
Time and Space Efficient Algorithms for
Constrained Sequence Alignment

Z.S. Peng and H.F. Ting

Department of Computer Science,
The University of Hong Kong, Hong Kong

{zspeng, hfting}@cs.hku.hk

Abstract. In this paper, we study the constrained sequence alignment
problem, which is a generalization of the classical sequence alignment
problem with the additional constraint that some characters in the align-
ment must be positioned at the same columns. The problem finds im-
portant applications in Bioinformatics. Our major result is an O(�n2)-
time and O(�n)-space algorithm for constructing an optimal constrained
alignment of two sequences where n is the length of the longer sequence
and � is the length of the constraint. Our algorithm matches the best
known time complexity and reduces the best known space complexity
by a factor of n for solving the problem. We also apply our technique
to design time and space efficient heuristic and approximation algorithm
for aligning multiple sequences.

1 Introduction

In Bioinformatics, sequence alignment is a useful method for measuring the simi-
larity of DNA sequences. By constructing an alignment of the DNA sequences of
different species, Biologists may obtain important information on the evolution-
ary history of these species or discover conserved regions in their genomes. For
the Pairwise Sequence Alignment problem (PSA), which asks for aligning only
two sequences, there are polynomial-time algorithms for constructing optimal
solutions [3, 11]. For the Multiple Sequence Alignment problem (MSA), which
aligns more than two sequences, we know that the problem is NP-complete [10, 8],
and there are many heuristics [5, 4, 7] and approximation algorithms [12, 2, 9] for
constructing good, but not necessary optimal, solutions.

Existing sequence alignment programs do not allow users to use their biolog-
ical knowledge to improve the quality of the alignment. For example, it is gener-
ally agreed that in the alignment of RNase sequences, three active-site residues
His12, Lys41 and His119 should be aligned in the same columns. However, most
sequence alignment programs mis-align these important residues. To solve this
problem, Tang et al. [1] formulated the Constrained Sequence Alignment problem,
which is a natural generalization of the classical sequence alignment problem. The
new problem has an additional input of a constrained sequence, which imposes
a structure on the alignment by requiring every character in the constrained se-
quence to appear in the same column of the alignment. They gave an algorithm for

M. Domaratzki et al. (Eds.): CIAA 2004, LNCS 3317, pp. 237–246, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

238 Z.S. Peng and H.F. Ting

the Constrained Pairwise Sequence Alignment problem (CPSA) (i.e., constructing
constrained alignment of two sequences) that runs in O(�n4)) time and uses O(�n4)
space where n is the length of the longer input sequence and � is the length of the
constrained sequence. They also proposed the progressive alignment heuristic for
the Constrained Multiple Sequence Alignment (CMSA) problem, which basically
uses an optimal algorithm for CPSA to align pairs of input sequences progressively.
Using the O(�n4)-time and O(�n4)-space algorithm for CPSA to implement the
heuristic gives an O(�kn4) time and O(�n4) space complexity, where k is the num-
ber of sequences to be aligned.

In [6], Chin et al. gave an O(�n2)-time and O(�n2)-space algorithm for CPSA.
When applying this algorithm to the progressive alignment heuristic, they re-
duced both the time and space complexity of the heuristic by a factor of n2. They
also gave an approximation algorithm, called Center-star, for CMSA which runs
in O(�Ck2n2) time and uses O(�k2n2) memory space, and guarantees that the
distance score of the alignment returned by the algorithm is always at most
(2 − 2/k) times the distance score of the optimal alignment. Here, C is a con-
stant depending on the input sequences. Experiments showed that the quality
of the alignment returned by Center-Star is 15%–30% better than that of the
progressive alignment heuristic.

Both the progressive alignment heuristic and Center-star are not practical
because of their huge O(�k2n2) memory space requirement. The DNA sequences
that we study in Bioinformatics are usually more than 1M characters long. Thus,
to align four such sequences with a constrained sequence of 4 characters, we
need at least 216Gb = 65536Gb of memory. Note that a typical workstation is
equipped with at most 4Gb memory.

