
Approximating the Longest Approximate Common Subsequence Problem

Wen-Chen Hu, Gerhard X. Ritter, Mark S. Schmalz
Center for Computer Vision and Visualization

Department of Computer and Information Sciences and Engineering
University of Florida, Gainesville, Florida 3261 l-6120

{wenchen, ritter, mssz}@cise.ufl.edu

Ah&act - Finding a kmgest common subsequence of two
strings is a well4nown pmbktu We genemlize this ptvb-
km to a longest approximate common subse!+wnceprobkm
that produces a nuuhum-gain appnximate common sub-
sequence of two strings. An apptvximate subsequence of a
string X is a string edited from a subsequence of X String
Z is an appnximate common subsequence of two strings X
and Y if Z is an apptvximate subsequence of both X and Y.
The gain jibnc* g assigns a nonnegatkve real number to
each subsequence. The ptvbkm is divided into smaller seg-
ments in on&r to kssen its compkxity with some of these
segments having been ptvven to be NP-hatd A heuristic ap-
ptvximation algorithm and an optimization neural network
are constructed to jind a near-optimal solution for the ptob-
km, where a ratio bound of the apptvximation algorithm is
given, and a technique of interception is used to determke
the values of the network weights. Some experimental m-
sults and the comparative performance of the two methods
also are discussed

1 Introduction

Finding a longest common subsequence of two strings
occurs in a number of computing and data-processing appli-
cations. A classical, longest common subsequence problem
[2] (abbreviated LCS) is, given two strings X and Y, to tind
a maximum length common subsequence of X and Y. A
subsequence of a given string is just the given string with
some symbols (possibly none) left out. String Z is a com-
mon subsequence of X and Y if Z is a subsequence of both
X and Y. Finding an LCS is mainly used to measure the

Permission to make digital/hard copy of all or part of this work for
pemml or classroom use is granted without fee provided that copies are
not made or dihbuted for profit or commercial advantage, the copyright
notice, the title of the publication and its date appear, and notice is given
that copying is by permission of ACM. Inc. To copy otherwise, to
republish, to post on servers or to redistribute to lists, quireS prior
speciiic permis&n andtar a fee.
0 1998 ACM l-58113.030-9/98 $3.50

discrepancies between two strings. An LCS, however, does
not always reveal the degree of di&ence between two
strings that some problems requite. For example, if ss =
(a, b), SJ = (b, b) and s2 = (b, a), an LCS (b} of so and
SI isthesameasanLCSofssandss. Fromtheviewpohn
of LCS, the resemblance of SI and SO is the same as the
rcscmblance of ss and so. However, q has more symbols
in common with SO than SI does, althcntgh not in the same
order. Approximating an LCS may better chamckxe the
discrepancies between two strings.

This paper addresses the longest rrppmximate common
subsequence problem (abbreviated LACS) that pmduces a
maximum-gain approximate common subscquencc of two
strings. AnapproximatesubaequearceofashingXisa
string edited from a subsequence of X. Thc only editing
operation allowed here is an adjacent symbol interchange.
String Z is an approximate common’s&3equence of two
stringsXandYifZisanapproximates~~n~ofboth
X and Y. The gain function g, which will be described later,
assigns a nonnegative real number to each subsequence.
Formally, the LACS problem is defined as follows: Given
two string8 X and Y, a weight W,>o for a symbol in an
approximate common suwq and a weight W&O for
an adjacent symbol interchant operation, a string Z is a
longest approximate common subsequence of X and Y if Z
Wisfics the following two conditions:

1) zisanapproximatecommonsubsequenceofx
and Y, and

2) the gain g(X,YzW,,W,) = lZIW,+a(X,Z)W,+
G(YJJW, is maximum among all approximate
common subsequences of X and Y, where a(XZ)
istheminimumeditdismncefIomasubsequence
ofXtoZ,sois6(YZ)toYandZ.

