strings, and the trace T is empty and i = 0 at tirst. 
It executes the following steps. 

1. FmdanLCSofXandY. 
2. Select symbols from the LCS such that each sym- 

bol makes no more than i line-crossings in trace 
T. 

3. Blii the selected symbols from X and Y, and 
add them to T. 

4. i = i + 1. 
5. Repeat the above steps until i 2 [W,,& W;l. 

The procedure uses two arrays m(O..lXlJ and n[O..lYl] to flag 
which symbols in X and Y are selected. If a symbol is 
selected, it stores the index of matching symbol of the 
other string. If the symbol is not selected, it stores 0. An 
LCS function LCSJENGTH is borrowed from [l], and is 
modified to include checking whether symbols in X and Y 
are selected. 

APPROXJACS (X Y, Km, w,) 
P x and Y.- input strings */ 
P W,: weight for a symbol in an apprvximate 

common subsequence */ 
P WS: weight for an djacent common symbol 

interchange operation */ 

1 for h + 0 to [w#J-w;) - I 

2 do for i + 2 to IXI 

3 do m[i] t 0 
4 forj+ Ote IYl 
5 do no] c 0 
6 LCs_LENGTH fX, X m ns b) 
7 SELECUYM (X, y, IXI, WI. m, n, b, h) 

Procedure SW-SYM finds an Lcs and selects 
symbols from it. It makes sure the selected symbols do not 
make more than the maximum allowable number of edit 
operations. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

ifi=Oorj=O 

then retnrn 

ifb[iJ]=\ 

then if -OVER~CROSSWG(X, U, i, j, m, n, h) 

then m[i] t j 

nLj] + i 
SELEcT_sYlU(X, Y, i-1, j-1, m, n, b, h) 

ekifb[iJ] = ‘t’ 

then S~CTJW(X Y, i-2, j, m, n, b, h) 

else SELECTSXM(X, X i j-l, m, n, b, h) 

Procedure OVBRSROSSING checks a line from the 
ithsymbdofXtothejthsymbdofYdoesnotcrossmore 
than h other lines in trace. 

O~R-CROSSING (X U, i j, m, n, h) 
1 hl = 0 

2 for il + 2 to i-l 

3 do if m[il] > j 

4 then hl = hl + I 

5 forjl t 1 to j-1 

6 doifnLjl]>i 

7 theb hl = hl + I 

8 ifhZ>h 

9 then redurn TRUE 
10 else return FALSE 

For this approximation algorithm, the running time 
is qrw~w,l(im-m)2) and the 8p~43 ILCC~B is qimn) 
for the LCSJENGTH function. Figum 2 &&rates the 
progress of the approximation algorithm on an instance. 
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We name the trace T after executing the ith LCS-routine 

x=-zY) 
Y=(B A D A C B) 

ALACSo(X,Y)= Z’= (C B) 
g(x,y,z”,3,-7) = 2x 3 = 6 

x=-cY 
Y=(B A D A C B) 

ALACSr(X,Y)= 2~: (A C B) 

g(X,y,z”,3,-7)= 3x3+ 7x(-7)=8 

x= YCY) 
Y=(B A D A C B) 

AlACSz(X,Y)= Z= (A C B B) 
g(X,y,z#3,-7)= 4x3+3x(-1)=9 

Figure 2: Tbe .%quemx of ALAC!ZL2 F’roduced 
by APPROX-LACS on an Instance of LACS Problem 

BS M ALACSi.1, k%min(lXl,lIl). The ALACSi means 
a symbol in ALACS, can make no more than i adjacent 
symbol intedanges. Figure 3 is an instance of an LACSz 
problem. ‘Ihe difference between the optimal gain and 
approximate gain is I. 

X=(Cj/ Ex) 

Y=(B A D A C B) 

LACSz(X,Y)= Z= (A B A B) 
g(X,y,Z,3,-7)= 4x3+2x(-7)= 70 

Figure 3: An LACSz 

3.2 The Ratio Bound 
For a maximization problem, we say that an approx- 

imation algorithm for the problem has a ratio bound p(n) 
if for any input of size A. the gain G of the solution pro- 
duced by the approximation algorithm is within a factor of 
p(n) of the gain G’ of an optimal solution, namely, G*/G 

5 &NT For an ALACSi(X,Y), B{ lXl.lYl}-I, problem, 
the worst ratio hound is: 

Pi(n) = 
max gain of LACSi 

min gain of ALACSi . (1) 

‘Ihe next two lemmas show how to compute the min- 
illllllll @ill Of ALAC!$ and the lIdHlUDl gain Of LACSi, 
respectively. 

