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Abstract—In this paper, we investigate the computational and approximation complexity of the Exemplar Longest Common

Subsequence (ELCS) of a set of sequences (ELCS problem), a generalization of the Longest Common Subsequence problem, where

the input sequences are over the union of two disjoint sets of symbols, a set of mandatory symbols and a set of optional symbols. We

show that different versions of the problem are APX-hard even for instances with two sequences. Moreover, we show that the related

problem of determining the existence of a feasible solution of the ELCS of two sequences is NP-hard. On the positive side, we first

present an efficient algorithm for the ELCS problem over instances of two sequences where each mandatory symbol can appear in

total at most three times in the sequences. Furthermore, we present two fixed-parameter algorithms for the ELCS problem over

instances of two sequences where the parameter is the number of mandatory symbols.

Index Terms—Longest common subsequence, comparative genomics, algorithm design and analysis, combinatorial algorithms,

analysis of algorithms, problem complexity.

Ç

1 INTRODUCTION

ALGORITHMIC studies in comparative genomics have
produced powerful tools for the analysis of genomic

data that has been successfully applied in several contexts,
from gene functional annotation to phylogenomics and
whole genome comparison. A main goal in this research
field is to explain differences in gene order in two (or more)
genomes in terms of a limited number of rearrangement
operations.

When there are no duplicates in the considered genomes,
the computation of the similarity measure is usually
polynomial-time solvable, for example, the number of
breakpoints, reversal distance for signed genomes, number
of conserved intervals, number of common intervals,
maximum adjacency disruption, and summed adjacency
disruption [8], [9], [10]. However, except for a few
exceptions, several copies of the same gene or several
highly homologous genes are usually scattered across the
genome and, hence, it is a major problem to handle those
duplicates when computing the similarity between two
genomes. One approach to overcome this difficulty is based
on the concept of exemplar [11]: For each genome, an

exemplar sequence is constructed by deleting all but one
occurrence of each gene family. Another approach is based
on matching [12]: In this two-step procedure, the two
genomes are first made balanced (the number of occurrences
of genes from the same family must be the same in both
genomes) by removing the minimum number of genes and,
next, a one-to-one correspondence (among genes of each
family) between the genes of the genomes is computed.

Unfortunately, in the presence of duplicates, most
similarity measures turn out to be NP-hard to compute
[12], [13], [14], [15] for both the exemplar and the matching
models, so we generally have to rely on approximation
algorithms or heuristic approaches. We discuss here one
such general heuristic approach, the EXEMPLAR LCS
(ELCS) problem, which is basically a constrained string
alignment problem. The basic idea of the general frame-
work we propose here is based on the observation that, for
most similarity measures and for both the exemplar and the
matching models, specific common subsequences may
correspond to highly conserved sets of genes. This suggests
the following greedy heuristic algorithm: Find a common
subsequence of significant length—but compact enough—
between the two genomes, replace in the two genomes the
substring that contains the common subsequence (the
substring that starts at the first character of the common
subsequence and ends at the last character of the common
subsequence) by a new letter, and continue in a similar way.
Observe that, after we have identified a common subse-
quence of the genomes, we can establish a one-to-one
correspondence between the genes of the two genomes.

At each iteration of this simple heuristic algorithm, one,
however, has to be cautious about how to choose the
common subsequence as bad choices may have a disastrous
impact on the rest of the algorithm. Let us take the exemplar
model as a very simple explanatory example and suppose
that we are searching for a common subsequence between
two precise substrings of the two genomes. For one, if one
gene family has occurrences elsewhere in the two genomes,
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91405 Orsay Cedex, France. E-mail: Stephane.Vialette@lri.fr.

Manuscript received 14 July 2006; revised 26 Nov. 2006; accepted 17 Jan.
2007; published online 28 Feb. 2007.
For information on obtaining reprints of this article, please send e-mail to:
tcbb@computer.org, and reference IEEECS Log Number TCBBSI-0142-0706.
Digital Object Identifier no. 10.1109/TCBB.2007.1066.