AstringZissaidtobeofeditdiscance~ttoastringZ’if
ZcanbetransformedtobeequaltoZ’withaminimum
sequence of k adjacent symbol interchanges. Ihe kbllowing
isanLACSexample. LetX=(&A,C,E,A,B),Y=(A,C, :
D, B, B, A), W,,, = 3, and W, = -1. A longest approximate

166

common subsequence of X and Y is 2 = (A, B, C, B, A)
with the gain g(X,YJ,W,,W,) = lZlW,+6(X~W,+s(Y~W,
= 5x3+2x(-1)+1x(-Z) = 12.

This paper is organized as follows. Analysis of the
computational complexity of the LACS problem is pro-
vided in Section 2. Section 3 introduces a heuristic ap
proximation algorithm for the LACS problem, including a
ratio bound. An optimization neural network is designed in
Section 4. Section 5 gives experimental results and a com-
parative performance of the above two methods. The final
section examines furtber research directions and develops
conclusions.

2 Computational Complexity

This section breaks up the complication of the LACS
by sorting the problem into LACSi, 0 < i 5 min(tXl,lYl}-I
categories, where X and Y are input strings. Subsequently,
we prove that LACS~tmml-1 problem is NI-hard and con-
jecture that the problems from LAGS] to LACS~~tmtm-2
are at least as hard as the NP-complete problems.

2.1 LACS Categerks
The LACS problem fits into categories according to

the relation between the weights W, > 0 and W, S 0:

. LAC&-when 0 < W, S -W,, LAC!!& is reduced
to an LCS problem since no adjacent symbol in-
terchanges are allowed for any symbol in LACS,;

. LACSI-when -W, c W,,, S -2W,, any symbol in
LAC!& makes no more than 1 adjacent symbol
interchange;

. LACSs-when -2W, < W,,, 5 -3W,, any. symbol
in LACSs makes no more than 2 adjacent symbol
interchanges;

. LAC!+when -iW, < W,,, 5 -(i+I)W,, any symbol
in LACS, makes no more than i adjacent symbol
interchanges; and

. LACS~t~tru.l-when -@in{ IX&M}-l)W, <
W,,,, X and Y are input strings, any symbol in
LACS~i,(~lnte, makes no more than min(lXl,lYl}-
I adjacent symbol interchanges, which is the
maximum number of interchanges a symbol is
allowed to make.

Another us&l abbreviation is that an LACSi(X,y) equals
an LACSi of X and Y. The LACSi problem CZUI be inter-
preted in another way called a trace [a]. Diagrammatically
aligning the input strings X and Y and drawing lines from
symbols in X to their matches in Y provides the trace of X
and Y. Figure 1 illustrates the example in Section 1 through
trace. In an LACSi trace. each line is allowed to have a
maximum of i line-crossings, i.e. the symbol touched by

the line may make no more than i adjacent symbol inter-
changes. The total number of line-crossings in a trace is
4xz) + 4u,z).

x=‘%c Y’
Y=(A C D B B A)

LACSz(X,Y)=Z= (A B C B A)

g(X,y,z,3,-7) = 5x3+3x(-l) = 72

Figme 1: An LACS2 Illustrated Through Trace

2.2 The LAC&wnE, Problem is NP4Iax-d
In Theorem I, we show that any insmnce of extended

string-to-string correction problem, which was proven to be
an NP-complete problem by Wagner in 1973 [5], can be n+
duced in polynomial time to an instance of LAC&tm,tnl.l.
The extended string-to-string corm&ion problem (Es-
SCP)-given finite alphabet C, two strings X and Y E
E*, and a positive integer &determines whether there is
awaytoderivethestringYfromthestringXbyase-
quence of k or fewer operations of single symbol deletion
or adjacent symbol interchange.

Theorem I (LMS~~luy-1 is NP-hani)
If X and Y are input strings, then the LACZ&,,tm~n)-~
problem is NP-hard.
PTf We tirst show that LACf&tm,ml.l does
not belong to NP. Given an insmnce of the prob
lem, we use as a certificate an LAC!&t~nl-1 2 of
X and Y. A verification algorithm checks if the gain
g(X,YZW,,W,) = lZlW,+a(X~W,+s(YZ)W, 2 k’, a
nomgative real numher. Pmm the ESSCP, we know
it is unlikely to tind a(X’,Z) and b(Y.2) in polynomial
time, where X’ and Y’ am subsequences of X and Y,
respectively. If a(X’,Z) and b(Y’,Z) cannot be found
in polynomial time, then b(X,Z) and b(Y,Z) definitely
cannot be found in polynomial time. Therefore, we
could say with certainty that a polynomial-time veri6-
cation algorithm does not exist.