The major result of this paper is an O(�n2)-time and O(�n)-space algorithm
for the CPSA problem. Note that we have reduced the space requirement by a
factor of n without increasing the time complexity. This algorithm immediately
enables us to reduce the space requirement of the progressive alignment heuristic
from O(�n2) to O(�n). Furthermore, we adapt our space-saving technique so as
to reduce the space complexity of Center-star to O(�k2n) without increasing its
time complexity. These improvements are very important practically. Now, to
align four DNA sequences of 1M long with a constrained sequence of 4 characters,
we need only 64Mb of memory, which is well within the capability of a typical
workstation.

The organization of this paper is as follows. In Section 2, we give the def-
initions and notations that are used in our discussion. In Sections 3 and 4, we
describe our algorithm for the CPSA problem and analyze its time and space
complexity. We show how to adapt our technique to reduce the space complexity
of Center-Star in Section 5.

2 Definitions and Notations

Let Σ be a finite set of characters which does not include ‘ ’, the space char-
acter. We are given a distance function δ : (Σ ∪ { }) × (Σ ∪ { }) → � such

Time and Space Efficient Algorithms for Constrained Sequence Alignment 239

that any two characters a, b in Σ ∪ { } have distance δ(a, b). We assume that
δ(,) = 0. (Intuitively, the distance δ(a, b) measures the mutation distance
between characters a, b.) For any sequence S = S[1]S[2] · · ·S[n] over Σ, let |S|
denote its length n, and for any 1 ≤ i ≤ j ≤ n, let S[i..j] denote the sub-
string S[i]S[i+1] · · ·S[j]. To simplify our discussion, we let S[i..j] be the empty
sequence if i > j.

Let S and S′ be any two sequences over Σ. A sequence alignment of S and
S′ is given by an alignment matrix, which has two rows and w ≥ max{|S|, |S′|}
columns, such that when we remove all the spaces in the first (resp. second)
row, we get S (resp. S′). Let P be a common subsequence of S and S′ (i.e., P
is a subsequence of S and is also a subsequence of S′). A constrained sequence
alignment (CSA) of S and S′ with respect to P is an alignment A of S and S′

with the following additional property: there are |P | columns c1, c2, . . . c|P | in A
such that for all 1 ≤ j ≤ |P |, we have A[1, cj] = A[2, cj] = P [j]. Figure 1 gives
an example.

C KC C C

S1:

S2:

P:

IN− YR WR C KNQN− − L R T T F ANV− − C GNQS R C P HNR T − − NC HR SI R − − VP L L HC DL − − P

L T T P− − HC NGS QVPC H−N SNKT R K− C P S−C GNP NNVVNVL − T −QNT F L− R C KNINNYQ F

N

Fig. 1. An example on constrained sequence alignment

Define δ(A) =
∑

1≤j≤w δ(A[1, j], A[2, j]) to be the score of the alignment A.
We say that A is optimal if it has the smallest score among all CSAs of S and S′

with respect to P . We let δopt(S, S′, P) denote the score of an optimal CSA. To
unify our discussion, we let δopt(S, S′, P) = ∞ if P is not a common subsequence
of S and S′.

We generalize sequence alignment to multiple sequences naturally. Consider
k > 2 sequences S1, S2, . . . , Sk over Σ. A sequence alignment of S1, S2, . . . , Sk

is given by an alignment matrix of k rows and w ≥ max{|S1|, |S2|, . . . , |Sk|}
columns such that for any 1 ≤ i ≤ k, if we remove all the space charac-
ters in row i, we get the sequence Si. Let P be a common subsequence of
S1, S2, . . . , Sk. A constrained sequence alignment (CSA) of S1, S2, . . . , Sk with
respect to P is an alignment A of S1, S2, . . . , Sk with the following property:
there are |P | columns c1, c2, . . . c|P | in A such that for all 1 ≤ j ≤ |P |, we have
A[1, cj] = A[2, cj] = · · · = A[k, cj] = P [j]. Define the sum-of-pair score of A, or
simply the score of A, to be

δ(A) =
∑

1≤p<q≤k

∑
1≤j≤w δ(A[p, j], A[q, j]).

We say that A is optimal if δ(A) has the smallest value. The score of an
optimal CSA is denoted as δopt(S1, S2, . . . , Sk; P).