Lmlma I (Minimum gain of ALACS~) 
IfZisanLCSofstringXandY,theminimumgain 
of an ALACSI(X,Y), M%min{lXlJYl}-I, is law, for 
any i. 
Proof The procedure APPRO&LACS is imple- 
mented by calling the LCS-mu+ rwJ-w;J times. 
Rachtime,theyselectsymbolsfromtheLCS,add 
them to the ALACS, and remove them from input 
strings. Since it selects every symhols from the first 
LCS, the minimum gain of the approximation algo- 
rithm is law,. cl 

Before discussing Lemma II, some terminologies need 
introduction. A set of lines is completely-crossing if each 
line crosses every other line in the set. If a set of lines is 
independent, then every line in the set does not cross any 
line in the other set. 

Lemma II (MW gab a!f UC&) 
IfZisanLCSofstringsXanrlY,themaximumgain 
of an LAC!S~(X,y). (.%&&a( lXlJYl)-1, is,fi+2)BJW&. 
hf WeshowthatanLACS~hasaqmximumgain 
when there are El independent, completely-crossing 
and i+Z-line sets in its trace. The requirement can 
be broken into four conditions which am examined 
=P-ly - 

1. El sets: Every i&per&It set contributes at 
leastonesymboltoanLCS.Ifthenumherof 
independent sets is more than Ma, then the length 
of the LCS of X and Y is longer than El. It 
contradicts the assumption that 2 is an LCS of 
X and Y. On the other hand, the gain is not 
maximum if the number of indepemknt sets is 
less than IZI since each set contrilmms a tixed 
gain, which will he explained later. ‘Iherefore, 
the number of independent sets is El when I.ACSr 
has a maximum gain. 

2. Completely-crossing: Suppose one independent 
set is not completely4roasing, then them must 
have some lii not crossing one another, i.e., 
the lines are parallel in the sense of LCS. Each 
of the parallel lines contr&utes one symbol to an 
LCS.SincethelengthoftheLCSis6xed,an 
LACSi achieves the maximm total gain only by 
having the maximum gain from each line. For an 
LACSi, the maximum gain one line can reach 
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is when the set of this line and other i lines 
is completely-crossing. Therefore, each set has 
to be completely-crossing in order to have the 
maximum gain of an LACSi. 

3. Independent: Every set is independent, otherwise 
it is not completely-crossing. 

4. i+Z-line: From the above discussion, we know 
each set is completely-crossing. For a line in the 
set, it is only allowed to have no more than i 
lme-crossings because of the limitation of LACSi. 
Therefore, the maximum lines (also the maximum 
gain) a set can own is i+l. 

In short, there are lZl sets in the trace, where each 
set has i+l lines and 1+2+ . . . +i = i(i+l)n line- 
crossings, when an LACSt has a maximum gain. 
Consequently, the maximum gain of an LACSi 
is lZl[(i+Z)W,+i(i+Z)WJZ] 5 (i+2)lZlW& since - 
iW,<W&(i+l)W,. cl 

Theorem II gives the worst ratio bound of ALACSi 
by applying the above two lemmas. Since we take a very 
conservative approach to find pi(n), the actual ratio bound 
is expected to be much less than (i+Z)n when i > io, a 
positive constant. 

Theorem II (The worst mtio bound of AL4C.S~) 
‘Ihe worst ratio bound pi(n) of an ALACSi(X,y), 
OG%tin{ lXl,lll)-1, is (i+2)n for any input sixe n. 
hof From Equation 1 and Lemmas I and II, 
the worst ratio bound pi(n) of an ALACSi(X,Y), 
&&mitt{ lXlJYl}-Z, is [(i+2)lZlWJ2]l(lZlW,) = (i+Z)n 
no matter what the input size n is. Cl 

4 An Optimization Neural Network 
A modified Hopfield neural network is designed to 

solve the LACS problem. A technique of interception is 
used to determine the values of network weight. 