1545-5963/07/$25.00 � 2007 IEEE Published by the IEEE CS, CI, and EMB Societies & the ACM



then taking or not taking one occurrence of this particular
gene family in the common subsequence is thus not based
on necessity but on the length of the obtained solution. For
another, if there do not exist any other occurrences of one
gene family except for the one in the two considered
substrings, definitively one has to take this occurrence in
the common subsequence (observe that, in this case, the
obtained common subsequence may not be the longest one).
This simple example suggests considering an LCS-like
problem that deals with two types of letters (mandatory
and optional symbols) to allow greater flexibility in the
searching process.

In this paper, we will formally define such a framework
with a simple combinatorial problem that generalizes the
well-known LCS problem and we will study its computa-
tional and approximation complexity. We show that some
different versions of the problem are APX-hard even for
instances with two sequences and that even determining if a
feasible solution exists or not is NP-hard. On the positive
side, the hardness of the problem can be limited in some
cases; in fact, we show that it is possible to efficiently
determine a feasible solution provided that each symbol
appears at most three times in total in the input sequence.
Finally, we present two fixed-parameter algorithms, where
the parameter is the number of mandatory symbols.

2 THE PROBLEMS

The LCS problem is a well-known problem in computational
biology. Let s ¼ s½1�; s½2�; . . . ; s½m� and t ¼ t½1�; t½2�; . . . ; t½l� be
two sequences. s is a subsequence of t if, for some
j1 < j2 < . . . < jm, s½h� ¼ t½jh�. Let S be a set of sequences.
Then, a longest common subsequence of S is the longest possible
sequence s that is a subsequence of each sequence in S.

A simple way to informally define a subsequence is by
using the notion of a threading scheme. First, write the two
sequences on two parallel lines. Then, a threading scheme is
a set of lines, each one connecting two identical symbols of
different sequences so that no two lines are crossing. In this
case, a common subsequence consists of symbols connected
by the noncrossing lines.

Given a set of sequences S, the LCS problem asks for an
LCS of S. The complexity of the LCS problem has been
deeply studied in the past. In [7], it is shown that the
problem is NP-hard even for sequences over a binary
alphabet. However, when the instance of the problem
consists of a fixed number of sequences, the LCS can be
solved in polynomial time via dynamic programming
algorithms [4], [5], [16].

The ELCS problem is related to the LCS problem. The
input of the ELCS problem consists of a set S of sequences
over alphabet Ao [Am, Ao \Am ¼ ;, where Ao is the set of
optional symbols, and Am is the set of mandatory symbols.
The output of the problem is an LCS of all sequences in S
that contains all mandatory symbols. Next, we formally
state the ELCS problem.

Problem 1. ELCS PROBLEM

Input: a set S of sequences over alphabet Ao [Am, where Ao

is the set of optional symbols, and Am is the set of mandatory
symbols. The sets Ao and Am are disjoint.

Output: an LCS of all sequences in S that contains an
occurrence of each mandatory symbol in Am.

Given an instance S of ELCS, by exemplar common
subsequence we mean a feasible solution of ELCS over S. It
is possible to define different versions of the problem
according to the number of occurrences of each symbol in
the solution, as represented in Table 1. In this paper, we will
deal with such different versions of ELCS. First, notice that
ELCS(1) and ELCSð� 1Þ are generalizations of the LCS
problem. Indeed, the LCS problem can be seen as the
restriction of ELCS(1) and ELCSð� 1Þ with an empty set of
mandatory symbols. Therefore, all of the hardness results
for LCS apply to ELCS(1) and ELCSð� 1Þ. Moreover, we
will show that the above problems are also hard on
instances of only two sequences (whereas the LCS problem
can be solved in polynomial time for any fixed number of
sequences). When dealing with the restriction of ELCS
containing only a fixed number of sequences, we will
denote such a restriction by prefixing the problem name
with the number of sequences, for example, 2-ELCSð1;� 1Þ
is the restriction of ELCSð1;� 1Þ to instances of two
sequences.