240 Z.S. Peng and H.F. Ting

3 Two Useful Formulas

Let S = S[1..m] and S′ = S′[1..n] be two sequences of m and n characters
over Σ. Let P = P [1..�] be a common subsequence of S and S′. In the next
two sections, we describe an algorithm for computing an optimal CSA of S and
S′ with respect to P . Our algorithm is recursive and it needs to compute all
optimal CSAs of S[1..i] and S′[1..j] with respect to P [1..k] for some i, j, k. It
also needs to compute all optimal CSAs of S[i..m] and S′[j..n] with respect to
P [k..�]. Below, we state two useful formulas that are important for us to find
these optimal alignments efficiently.

For any 0 ≤ i ≤ m, 0 ≤ j ≤ n, and 0 ≤ k ≤ �, let D(i, j, k) be the score of an
optimal alignment of S[1..i] and S′[1..j] with respect to P [1..k]. In other words,
D(i, j, k) = δopt(S[1..i], S′[1..j];P [1..k]). Recall that δopt(S[1..i], S′[1..j];P [1..k])
= ∞ if P [1..k] is not a common subsequence of S[1..i] and S′[1..j]. In [6], Chin
et al. gave a formula that relates with different D(i, j, k):
Formula I:

D(i, j, k) = min

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

D(i − 1, j − 1, k − 1) + δ(S[i], S′[j]) if S[i] = S′[j] = P [k],
D(i − 1, j − 1, k) + δ(S[i], S′[j]) if i, j ≥ 1,
D(i − 1, j, k) + δ(S[i],) if i ≥ 1,
D(i, j − 1, k) + δ(, S′[j]) if j ≥ 1.

Furthermore, we have D(0, 0, 0) = 0, and D(i, 0, k) = ∞ and D(0, j, k) = ∞
for all 0 ≤ k ≤ �, 0 ≤ i ≤ m, and 0 ≤ j ≤ n. (Recall that is the space
character.)

The above formula is useful for computing the score of alignment for se-
quences S[1..i], S′[1..j], P [1..k]. To handle alignments for sequences S[i..m],
S′[j..n], P [k..�], we need the following lemma.

Lemma 1. For any 1 ≤ i ≤ m + 1, 1 ≤ j ≤ n + 1, and 1 ≤ k ≤ � + 1, let
Q(i, j, k) = δopt(S[i..m], S′[j..n];P [k..�]). We have
Formula II:

Q(i, j, k) = min

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Q(i + 1, j + 1, k + 1) + δ(S[i], S′[j]) if S[i] = S′[j] = P [k],
Q(i + 1, j + 1, k) + δ(S[i], S′[j]) if i ≤ m and j ≤ n,
Q(i + 1, j, k) + δ(S[i],) if i ≤ m,
Q(i, j + 1, k) + δ(, S′[j]) if j ≤ n,

with the boundary conditions (i) Q(m+1, n+1, �+1) = 0, and (ii) Q(i, n+1, k) =
∞ and Q(m+1, j, k) = ∞ for all 1 ≤ k ≤ �+1, 1 ≤ i ≤ m+1, and 1 ≤ j ≤ n+1.

Proof. We consider the construction of an optimal constrained sequence align-
ment A of S[i..m] and S′[j..n] with respect to P [k..�]. Note that δ(A) = Q[i, j, k].
There are four possibilities:

– If S[i] = S′[j] = P [k], A can align S[i], S′[j] and P [k] at the same column,
and the remaining columns of A form an optimal alignment of S[i + 1..m]
and S′[j + 1..n] with respect to P [k + 1..�]. In this case, δ(A) = Q[i + 1, j +
1, k + 1] + δ(S[i], S′[j]).

Time and Space Efficient Algorithms for Constrained Sequence Alignment 241

– If i ≤ m, j ≤ n, A can align S[i] and S′[j] at the same column, and the re-
maining columns of A form an optimal alignment of S[i+1..m] and S′[j+1..n]
with respect to P [k..�]; in this case, δ(A) = Q[i + 1, j + 1, k] + δ(S[i], S′[j]).