4.1 The Hopfield-Style Network 
Hopfield [3] diivered a Liapunov function as the 

energy function of the network: 

E= 

In solving an LACS problem, this energy function is com- 
pared with another function built from LACS constraints in 
order to determine the network weights. Let strings X = (xl, 
x2, . . . ,x,)andY=(yhy2, . . . . y,)beaninstanceofan 
LACS problem. The Hopfield net involves mn units repre- 
sented as an mxn array. The energy function constructed 
from the LACS problem constraints is 

E = Ei + Es + Es 

where 

El 
E2 

$3 

A, B and C are constants. 0~. with 1 S i S m and 1 5 
J 5 n, indicates whether xi matches yj. Functions gg, hli 
and h2j a 

where IX],, is the number of symbol xi in string X. El 
and E2 reflect the constraints that each row (X) or column 
(Y) contains a fraction hl or h2 of a single 1. E3 reflects 
the constraint that the minimum number of line-crossings 
is favored. By comparing this energy function with the 
Liapunov function, the weight and the external input are 
given by 

Sij = 

Some results are not valid when the input string is be- 
yond a certain length, e.g. about 7. The validity can be 
improved by changing the coefficient values, but this may 
have the undesirable effect of sacrificing the gain. There- 
fore, the validity of results is checked after convergence, 
and two actions are taken to preserve the validity. When 
a line makes more than [W&W,1 - I lin e-crossings, it is 
canceled; and when a symbol is picked more than once, 
only the first pick is accounted for. 

4.2 A Coef&ient Value Determined 
by Interception 

It has been observed that the convergence and the 
results of Hopfield net to the LACS problem is highly 
dependent upon the coefficients, and different input strings 
may have different optimal coefficient values. The values 
of coefficients A and B relative to the value of C affect 
the net, i.e. A/C (or B/C) afkts the net. With suf6ciently 
large values for A and B, the low-energy states will represent 
valid results and the maximum number of matchings, while 
a large value for C ensures a minimum number of lme- 
crossings. The threshold value 0, is fixed. Thus only the 
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value of coefficient A needs to be decided. Figure 4 shows 
a typical curve of gains and coefficient values. It resembles 
the shape of a trapezoid with the top slowing declining, and 
eventually becoming a constant The value of coefficient 
A is determined by the interception of two lines, which are 
extrapolated from the two sides of the curve. From some 
random in&ance experiment, the peak of the curve occurs 
at about A = 10, and the curve becomes constant at A 2 
200. So A = 1 and A = 5 are picked for deciding the line 
onthelefthandsi&ofthecurve,andA=100andA=2O 
are picked for the other line. It turns out that the value of 
A is almost always selected correctly. This is because the 
curve shown in Figure 4 applies to most strings. 

I I 
6 IO 

-clJ& 
" zm zoo 

Figure 4: An Hxample of a Coefficient 
Value Determined by Interception 

5 Experimental Results of the Tkro 
Approximation Methods 

Figure 5 draws a relation of gains and rutming times 
for W&5 and W,=-I. The output gains of ALACS and 

Figure 5: Gains and Running Time of Random 
Instances of LACS Problem for W,=6 and W,=-Z 

Hopfield net are pretty much the same, though the Hopfield 
net is a little bit poorer. The Hopfield net is much slower, 
but it requires less memory. The relation distance between 
LACS and ALACS (or Hopfield net), and also the distance 
between ALACS (or Hopfield net) and LCS, increases with 
increasing W,/-W, or ILACSI. Table 1 lists the gains and 
nmning times of some random instances of LCS, ALACS, 
Hopfield net and LACS for W,,,=3 and W,=-1. The experi- 

‘able 1 Gains and Running Time of Some Random 
instances of LACS Problem for Wn=J and W,=-I 

mental results also show the ratio bound pi(n) = (i+2y2 of 
all ALACSi is exaggerated. 

6 Discussions and Conclusions 
This paper is a prehminary look at the LCS approxi- 

mation problem, but several open questions need answers 
before it becomes definitive. Thus far, only the last case of 
LACS&X,Y), B&nin( lXl,lIl}-Z, has beea proven to be NP- 
hard. The other cases remain open, but it is likely that the 
vertex-cover problem [4] may be reduced in NP-hard proofs 
for these cases. For the heuristic approximation algorithm, 
an enduring diiIiculty is the worst ratio bound. Either it 
must prove to have a good average ratio bound, or another 
good ratio bound algorithm must be designed. Presently, 
only the worst ratio bound exists for the algorithm, which 
is (i+2)/2 for f&AC&. It is believed that the actual ra- 
tio bound is a much smaller nmber. The performance of 
Hopfield-style net is slightly worse than the heuristic algo- 
rithm. This is due to the problem of local minima. Adding 
noise terms to the net input of each neuron is being inves- 
tigated as a way to avoid this problem. 
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