3 COMPLEXITY RESULTS

In this section, we investigate the complexity of the
2-ELCSð1;� 1Þ problem and the 2-ELCSð� 1;� 1Þ problem.
More precisely, we will show that both problems are
APX-hard even when restricted to instances where each
symbol appears at most twice in each input sequence.

3.1 Complexity of 2-ELCSð1;� 1Þ
We prove that 2-ELCSð1;� 1Þ is APX-hard even when each
symbol appears at most twice in each input sequence via an
L-reduction from the MAX INDEPENDENT SET problem on
a cubic graph (MISC) to 2-ELCSð1;� 1Þ (Fig. 1) since the
MISC problem is known to be APX-hard [1]. The MISC
problem is defined as follows:

Problem 2. MISC PROBLEM

Input: G ¼ ðV ;EÞ a cubic graph.
Output: a set V 0 � V of maximum size such that no two
vertices u, v 2 V 0 are adjacent.

Let G ¼ ðV ;EÞ be a cubic graph. Since G is cubic, for
each vertex vi 2 V , there are exactly three edges incident on
it; denote by e1ðviÞ, e2ðviÞ, and e3ðviÞ these edges. The
reduction associates with each vertex vi a symbol vi in Ao
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and a symbol xi in Am. Furthermore, the reduction
associates with each edge ej 2 E a distinct symbol sj 2 Am.

Let vi 2 V and let e1ðviÞ, e2ðviÞ, and e3ðviÞ be the edges
incident on it. In what follows, we denote by sðe1ðviÞÞ,
sðe2ðviÞÞ, and sðe3ðviÞÞ, respectively, the symbols of Am

associated by the reduction with edges e1ðviÞ, e2ðviÞ, and
e3ðviÞ. Notice that each edge e ¼ ðvi; vjÞ appears in the
incidence lists of both vi and vj; thus, e will be denoted
by exðviÞ and eyðvjÞ for some 1 � x, y � 3, in the incidence
list of vi and vj, respectively. Nonetheless, observe that e
is mapped to one distinct symbol of Am, that is,
sðexðviÞÞ ¼ sðeyðvjÞÞ.

Define a block associated with a vertex vi as a string
consisting of a vertex symbol vi, the symbols associated
with edges incident to vi in G, and the symbol xi. There are
two blocks associated with vi, one contained in s1 and
defined as b1ðviÞ ¼ visðe1ðviÞÞsðe2ðviÞÞsðe3ðviÞÞxi and the
other contained in s2 and defined as b2ðviÞ ¼
sðe1ðviÞÞsðe2ðviÞÞsðe3ðviÞÞvixi. The instance of 2-ELCSð1;�
1Þ consists of the two sequences: s1 ¼ b1ðv1Þb1ðv2Þ � � � b1ðvnÞ,
that is,

s1 ¼ v1sðe1ðv1ÞÞsðe2ðv1ÞÞsðe3ðv1ÞÞx1v2 � � �xn�1vn

sðe1ðvnÞÞsðe2ðvnÞÞsðe3ðvnÞÞxn;

and s2 ¼ b2ðv1Þb2ðv2Þ � � � b2ðvnÞ, which, just as we have done
for s1, can be expanded to

s2 ¼ sðe1ðv1ÞÞsðe2ðv2ÞÞsðe3ðv3ÞÞv1x1v2 � � �xn�1

sðe1ðvnÞÞsðe2ðvnÞÞsðe3ðvnÞÞvnxn:

Lemma 1. Each exemplar common subsequence contains the
symbol xi and xi is taken from blocks b1ðviÞ and b2ðviÞ.