To prove that LACf&tm,ml-~ is NP-hard, we
ShOW that ESSCP S, LAC*lxlJyj)-1. In Other Words,

any instance of IISSCP can be reduced in polyno-
mial time to an instance of LA(Z&tmml.~. Let the
two input strings be the same at both problems. We
now show that string X needs k operations of dele-
tion or interchange to derive string Y if and only if
the corresponding LAC&,t~m)-I(x,y)ru~~(X,Y) problem has
an LACS Zwith a gain g(X,YZW,,W,)> IYlW,+(k-
lXl+IYl)W,. Sup that string X needs k operations
of single symbol deletion or adjacent symbol inter-
change to derive string Y. The nmber of deletions

167

has to be lXl-IM, making the number of interchanges k-
lXl+lYl. Thus, for an Lf4CS~tm~nl.,(X,Y) trace, there
are IYHZl lines (matchings) and k-lXl+lYl line-crossings
(interchanges). Therefore, the gain g(X,Y,Z, W,,,, W,)
is IYlW,+(MXl+lYl)W,. Conversely, suppose that Z
= LACStin(~n)-~KY) has a gain gKYZW,,W,) =
IYlW,,,+(k-lXl+lYl)Ws. Because X has IYl symbols in
common with Y, Z could equal Y. X then needs Ufl-IYI
deletions and HXl+IYl interchanges to derive Z, i.e., Y.
Thus, for the RSSCP, string X needs lXl-III deletions
and k-lYl+lXl interchanges to derive string Y. The to-
tal number of operations required to derive Y from X,
tllerefore, is k = (IXI-lYl)+#-lYl+lXl). Cl

3 A Heuristic Approximation Algorithm
Despite the unlikelihood of tlnding a polynomial-time

algorithm for solving the LACS problem exactly, near-
optimal solutions in polynomial time may still be possible.

3.1 ALACS Algorithm
An approximation algorithm finds an approximate

LACS (abbreviated ALACS) of two strings. The procedure
APPROX-LACS repeatedly calls an LCS-routine [W,,,/-
W;l times, beginning with allowing xero number of edit
operations for each selected symbol. Each round, the al-
lowable number of edit operations is increased by one. The
symbols selected are marked off from the input strings to
prevent consideration in the next round. Suppose X and Y
are input strings, and the trace T is empty and i = 0 at tirst.
It executes the following steps.

1. FmdanLCSofXandY.
2. Select symbols from the LCS such that each sym-

bol makes no more than i line-crossings in trace
T.

3. Blii the selected symbols from X and Y, and
add them to T.

4. i = i + 1.
5. Repeat the above steps until i 2 [W,,& W;l.

The procedure uses two arrays m(O..lXlJ and n[O..lYl] to flag
which symbols in X and Y are selected. If a symbol is
selected, it stores the index of matching symbol of the
other string. If the symbol is not selected, it stores 0. An
LCS function LCSJENGTH is borrowed from [l], and is
modified to include checking whether symbols in X and Y
are selected.

APPROXJACS (X Y, Km, w,)
P x and Y.- input strings */
P W,: weight for a symbol in an apprvximate

common subsequence */
P WS: weight for an djacent common symbol

interchange operation */

1 for h + 0 to [w#J-w;) - I

2 do for i + 2 to IXI

3 do m[i] t 0
4 forj+ Ote IYl
5 do no] c 0
6 LCs_LENGTH fX, X m ns b)
7 SELECUYM (X, y, IXI, WI. m, n, b, h)

Procedure SW-SYM finds an Lcs and selects
symbols from it. It makes sure the selected symbols do not
make more than the maximum allowable number of edit
operations.

