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Abstract PAM (Dayhoff et al, 1978) or BLOSUM (Henikoff and

Motivation: DIALIGN is a new method for pairwise as well Henikoff, 1994), the overall similarity score of a pairwise
as multiple alignment of nucleic acid and protein sequencedlignmentis defined by the sum of all similarity values of the
While standard alignment programs rely on comparing5‘|'9”_6d residue pairs minus a so-called gap penalty for every
single residues and imposing gap penalties, DIALIGNJ@P introduced into the qllgnment. Ne_edleman_ and Wgnsgh
constructs alignments by comparing whole segments of th@ve proposed a dynamic programming algorithm which is
sequences. No gap penalty is employed. This point of viewAle to find optimal alignments according to this scoring
especially adequate if sequences are not globally related, b8gheme. _ .

share only local similarities, as is the case in genomic DNA Since then, the alignment problem has been widely con-
sequences and in many protein families. sidered as being _solved for pairwise alignments and most ef-
Results: Using four different data sets, we show thafforts focused on improving the algorithm to find optimal or
DIALIGN is able correctly to align conserved motifs infeéasonably good suboptimal multiple alignments according
protein sequences. Alignments produced by DIALIGN ar® the Needleman—-Wunsch scoring scheme (Feng and Dool-
compared systematically to the results of five other alignmefitle, 1987; Carrillo and Lipman, 1988; Thompsenal,
programs. 1994; Tongest al, 1996; Abdeddaim, 1997; Stogeal,
Availability: DIALIGN is available to the scientific commun- 1997). In addition, considerable efforts have been made to
ity free of charge for non-commercial use. Executables fdi€fine appropriate parameter settings, especially for the gap
various UNIX platforms including LINUX can be down-Penalty, a crucial determinant of the final alignment (Fitch

loaded at http://www.gsf.de/biodv/dialign.html and Smith, 1983; Vingron and Waterman, 1994).
Contact: {werner,morgenstern}@gsf.de The Needleman—Wunsch algorithm produces reasonable,

i.e. ‘biologically correct’ (or at least, acceptable) alignments
if sequences are closely related and only a small number of
gaps have to be inserted during the alignment procedure.
Alignment of nucleic or amino acid sequences is one of thdowever, the scoring scheme based on single matches and
most important tools of sequence analysis in molecular bioffap penalties cannot be appropriate if the sequences share
ogy. Consequently, an important challenge for computaenly local similarity which might be caused by genetic pro-
tional biology is to design algorithms capable of automatieesses like recombination or exon shuffling events.
cally finding ‘biologically correct’ alignments, i.e. align- Smith and Waterman (1981) have developed a ‘local’ ver-
ments which correlate the functionally, structurally orsion of the Needleman—Wunsch method which can be suc-
evolutionarily related parts of sequences in question. Theessfully applied if two sequences share one single region of
two major prerequisites involved are: (i) a scoring schemieigh similarity and are not related outside of this region. The
that allows assignment of a distinct score to every possib$ituation is more difficult if sequences share several regions
alignment of a given set of sequences and (ii) a suitable algaf-local similarity which are separated by unrelated regions,
rithm capable of finding optimal, or at least reasonable sule-.g. by introns for genomic DNA or loops for proteins. Re-
optimal, alignments according to this scoring scheme.  cently, we have proposed a novel alignment algorithm which
Since the early 1970s, most alignment algorithms havie especially suited to detect local similarities even if these
employed versions of a scoring scheme proposed by Needémilarities are separated by long or short unrelated parts of
man and Wunsch (1970). Given a similarity matrix, e.gthe sequences (Morgenstatnal, 1996) and which, as dis-
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DIALIGN segment alignment

LAVLEAED LAVIEAED The weight function for diagonals is based on probabilistic

L A V\I\F\G/ S/ LA NLEGS considerations [for a mathematical definition, see Morgens-

WDDVTFDAE WDDVTFDAE ternet al. (1996)]. To reduce the ‘noise’ of small random
A B diagonals, a thresholflis used as a lower cut-off criterion

for diagonals to be taken into consideration, which can be

PV T AR PA-VLEFE- AR specified by the user.