Proof. Observe that each symbol xi is mandatory; hence, it
must appear in any feasible solution of 2-ELCSð1;� 1Þ.
Furthermore, observe that there is only one occurrence of
xi in s1 and in s2. More precisely, xi occurs in block b1ðviÞ
in s1 and in block b2ðviÞ in s2. It follows that any symbol
xi in a feasible solution of 2-ELCSð1;� 1Þ over s1 and s2

must be taken from blocks b1ðviÞ and b2ðviÞ. tu

Thus, we can divide an exemplar common subsequence s
into n blocks, where block i of s starts after the positions
containing the symbol xi�1 (or with the first symbol of s if
i ¼ 1) and ends in the position containing xi. Observe that,
since each xi must appear in any exemplar common
subsequence, each block of s contains at least one symbol
of the solution.

Lemma 2. The ith block of an exemplar common subsequence s
contains either the symbol vi or some symbols in
sðe1ðviÞÞsðe2ðviÞÞsðe3ðviÞÞ.

Proof. Observe that, by Lemma 1, block i of s can contain
only symbols from blocks b1ðviÞ and b2ðviÞ. Furthermore,
observe that, if symbol vi is in an exemplar common
subsequence s, then s does not contain any symbol of
sðe1ðviÞÞsðe2ðviÞÞsðe3ðviÞÞ of b1ðviÞ and b2ðviÞ; otherwise, it
is easy to see that this block of s will not be a
subsequence of the ith block of s1 or s2.

Now, assume that none of the symbols of
sðe1ðviÞÞsðe2ðviÞÞsðe3ðviÞÞ belongs to the ith block of s.
Then, if vi does not belong to the ith block of s, we can
obtain a better solution adding vi to the ith block of s.tu

Hence, a feasible solution s of 2-ELCSð1;� 1Þ over s1 and
s2 consists of f1x1 . . . fixi . . . fnxn, where each block fi is
either vi or a subsequence of sðe1ðviÞÞsðe2ðviÞÞsðe3ðviÞÞ.
Theorem 3. The 2-ELCSð1;� 1Þ problem is APX-hard even

when each symbol appears at most twice in each input
sequence.

Proof. Consider the symbols of a common subsequence s
contained in b1ðviÞ and b2ðviÞ. The common subsequence
s contains the symbol xi and either vi or some symbols in
e1ðviÞe2ðviÞe3ðviÞ. Observe that each edge symbol is
mandatory, which means that it must appear exactly
once in a common subsequence. Moreover, an edge
symbol encoding edge ðvi; vjÞ appears in blocks b1ðviÞ
and b1ðvjÞ of s1 and in blocks b2ðviÞ and b2ðvjÞ of s2. Thus,
a common subsequence takes such an edge symbol either
from b1ðviÞ and b2ðviÞ or from b1ðvjÞ and b2ðvjÞ.

Let I be the set of vertices appearing in s; we will
show that I is an independent set of G. Assume that
symbols vi, vj 2 I. Then, ðvi; vjÞ is not an edge of G;
otherwise, s in fi and fj contains symbols vi and vj,
respectively. An immediate consequence is that the edge
symbol associated with e ¼ ðvi; vjÞ, which can appear
only in fi and fj, is not contained in s. Since each edge
symbol is mandatory, it must appear in any feasible
solution of 2-ELCSð1;� 1Þ, which is a contradiction.
Observe that the length of a feasible solution s of
2-ELCSð1;� 1Þ over s1 and s2 is jV j þ jEj þ jIj, where I
is an independent set of G. Indeed, s will contain some
symbols associated with an independent set I and one
occurrence of each mandatory symbol. Notice that the set
of mandatory symbols has size jV j þ jEj.

On the other side, let I be an independent set of G; we
can compute a feasible solution of 2-ELCSð1;� 1Þ over s1

and s2 of size jV j þ jEj þ jIj, retaining in the exemplar
common subsequence only the symbols associated with
vertices in I. Since I is an independent set, for each edge
e ¼ ðvi; vjÞ, at least one of vi and vj is not in I; hence, each
symbol associated with e can be retained once in a
feasible solution of 2-ELCSð1;� 1Þ over s1 and s2. tu