1

2

3

4

5

6

7

8

9

10

ifi=Oorj=O

then retnrn

ifb[iJ]=\

then if -OVER~CROSSWG(X, U, i, j, m, n, h)

then m[i] t j

nLj] + i
SELEcT_sYlU(X, Y, i-1, j-1, m, n, b, h)

ekifb[iJ] = ‘t’

then S~CTJW(X Y, i-2, j, m, n, b, h)

else SELECTSXM(X, X i j-l, m, n, b, h)

Procedure OVBRSROSSING checks a line from the
ithsymbdofXtothejthsymbdofYdoesnotcrossmore
than h other lines in trace.

O~R-CROSSING (X U, i j, m, n, h)
1 hl = 0

2 for il + 2 to i-l

3 do if m[il] > j

4 then hl = hl + I

5 forjl t 1 to j-1

6 doifnLjl]>i

7 theb hl = hl + I

8 ifhZ>h

9 then redurn TRUE
10 else return FALSE

For this approximation algorithm, the running time
is qrw~w,l(im-m)2) and the 8p~43 ILCC~B is qimn)
for the LCSJENGTH function. Figum 2 &&rates the
progress of the approximation algorithm on an instance.

168

We name the trace T after executing the ith LCS-routine

x=-zY)
Y=(B A D A C B)

ALACSo(X,Y)= Z’= (C B)
g(x,y,z”,3,-7) = 2x 3 = 6

x=-cY
Y=(B A D A C B)

ALACSr(X,Y)= 2~: (A C B)

g(X,y,z”,3,-7)= 3x3+ 7x(-7)=8

x= YCY)
Y=(B A D A C B)

AlACSz(X,Y)= Z= (A C B B)
g(X,y,z#3,-7)= 4x3+3x(-1)=9

Figure 2: Tbe .%quemx of ALAC!ZL2 F’roduced
by APPROX-LACS on an Instance of LACS Problem

BS M ALACSi.1, k%min(lXl,lIl). The ALACSi means
a symbol in ALACS, can make no more than i adjacent
symbol intedanges. Figure 3 is an instance of an LACSz
problem. ‘Ihe difference between the optimal gain and
approximate gain is I.

X=(Cj/ Ex)

Y=(B A D A C B)

LACSz(X,Y)= Z= (A B A B)
g(X,y,Z,3,-7)= 4x3+2x(-7)= 70

Figure 3: An LACSz

3.2 The Ratio Bound
For a maximization problem, we say that an approx-

imation algorithm for the problem has a ratio bound p(n)
if for any input of size A. the gain G of the solution pro-
duced by the approximation algorithm is within a factor of
p(n) of the gain G’ of an optimal solution, namely, G*/G

5 &NT For an ALACSi(X,Y), B{ lXl.lYl}-I, problem,
the worst ratio hound is:

Pi(n) =
max gain of LACSi

min gain of ALACSi . (1)

‘Ihe next two lemmas show how to compute the min-
illllllll @ill Of ALAC!$ and the lIdHlUDl gain Of LACSi,
respectively.

Lmlma I (Minimum gain of ALACS~)
IfZisanLCSofstringXandY,theminimumgain
of an ALACSI(X,Y), M%min{lXlJYl}-I, is law, for
any i.
Proof The procedure APPRO&LACS is imple-
mented by calling the LCS-mu+ rwJ-w;J times.
Rachtime,theyselectsymbolsfromtheLCS,add
them to the ALACS, and remove them from input
strings. Since it selects every symhols from the first
LCS, the minimum gain of the approximation algo-
rithm is law,. cl

Before discussing Lemma II, some terminologies need
introduction. A set of lines is completely-crossing if each
line crosses every other line in the set. If a set of lines is
independent, then every line in the set does not cross any
line in the other set.