LAV IR G \ LA-VITF-Gs - Multiple alignments are constructed as follows. In a first

WD VITEDAR wddVTEdAER- step, all optimal pairwise alignments are formed. The diag-
¢ D onals incorporated into these alignments are sorted (i) ac-

cording to their weight scores and (ii) according to the degree
Fig. 1. Non-consistent and consistent collections of diagonals of overlap Wlth other diagonals in order to emphasize motifs
(segment pairs)A) and B) represent non-consistent collections of OCCUITINg in more than two sequences (so-called overlap
diagonals. In (A), the ‘F in the third sequence is assigned WelghtS ) The reSUItlng list of d|agona|s is then used to as-
simultaneously to two different residues of the first sequence. In (B),semble a multiple alignment in a greedy manner: the diag-
there is a ‘cross-over’ assignment of residues. By contsts @& onal with the highest weight is the first one to be selected for
consistent collection of diagonals. It is possible to introduce gapshe alignment. Then, the next diagonal from the list is
into the sequences such that res_ldues _connected by _dlagonals aredpacked for consistency and added to the alignment if con-
the same column of the resulting alignmeD). (Residues not g0y The algorithm proceeds in this way until the whole
involved in any of the three diagonals are printed in lower-case. . . .
letters. They are not considered to be aligned. list of dl_agonals has been proces_sed. Once a diagonal is se-

lected, it becomes part of the alignment and cannot be re-

moved at any later stage.

The process of performing pairwise alignments, sorting di-

cussed below, reflects in a rather direct way the basic prif9onals, and incorporating them greedily into a growing
ciples of sequence evolution as seen today. Here, we pres@Wc't'p'e alignment is repeated iteratively until no additional
the algorithm in general terms and describe the implement@iagonals can be found. [A similar greedy approach was pro-
tion into a program called DIALIGN 1.0. posed independently in Abdeddaim (1997).]
In a final step, the program introduces gaps into the se-
guences until all residues connected by the selected diag-
Algorithm onals are properly arranged. In the output, these residues are
printed in upper-case letters, whereas residues not involved

The basic idea of our algorithm is to build sequence alig® any of the selected diagonals are printed in lower-case
ments by comparison of whole segments (i.e. uninterruptdétters. They are not considered to be aligned (see Figure
stretches of residues) of the sequences rather than by cokR). If sequences are only locally related, DIALIGN does
parison of single residues. Accordingly, alignments are confot attempt to generate a global alignment of sequences and
posed from gap-free pairs of segments of equal length. Sustil only align residues connected by selected diagonals.
pairs of segments are referred to as diagonals since they
would form diagonals in a dot-matrix comparison of two se-
guences. Diagonals of various length are considered simulta-
neously and mismatches are allowed within diagonals. Results

A pairwise as well as a multiple alignment comprises a suit-
able collection of diagonals meeting a certain consistency ctj- .
terion [a mathematical definition of consistency is given "}10 test our method and to compare it Fo_other methods,_we
Morgensterret al.(1996)]. In short, a collection of diagonals "2ve eémployed four different data sets: (i) a set of 30 helix-
is called consistent if there is no conflicting double or crosdUrn-helix proteins used in Lawrenegal.(1993) as test ma-
over assignment of residues (see FidiraVe assign a so- terial for their Glbt_)s sampling methc_)d; (i) a set of 16 acetyl-
called weight to every possible diagonal, and then try to finfjansferase proteins as described in Neuwall. (1994);
a consistent collection of diagonals with maximal sum ofiii) @ set of nine protein sequences of the basic helix-loop—
weights. Gaps are not considered in the calculation of tHelix (bHLH) family of transcription factors as described by
alignment score. An optimal alignment, i.e. a collection of diAtchley and Fitch (1997) (accession numbers: P41894,
agonals with maximum sum of weights, can be found by 02575, P17106, A55438, U10638, P13902, Q04635,
modification of the standard dynamic programming schemg11444, A48085); (iv) a set of 12 RH proteins (McClure
which is feasible at least for pairwise alignments. et al, 1994).
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Table 1.Comparison of alignment methods using four different sets of protein sequences. The table contains the numbers of goec:diyralins. In

many instances, there are several groups of sequences where a domain was correctly aligned within these groups bugnotipetWhertable reports

the number of sequences for each of these correctly aligned groups; eT=v@iftDIALIGN correctly aligned the first domain of the transferase sequences
within a group of 12 sequences and within another group of two sequences, but the domain could not be correctly alignétebetimeegroups. A

domain is considered to be correctly aligned if at least 75% of the residues are correctly aligned