3.2 Complexity of 2-ELCSð� 1;� 1Þ
Next, we show that 2-ELCSð� 1;� 1Þ is also APX-hard with
a reduction similar to the previous one. Let G ¼ ðV ;EÞ be a
cubic graph; for each vertex vi 2 V , we introduce four
optional symbols, vai v

b
iv
c
iv
d
i , and the blocks b1ðviÞ and b2ðviÞ
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Fig. 1. The cubic graph K4 and its associated instance of

2-ELCSð1;� 1Þ.



associated with vi in sequences s1 and s2, respectively, are

defined as follows:

b1ðviÞ ¼ vai vbivcivdi sðe1ðviÞÞsðe2ðviÞÞsðe3ðviÞÞxi
and

b2ðviÞ ¼ sðe1ðviÞÞsðe2ðviÞÞsðe3ðviÞÞvai vbivcivdi xi:

Notice that xi, sðe1ðviÞÞ, sðe2ðviÞÞ, and sðe3ðviÞÞ are all

mandatory symbols.
Since the symbols xi are mandatory and there is only one

occurrence of each xi in s1 and s2, it follows that Lemma 1

also holds for this problem. Each symbol xi appears in

blocks b1ðviÞ and b2ðviÞ of s1 and s2, respectively, and any

symbol xi in an exemplar common subsequence must be

taken from the blocks of s1, s2 associated with vi, that is,

b1ðviÞ and b2ðviÞ. Since each mandatory edge symbol

appears twice in each input sequence, it must appear once

or twice in a common subsequence.

Lemma 4. The ith block of an exemplar common subsequence s

contains either sequence vai v
b
iv
c
iv
d
i or some symbols in

sðe1ðviÞÞsðe2ðviÞÞsðe3ðviÞÞ.
Proof. It is easy to see that if any symbol of the sequence

vai v
b
iv
c
iv
d
i is in a feasible solution of 2-ELCSð� 1;� 1Þover s1

and s2, then this solution does not contain any occurrences

of symbols of sequence sðe1ðv1ÞÞsðe2ðv1ÞÞsðe3ðv1ÞÞ in

b1ðviÞ and b2ðviÞ. This means that a feasible solution

s of 2-ELCSð� 1;� 1Þ over s1 and s2 consists of

g1x1 . . . gixi . . . gnxn, where each gi is either a subsequence

of vai v
b
iv
c
iv
d
i or a subsequence of sðe1ðviÞÞsðe2ðviÞÞsðe3ðviÞÞ.

Now, assume that none of the symbols of
sðe1ðviÞÞsðe2ðviÞÞsðe3ðviÞÞ belongs to the ith block of s.
Then, if some of the symbols vai v

b
iv
c
iv
d
i do not belong to

the ith block of s, we can obtain a better solution by
adding it to the ith block of s. Conversely, if none of
the symbols of vai v

b
iv
c
iv
d
i belongs to the ith block of s,

then having the sequence vai v
b
iv
c
iv
d
i in the ith block of s

does not shorten s. tu

Observe that each edge symbol is mandatory, which

means that it must appear exactly once in an exemplar

common subsequence. Thus, an exemplar common subse-

quence takes each edge symbol from one of the two blocks

where it appears.

Theorem 5. The 2-ELCSð� 1;� 1Þ problem is APX-hard even

when each symbol appears at most twice in each input

sequence.

Proof. Let I be an independent set of G, then

s ¼ g1x1 . . . gixi . . . gnxn, where each gi ¼ vai vbivcivdi if vi 2
I and gi ¼ sðe1ðviÞÞsðe2ðviÞÞsðe3ðviÞÞ otherwise. It is

immediate to note that s is a common subsequence of

s1 and s2 of length jV j þ 3ðjV j � jIjÞ þ 4jIj ¼ 4jV j þ jIj
and that all mandatory symbols encoding an edge are

included in s. Without loss of generality, assume to the

contrary that a symbol encoding edge ðv1; v2Þ is not

included in s. This fact implies that g1 ¼ va1vb1vc1vd1 and

g2 ¼ va2vb2vc2vd2; hence, v1; v2 2 I, contradicting the assump-

tion that I is an independent set of G.