Lemma II (MW gab a!f UC&)
IfZisanLCSofstringsXanrlY,themaximumgain
of an LAC!S~(X,y). (.%&&a(lXlJYl)-1, is,fi+2)BJW&.
hf WeshowthatanLACS~hasaqmximumgain
when there are El independent, completely-crossing
and i+Z-line sets in its trace. The requirement can
be broken into four conditions which am examined
=P-ly -

1. El sets: Every i&per&It set contributes at
leastonesymboltoanLCS.Ifthenumherof
independent sets is more than Ma, then the length
of the LCS of X and Y is longer than El. It
contradicts the assumption that 2 is an LCS of
X and Y. On the other hand, the gain is not
maximum if the number of indepemknt sets is
less than IZI since each set contrilmms a tixed
gain, which will he explained later. ‘Iherefore,
the number of independent sets is El when I.ACSr
has a maximum gain.

2. Completely-crossing: Suppose one independent
set is not completely4roasing, then them must
have some lii not crossing one another, i.e.,
the lines are parallel in the sense of LCS. Each
of the parallel lines contr&utes one symbol to an
LCS.SincethelengthoftheLCSis6xed,an
LACSi achieves the maximm total gain only by
having the maximum gain from each line. For an
LACSi, the maximum gain one line can reach

169

is when the set of this line and other i lines
is completely-crossing. Therefore, each set has
to be completely-crossing in order to have the
maximum gain of an LACSi.

3. Independent: Every set is independent, otherwise
it is not completely-crossing.

4. i+Z-line: From the above discussion, we know
each set is completely-crossing. For a line in the
set, it is only allowed to have no more than i
lme-crossings because of the limitation of LACSi.
Therefore, the maximum lines (also the maximum
gain) a set can own is i+l.

In short, there are lZl sets in the trace, where each
set has i+l lines and 1+2+ . . . +i = i(i+l)n line-
crossings, when an LACSt has a maximum gain.
Consequently, the maximum gain of an LACSi
is lZl[(i+Z)W,+i(i+Z)WJZ] 5 (i+2)lZlW& since -
iW,<W&(i+l)W,. cl

Theorem II gives the worst ratio bound of ALACSi
by applying the above two lemmas. Since we take a very
conservative approach to find pi(n), the actual ratio bound
is expected to be much less than (i+Z)n when i > io, a
positive constant.

Theorem II (The worst mtio bound of AL4C.S~)
‘Ihe worst ratio bound pi(n) of an ALACSi(X,y),
OG%tin{ lXl,lll)-1, is (i+2)n for any input sixe n.
hof From Equation 1 and Lemmas I and II,
the worst ratio bound pi(n) of an ALACSi(X,Y),
&&mitt{ lXlJYl}-Z, is [(i+2)lZlWJ2]l(lZlW,) = (i+Z)n
no matter what the input size n is. Cl

4 An Optimization Neural Network
A modified Hopfield neural network is designed to

solve the LACS problem. A technique of interception is
used to determine the values of network weight.

4.1 The Hopfield-Style Network
Hopfield [3] diivered a Liapunov function as the

energy function of the network:

E=

In solving an LACS problem, this energy function is com-
pared with another function built from LACS constraints in
order to determine the network weights. Let strings X = (xl,
x2, . . . ,x,)andY=(yhy2, y,)beaninstanceofan
LACS problem. The Hopfield net involves mn units repre-
sented as an mxn array. The energy function constructed
from the LACS problem constraints is

E = Ei + Es + Es

where

El
E2

$3

A, B and C are constants. 0~. with 1 S i S m and 1 5
J 5 n, indicates whether xi matches yj. Functions gg, hli
and h2j a

where IX],, is the number of symbol xi in string X. El
and E2 reflect the constraints that each row (X) or column
(Y) contains a fraction hl or h2 of a single 1. E3 reflects
the constraint that the minimum number of line-crossings
is favored. By comparing this energy function with the
Liapunov function, the weight and the external input are
given by

Sij =

Some results are not valid when the input string is be-
yond a certain length, e.g. about 7. The validity can be
improved by changing the coefficient values, but this may
have the undesirable effect of sacrificing the gain. There-
fore, the validity of results is checked after convergence,
and two actions are taken to preserve the validity. When
a line makes more than [W&W,1 - I lin e-crossings, it is
canceled; and when a symbol is picked more than once,
only the first pick is accounted for.