– If i ≤ m, then A can align S[i] with a space, and the remaining columns
of A form an optimal alignment of S[i + 1..m] and S′[j..n] with respect to
P [k..�]; in this case, δ(A) = Q(i + 1, j, k) + δ(S[i],).

– If j ≤ n, then A can align S′[j] with a space, and the remaining columns
of A form an optimal alignment of S[i..m] and S′[j + 1..n] with respect to
P [k..�]; in this case, δ(A) = Q(i, j + 1, k) + δ(, S′[j]).

Obviously, δ(A) must be equal to the minimum of these four values. ��

4 An Optimal CSA Algorithm for Two Sequences

In this section, we describe an algorithm for constructing an optimal alignment
of S = S[1..m] and S′ = S′[1..n] with respect to P = P [1..�]. We need the
following lemma, which gives a structural property about the alignment.

Lemma 2. Let i be any integer in [1, m], the set of integers between 1 and m.
Then δopt(S[1..m], S′[1..n], P [1..�]) is equal to

min
0≤j≤n
0≤k≤�

{δopt(S[1..i], S′[1..j];P [1..k]) + δopt(S[i + 1..m], S[j + 1..n];P [k + 1..�])}

Proof. Consider an optimal CSA A of S and S′ with respect to P . Recall that
A has two rows, and after throwing all the space characters in the first row,
we get S. Suppose the ith character of S, i.e., S[i], is at the pth column of the
first row. In other words, S[i] = A[1, p]. Now, we consider S′ and the second
row of A. Suppose that S′[1..j] falls into the first p columns of the second row.
Furthermore, suppose that c1, c2, . . . , c� are the � columns in the CSA A such that
A[1, ch] = A[2, ch] = P [h](1 ≤ h ≤ �), and that either k = 0 or 1 ≤ k ≤ p ≤ �.
Then, the first p columns of A form a CSA A1 of S[1..i] and S′[1..j] with respect
to P [1..k], and the remaining columns form a CSA A2 of S[i+1..m] and S[j+1..n]
with respect to P [k + 1..�]. Because of the optimality of A, we conclude that A1
and A2 must be optimal. ��

We give below our recursive algorithm for finding an optimal CSA of S and
S′ with respect to P .

Algorithm CSA(S[1..m], S′[1..n], P [1..�])
begin

S1: Find the pair (j, k) ∈ [1, n] × [1, �] such that δopt(S[1..m/2], S′[1..j]; P [1..k])
+δopt(S[m/2 + 1..m], S′[j + 1..n]; P [k + 1..�]) is minimum;

S2: Call recursively CSA(S[1..m/2], S′[1..j], P [1..k]) to find an optimal alignment
A1 of S[1..m/2] and S′[1..j] with respect to P [1..k].

S3: Call recursively CSA(S[m/2+1..m], S′[j +1..n], P [k+1..�]) to find an optimal
alignment A2 of S[m/2 + 1..m] and S′[j + 1..n] with respect to P [k + 1..�].

S4: Return A1A2.
end

242 Z.S. Peng and H.F. Ting

Note that Steps S2, S3 and S4 are straightforward. The following lemma gives
the details of Step S1.

Lemma 3. We can finish Step 1 using O(�mn) time and O(�n) space.

Proof. Recall that in Section 3, we have D(i, j, k) = δopt(S[1..i], S′[1..j];P [1..k])
and Q(i, j, k) = δopt(S[i..m], S′[j..n];P [k..�]). For any 0 ≤ p ≤ m, let

D[p, ∗, ∗] = {D[i, j, k] | i = p, 0 ≤ j ≤ n, 0 ≤ k ≤ �}.

For any 1 ≤ p ≤ m + 1, let

Q[p, ∗, ∗] = {Q[i, j, k] | i = p, 1 ≤ j ≤ n + 1, 1 ≤ k ≤ � + 1}.

It is easy to see that if we are given D[m/2, ∗, ∗] and Q[m/2 + 1, ∗, ∗], we can
find the pair (j, k) required in Step 1 using O(�n) time.