Data set HTH Transferase bHLH RH

Number of sequences 30 16 9 12

Conserved domain | 1] 1] | Il I v
DIALIGN (T =0) 6,6,3,2,2 12,2 9 3,2,2 11 9 6,2,2 12
DIALIGN (T = 10) 19,2,2 16 13,2 9 9 8,2 6,2 7 8,2
CLUSTAL W 5,3,2,2,2 13 12 3,2 3,2 11 6,2 6 8,3
MULTALIN 6,54,2,22 8,3,2 75,2 5 4 7,3 6,2 52,2 5,4,3
MAP 6,54,3,2,2 7,2,2,2,2 4,42 53 4,3 6,3 6,2 6,2 3,2,2
PIMA 5,4,3,3,2 10,3,2 8,3,2 2 10 8 7,3 3,3,2,2
MATCH-BOX 3 0 0 0 8 5 0 3 0

In each data set, sequences contain one or several caments of sequences. Therefore, DIALIGN is able to locate
served domains as described in the literature. We tested vainall conserved regions that cannot be detected by standard
ous alignment programs with regard to their ability to aligralignment programs.
these domains correctly: DIALIGN (this study), CLUSTAL If sequences share only limited regions of similarity, DIA-
W (Thompsonet al, 1994), MULTALIN (Corpet, 1988), LIGN aligns these regions and ignores the unrelated parts of
MAP (Huang, 1994), PIMA (Smith and Smith, 1992) andthe sequences. However, unlike pure motif search programs
MATCH-BOX (Depiereux and Feytmans, 1992). CLUS-(Henikoff and Henikoff, 1994; Neuwalkt al, 1995, 1997),

TAL W, MULTALIN and MAP are global progressive align- DIALIGN will return a global alignment if detectable simi-
ment methods; PIMA and MATCH-BOX are local methodslarity extends over the full range of the sequences.

All programs were applied with default parameters. In The present implementation of DIALIGN uses a rather
addition, we used DIALIGN with a threshdld= 10 in order  simple weighting scheme to assess the quality of diagonals.
to study the influence of this parameter on the resultinglowever, this specific weighting scheme is not essential for
alignments. our algorithm. Different weighting schemes should be tested

The results of this comparison are summarized in Tablein order to improve the performance of the algorithm further.
and one example is given in detail in Fig@rd-or all test The basic concept of segment comparison is also in agree-
examples, DIALIGN was among the best-scoring programsaent with some of the most fundamental principles of se-
However, in all but one example, the best results were nquience evolution that are now generally accepted. The driv-
obtained with the default threshdld= 0, but withT = 10. It ing force in most cases appears to be exchange of whole seg-
seems that this threshold improves the resulting alignmentsents of sequences by recombination (Mushegian and
if sequences share significant local similarities occurring aoonin, 1996) or transposition (Plasterk, 1993) which also
different positions within the sequences. This situation odncludes mechanisms of gene conversion (Gangibl,
curs in helix-turn—helix, acetyltransferase and helix—loop3996). Point mutations add the fine tuning of sequences,
helix motifs. In these examples, DIALIGN yields the bestwhile insertions or deletions of single nucleotides are rela-
results withT = 10. tively rare events in functional genomic sequences as com-