4.2 A Coef&ient Value Determined
by Interception

It has been observed that the convergence and the
results of Hopfield net to the LACS problem is highly
dependent upon the coefficients, and different input strings
may have different optimal coefficient values. The values
of coefficients A and B relative to the value of C affect
the net, i.e. A/C (or B/C) afkts the net. With suf6ciently
large values for A and B, the low-energy states will represent
valid results and the maximum number of matchings, while
a large value for C ensures a minimum number of lme-
crossings. The threshold value 0, is fixed. Thus only the

170

value of coefficient A needs to be decided. Figure 4 shows
a typical curve of gains and coefficient values. It resembles
the shape of a trapezoid with the top slowing declining, and
eventually becoming a constant The value of coefficient
A is determined by the interception of two lines, which are
extrapolated from the two sides of the curve. From some
random in&ance experiment, the peak of the curve occurs
at about A = 10, and the curve becomes constant at A 2
200. So A = 1 and A = 5 are picked for deciding the line
onthelefthandsi&ofthecurve,andA=100andA=2O
are picked for the other line. It turns out that the value of
A is almost always selected correctly. This is because the
curve shown in Figure 4 applies to most strings.

I I
6 IO

-clJ&
" zm zoo

Figure 4: An Hxample of a Coefficient
Value Determined by Interception

5 Experimental Results of the Tkro
Approximation Methods

Figure 5 draws a relation of gains and rutming times
for W&5 and W,=-I. The output gains of ALACS and

Figure 5: Gains and Running Time of Random
Instances of LACS Problem for W,=6 and W,=-Z

Hopfield net are pretty much the same, though the Hopfield
net is a little bit poorer. The Hopfield net is much slower,
but it requires less memory. The relation distance between
LACS and ALACS (or Hopfield net), and also the distance
between ALACS (or Hopfield net) and LCS, increases with
increasing W,/-W, or ILACSI. Table 1 lists the gains and
nmning times of some random instances of LCS, ALACS,
Hopfield net and LACS for W,,,=3 and W,=-1. The experi-

‘able 1 Gains and Running Time of Some Random
instances of LACS Problem for Wn=J and W,=-I

mental results also show the ratio bound pi(n) = (i+2y2 of
all ALACSi is exaggerated.

6 Discussions and Conclusions
This paper is a prehminary look at the LCS approxi-

mation problem, but several open questions need answers
before it becomes definitive. Thus far, only the last case of
LACS&X,Y), B&nin(lXl,lIl}-Z, has beea proven to be NP-
hard. The other cases remain open, but it is likely that the
vertex-cover problem [4] may be reduced in NP-hard proofs
for these cases. For the heuristic approximation algorithm,
an enduring diiIiculty is the worst ratio bound. Either it
must prove to have a good average ratio bound, or another
good ratio bound algorithm must be designed. Presently,
only the worst ratio bound exists for the algorithm, which
is (i+2)/2 for f&AC&. It is believed that the actual ra-
tio bound is a much smaller nmber. The performance of
Hopfield-style net is slightly worse than the heuristic algo-
rithm. This is due to the problem of local minima. Adding
noise terms to the net input of each neuron is being inves-
tigated as a way to avoid this problem.

171

References

[l] T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Intro-
duction to Algorithms, pages 314-319. The MIT Press,
1990.

[2] D.S. Hirschberg. Algorithms for the longest common
subsequence problem. J. ACM, 24(4)3X4-675, Octe
ber 1977.

[3] J.J. Hopfield. Neurons with graded response have
collective computational properties lie those of two-
state neurons. Zn Proceedings of the National Academy
of Science, 81:30&3092, 1984.

[4] R. Karp. Reducibility among combktorial problems.
In R. Miller and J. Thatcher, editors, Zn Complcxzy of
Computer Computations, pages 85-103. Plenum Press,
1972.

[S] R.A. Wagner. On the complexity of the extended
string-to-string conrection problem. Prvc. Seventh An-
nualACMSymp.onTheoryofComputing,pages218-
223,197s.

[6] R.A. Wagner and M.J. Fischer. The string-to-string
correction problem. J. ACM, 21(1):168-173, January
1974.

172