Note that we know all the values in D[0, ∗, ∗], and from Formula I, we know
that for any p > 0, we can compute D[p, j, k] from D[p − 1, j − 1, k − 1],
D[p−1, j−1, k], D[p, j−1, k] and D[p−1, j, k] in constant time. Thus, we can com-
pute D[1, ∗, ∗] from D[0, ∗, ∗], and in general, D[p, ∗, ∗] from D[p− 1, ∗, ∗] by ap-
plying Formula I to find sequentially D[p, 0, 0], D[p, 2, 0], . . . , D[p, 1, 1], D[p, 1, 2],
. . . , D[p, n, �]. The total time taken is O(�n). It follows that we can compute
D[m/2, ∗, ∗] iteratively from D[0, ∗, ∗], D[1, ∗, ∗], . . . , D[m/2 − 1, ∗, ∗] using to-
tally O(�mn) time. Since we can reuse the space after each iteration, the total
space needed is O(�n).

Similarly, we can apply Formula II to find Q[m/2 + 1, ∗, ∗] using the same
time and space complexity. The lemma follows. ��

Now, we are ready to analyze the time and space complexity of our algorithm.

Theorem 1. The algorithm CSA runs in O(�mn) time and uses O(�n) space.

Proof. Let T (m, n, �) and S(m, n, �) be the worst case time and space complexity
of CSA for finding an optimal constrained sequence alignment of two sequences
with length m and n with respect to a common subsequence with length �. First,
we analyse the space complexity. We will prove by induction that S(m, n, �) =
O(�n). By Lemma 3, Step 1 uses O(�n) space. Step 2 and Step 3 use respectively
S(m/2, j, k) and S(m/2, n − j, � − k) space. Note that we can reuse the space
after each step. Hence, we have

S(m, n, �) ≤ max{O(�n), O(kj), O((� − j)(n − j))} = O(�n).

Now, we consider the time. By Lemma 3, Step 1 takes at most c�mn time for
some constant c. We prove below by induction that the running time of the
whole algorithm is at most double the running time of Step 1. In other words,
T (m, n, �) ≤ 2cmn�.

Time and Space Efficient Algorithms for Constrained Sequence Alignment 243

As mentioned above, Step 1 runs in c�mn time. Steps 2 and 3 call CSA recur-
sively, each take T (m/2, n, �) time. Hence, we have the following recurrence:

T (m, n, �) ≤ c�mn + T (m/2, j, k) + T (m/2, n − j, � − k)

≤ c�mn + 2c · m

2
jk + 2c · m

2
(n − j)(� − k)

≤ (c + 2 · c

2
)mn�

≤ 2cmn�.

The theorem is proved. ��

5 An Approximating CSA Algorithm for Multiple
Sequences

In this section, we describe how to adapt our space-saving technique to reduce
the space complexity of the Center-star approximation algorithm of Chin et al.,
which constructs a constrained sequence alignment of S = {S1, S2, . . . , Sk} with
respect to P in O(�Ck2n2) time and O(�k2n2) space, where � = |P |, C is some
constant depending on input, and n = max{|S1|, |S2|, . . . , |Sk|}. The alignment
constructed by the algorithm is guaranteed to have a score no greater than
(2− 2/k) times that of an optimal alignment. We show below how to implement
this algorithm such that the space complexity is reduced to O(�k2n) while the
time complexity is still O(�Ck2n2).

5.1 The Center-Star Algorithm

To describe the Center-star algorithm, we need some definitions. Let S be any
sequence in S. Let S′ be another sequence, and A be a constrained sequence
alignment of S and S′ with respect to P . We say that in A, the ith character
of S is aligned with the jth character of P if at some column p of A, S[i] =
A[1, p] = A[2, p] = P [j] and after removing all spaces in the first row of A,
A[1, p] becomes the ith character of S. We say that A aligns S to P at positions
1 ≤ c1 < c2 < · · · < c� if for all 1 ≤ j ≤ �, the cjth character of S is aligned
with the jth character of P in A. We let Aopt(S, S′, P, (c1, c2, . . . , c�)) denote the
optimal CSA of S and S′ with respect to P that aligns S with P at (c1, c2, . . . , c�).