Future efforts should be made in order to study the influsared to insertions of longer sequence elements (e.g. retro-
ence of the paramet&rin more detail and to improve the transposons; Batzet al, 1996). All of these mechanisms
weighting scheme further. are accounted for in DIALIGN: high-scoring diagonals or
sets of diagonals correspond to shuffled sequence regions,
mismatches within the diagonals represent point mutations
and insertions or deletions within conserved regions can be
The alignment algorithm described here differs fundameraccommodated by splitting diagonals into smaller subdiago-
tally from standard algorithms by its way of scoring the qualrals.
ity of alignments. Unlike alignment methods relying on the Recombinations cause abrupt termination of biological
sum of individual similarity values and on gap penalties asomology. Even where standard alignment methods are able
optimization criteria, we focus on comparing complete sege align isolated homologies correctly, they tend to extend the
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Basic region 1. a-helix Loop 2. a-helix
DELIAH-Fly 92 ------ SKYR RKTANARERT RMREINTAFE TLRHCVPeai kgedaanTNE KLTKITTLRL AMKYITMLTD SIRDPSYESE
HEN1-Human 74  ~===-=-- AKY RTAHATRERI RVEAFNLAFA ELRKLLP-TL P---P---DK KLSKIEILRL AICYISYLNH vldv------
CBF1-Yeast 220 ------ KKQR KDSHKEVERR RRENINTAIN VLSDLLP-VR -=-=-=---- ESSKAAILAR AAEYIQKLKE TDeaniekwt
HES5-Mouse 16 —=--=--- EKN RLRKPVVEKM RRDRINSSIE QLKLLLeqef arhqP---NS KLEKADILEM AVSYLKHSKA FAAAagpksl
MXIi-Zebra 73 --N---NNHY RSTHNELEKN RRAHLRLCLE RLKTLIP-LG PE------ CS RHTTLGLLNK AKAHIKKLEE ADRKSRYQLE
INO4-Yeast 39 --Nk1tDGQI RINHVSSEKK RRELERAIFD ELVAVVP-DL Q---P---QE SRSELIIYLK SLSYLSWLYE RNEKLRKQII
ESC1-Yeast 279 ytR---NPEL RTSHKLAERK RRKEIKELFD DLKDALP-Ld -K------ ST KSSKWGLLTR AIQYIEQLKS EQVALEAYVK
R-Pearl_Mi 3  memmmemmem —e- HVMSERK RREKLNEMFL VLKSLVPsIH ---------- KVDKASILAE TIAYLNELQR RVQELESSRE
ADD1-Rat 292 —----—- GEK RTAHNAIEKR YRSSINDKIV ELKDLVvg-- =-=----- TEA KLNKSAVLRK AIDYIRFLQH SNQKLKQENL
+ PRGN S S I AT S e A I o s s esn S S L S S R S o ]
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Fig. 2. Part of an alignment of nine basic helix—loop—helix proteins as constructed by DIALIGN 1.0 with thfeshibld For each position

in the alignment, the number of plus signs represents the sum of the weights of all diagonals involving residues atrihiBr@otsitd regions

with the highest number of plus signs in the entire alignment correspond precisely to the two parts of the functional thensaigueinces:

(i) DNA-binding basic region and first-helix and (ii) second-helix. The two parts of the motif are separated by a loop region. Numbers on
the left-hand side of the alignment refer to the left-most residue in a line and denote their positions within the segeeteselletters denote
residues not belonging to any of the selected diagonals. They are not considered to be aligned.

alignment beyond the homologous regions since they try tam R.Atchley for many helpful discussions. Part of this work
maximize the total sum of individual similarity scores andwvas supported by EU grant BI04-CT95-0226 (TRADAT).
minimize the number of gaps. By contrast, DIALIGN tries
to find local similarities among sequences and restricts the
alignment to segments of the sequences that are more SimE?erferences
to each other than can be expected by chance alone.

The new concept implemented in DIALIGN has alread)f’-\bdedda‘fm,S. (1997) Incremental computation of transitive closure
proved to be useful for many users who downloaded the pro-

. =~ and greedy alignment. In Apostolico,A. and Hein,J. (e eed-
gram from our WWW server. We hOpe that thls_pqper fu”'"S_ ings of the 8th Annual Symposium on Combinatorial Pattern
the frequent demand for a more detailed description and disq\jatching. Lecture Notes Comput. StR64 167-179.

cussion of the biological motivation of the algorithm to com-atchley,W.R. and Fitch,W.M. (1997) A natural classification of the

plement the mathematical principles detailed in the first basic helix-loop-helix class of transcription factéhac. Natl Acad.

publication (Morgensterpt al, 1996). We believe that the  Sci. USA94, 5172-5176.

potential of the concepts on which DIALIGN is based deBatzer,M.A.et al (1996) Genetic variation of recent Alu insertions in

serves to be developed further and will prove to be a valuablehuman populationsl. Mol. Evol, 42, 22-29.

addition to the current collection of alignment algorithms, Carillo.H. and Lipman,D. (1988) The multiple sequence alignment
problem in biologySIAM J. Appl. Math 48, 1073-1082.
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