Now, we are ready to describe the Center-star algorithm. To find a CSA of
S1, S2, . . . , Sk with respect to P , it executes the following two steps:

1. Find S∗ ∈ S = {S1, S2, . . . , Sk} and list of positions (c1, c2, . . . , c�) such that∑
S′∈S δ(Aopt(S∗, S′, P, (c1, c2, . . . , c�))) is minimum.

2. Merging the k − 1 alignments Aopt(S∗, S′, P, (c1, c2, . . . , c�)) (S′ ∈ S − S∗)
into an alignment of sequences S1, S2, . . . , Sk with respect to P by adding
spaces at the appropriate positions.

It is easy to see that the most time and space consuming computation in
the algorithm is to find Aopt(S, S′, P, (c1, c2, . . . , c�)). Chin et al. showed that

244 Z.S. Peng and H.F. Ting

such optimal alignment can be found in O(�n2) time and O(�n2) space. (Recall
that n = max{|S1|, |S2|, . . . , |Sk|}.) In the next section, we apply our technique
to reduce the space complexity from O(�n2) to O(�n), while keeping the time
complexity to be O(�n2). It follows that our implementation reduces the overall
space complexity of the Center-star algorithm from O(�k2n2) to O(�k2n) without
increasing the time complexity. We refer to [6] for more details on the complexity
analysis of the Center-star algorithm.

5.2 Reducing the Space Complexity

Let S = S[1..m], S′ = S′[1..n] and P = P [1..�]. Let δopt(S, S′, P, (c1, c2, . . . , c�))
denote the score of the optimal constrained sequence alignment of S and S′ with
respect to P that aligns S to P at position (c1, c2, . . . , c�). To simplify discussion,
we let δopt(S, S′, P, (c1, c2, . . . , c�)) = ∞ if no such alignment is possible. We need
the following lemma.

Lemma 4. Let i ∈ [1, m]. δopt(S[1..m], S[1..n], P [1..�], (c1, c2, . . . , c�)) equals

min
0≤j≤n,0≤k≤�

δopt(S[1..i], S[1..j], P [1..k], (c1, c2, . . . , ck)) +

δopt(S[i + 1..m], S[j + 1..n], P [k + 1..�], (ck+1, ck+2, . . . , c�))

Proof. Similar to the proof of Lemma 2. ��
The above lemma suggests immediately the a recursive algorithm for finding
Aopt(S, S′, P, (c1, c2, . . . , c�)), which is given in Figure 2. To execute Step S1 effi-

Algorithm CSAP(S[1..m], S′[1..n], P [1..�], (c1, c2, . . . , c�))
begin

S1: Find the j, k such that the sum of δopt(S[1..m/2], S′[1..j], P [1..k], (c1, . . . , ck))
and δopt(S[m/2 + 1..m], S′[j + 1..n], P [k + 1..�], (ck+1, . . . , c�)) is minimum;

S2: Call recursively CSAP(S[1..m/2], S′[1..j], P [1..k], (c1, . . . , ck)) to find the opti-
mal alignment A1

S3: Call recursively CSAP(S[m/2+1..m], S′[j +1..n], P [k +1..�], (ck+1, . . . , c�)) to
find the optimal alignment A2

S4: Return A1A2.
end

Fig. 2. Algorithm for constructing an optimal CSA with position constraints

ciently, we need two formulas similar to Formulas I and II. The first one is given
in [6].

For any 0 ≤ i ≤ m, 0 ≤ j ≤ n, 0 ≤ k ≤ �, let

D′(i, j, k) = δopt(S[1..i], S′[1..j], P [1..k], (c1, c2, . . . , ck)).

Time and Space Efficient Algorithms for Constrained Sequence Alignment 245

For any 1 ≤ i ≤ m + 1, 1 ≤ j ≤ n + 1, 1 ≤ k ≤ � + 1, let

Q′(i, j, k) = δopt(S[i..m], S′[j..n], P [k..�], (ck, ck+1, . . . , c�)).

We have

D′(i, j, k) = min

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

D′(i − 1, j − 1, k − 1) + δ(S[i], S′[j]) if ck = i and
S[i] = S′[j] = P [k],

D′(i − 1, j − 1, k) + δ(S[i], S′[j]) if i, j ≥ 1,
D′(i − 1, j, k) + δ(S[i],) if i ≥ 1,
D′(i, j − 1, k) + δ(, S′[j]) if j ≥ 1.

and

Q′(i, j, k) = min

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Q′(i + 1, j + 1, k + 1) + δ(S[i], S′[j]) if ck = i and
S[i] = S′[j] = P [k],

Q′(i + 1, j + 1, k) + δ(S[i], S′[j]) if i ≤ m and j ≤ n,
Q′(i + 1, j, k) + δ(S[i],) if i ≤ m,
Q′(i, j + 1, k) + δ(, S′[j]) if j ≤ n,

with the boundary conditions

– D′(0, 0, 0) = 0, D′(i, 0, k) = ∞ and D′(0, j, k) = ∞ for all 0 ≤ k ≤ �,
0 ≤ i ≤ m, 0 ≤ j ≤ n, and

– Q′(m + 1, n + 1, � + 1) = 0, and Q′(i, n + 1, k) = ∞ and Q′(m + 1, j, k) = ∞
for all 1 ≤ k ≤ � + 1, 1 ≤ i ≤ m + 1, 1 ≤ j ≤ n + 1.

Given these formulas, we can apply the technique used in Section 4 to implement
Step 1 of CSAP efficiently.

Theorem 2. We can finish Step 1 of CSAP in O(�n2) time and O(�n) space.
Furthermore, CSAP runs in O(�n2) time and used O(�n) space.

Proof. Similar to the proofs of Lemma 3 and Theorem 1. ��

References

1. C.Y. Tang, C.L. Lu, M.D.T. Chang, Y.T. Tsai, Y.J. Sun, K.M. Chao, J.M. Chang,
Y.H. Chiou, C.M. Wu, H.T. Chang, and W.I. Chou. Constrained multiple sequence
alignment tool development and its application to RNase family alignment. In
Proceedings of the First IEEE Computer Society Bioinformatics Conference, pages
127–137, 2002.

2. D. Gusfield. Efficient methods for multiple sequence alignment with guaranteed
error bounds. Bulletin of Mathematical Biology, 30:141–154, 1993.

3. D. Gusfield. Algorithms on strings, trees, and sequence. Cambridge University
Press, British, 1999.

4. D. Higgins and P. Sharpe. CLUSTAL: a package for performing multiple sequence
alignment on a microcomputer. Gene, 73:237–244, 1988.

246 Z.S. Peng and H.F. Ting

5. F. Corpet. Multiple sequence alignment with hierarchical clustering. Nucleic Acids
Research, 16:10881–10890, 1988.

6. F.Y.L. Chin, N.L. Ho, T.W. Lam, W.H. Wong, and M.Y. Chan. Efficient con-
strained multiple sequence alignment with performance guarantee. In Proceedings
of the IEEE Computational Systems Bioinformatics Conference, pages 337–346,
2003.

7. J.D. Thompson, D.G. Higgins, and T.J. Gibson. CLUSTAL W: Improving the
sensitivity of progressive multiple sequence alignment through sequence weighting,
position-specific gap penalties and weight matrix choice. Nucleic Acids Research,
22(22):4673–4680, 1994.

8. L. Wang and T. Jiang. On the complexity of multiple sequence alignment. Journal
of Computational Biology, 1:337–348, 1994.

9. P.A. Pevzner. Multiple alignment, communication cost, and graph matching. SIAM
Journal on Applied Mathematics, 52:1763–1779, 1992.

10. P. Bonizzoni and G.D. Vedova. The complexity of multiple sequence alignment
with SP-score that is a metric. Theoretical Computer Science, 259:63–79, 2001.

11. S. Needleman and C. Wunsch. A general method applicable to the search for
similarities in the amino acid sequence of two proteins. Journal of Molecular
Evolution, 48:443–453, 1970.

12. V. Bafna, E.L. Lawler, and P.A. Pevzner. Approximation algorithms for multiple
sequence alignment. Theoretical Computer Science, 182:233–244, 1997.

	Introduction
	Definitions and Notations
	Two Useful Formulas
	An Optimal CSA Algorithm for Two Sequences
	An Approximating CSA Algorithm for Multiple Sequences
	The Center-Star Algorithm
	Reducing the Space Complexity