Assume now that there exists a feasible solution s of
2-ELCSð� 1;� 1Þ over s1 and s2 with length 4jV j þ jIj.
We can assume that, for each block, either vai v

b
iv
c
iv
d
i or

sðe1ðviÞÞsðe2ðviÞÞsðe3ðviÞÞ appears as a substring of s. Let
Y be the set of blocks for which vai v

b
iv
c
iv
d
i is part of s.

Hence, the vertices corresponding to Y are an indepen-
dent set of G. By a trivial counting argument, it is easy to
show that, for jIj blocks, s includes vai v

b
iv
c
iv
d
i . We claim

that such blocks encode an independent set. Without loss
of generality, assume that va1v

b
1v
c
1v
d
1 and va2v

b
2v
c
2v
d
2 are

included in s. Then, there is no edge ðv1; v2Þ in G;
otherwise, the mandatory symbol encoding such an edge
would not be in s. tu

4 EXISTENCE OF A FEASIBLE SOLUTION

Given an instance of 2-ELCS, a problem related to 2-ELCS
is that of determining if a feasible solution exists. In what
follows, we will consider a general version of the 2-ELCS
problem, where the instance consists of two sequences, s1

and s2, over alphabet Ao [Am and we want to compute if
there exists a subsequence of s1 and s2 containing all of the
mandatory symbols in Am. Observe that computing if a
feasible solution of 2-ELCS exists implies computing if a
feasible solution exists for each of the problems
2-ELCSð1;� 1Þ; 2 - E L C S ( 1 ) , 2-ELCSð� 1;� 1Þ, a n d
2-ELCSð� 1Þ. Notice that both reductions described in the
previous section hold for instances that are known to admit
a feasible solution; therefore, they are not sufficient to deal
with the problem.

A simple observation allows us to simplify the complex-
ity of the problem; in fact, only mandatory symbols are
relevant as removing all optional symbols does not change
the fact of whether a feasible solution exists or not.
Therefore, in what follows, we can assume that both input
sequences are made only of mandatory symbols. Clearly, in
order to have a feasible solution, each mandatory symbol
must appear in both input sequences s1 and s2. It is trivial to
verify in polynomial time such a property; hence, in what
follows, we assume that all mandatory symbols appear in
both input sequences.

The number of occurrences of each mandatory symbol in
the instance is a fundamental parameter when studying the
complexity of the 2-ELCS problem. Indeed, we will show
that finding a feasible solution can be done in polynomial
time for small values of such parameter but becomes
intractable when each symbol occurs three times in each
input sequence.

4.1 A Polynomial-Time Algorithm

First, we investigate the case where each mandatory symbol
appears in total at most three times in the input sequences.
We will present a polynomial-time algorithm for this case
via a reduction to 2SAT (the restriction of SATISFIABILITY to
instances where each clause contains at most two literals). It
is well-known that 2SAT can be solved in linear time [2].

For each symbol s, let o1ðsÞ (respectively, o2ðsÞ) be the
set of positions of the input sequence s1 (respectively, s2)
where s appears. Clearly, both o1ðsÞ and o2ðsÞ are not
empty and jo1ðsÞj þ jo2ðsÞj � 3. It follows that, for each
symbol s, there exists one of s1 and s2 containing exactly
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one occurrence of s, whereas, in the other sequence, there
are one or two occurrences of s. It follows that, for each
symbol s, there are at most two pairs in o1ðsÞ � o2ðsÞ;
otherwise, jo1ðsÞj þ jo2ðsÞj > 3. Let us associate with each
such pair a variable xs;i, where i 2 f1; 2g if there are two
pairs in o1ðsÞ � o2ðsÞ and i ¼ 1 if there is only one pair in
o1ðsÞ � o2ðsÞ. Graphically, the possible variables are repre-
sented in Fig. 2 with a line connecting two identical symbols
belonging to different sequences. The case jocc1ðsÞj þ
jocc2ðsÞj ¼ 3 is represented by the two leftmost lines and
the variables xs;1 and xs;2, whereas the case jocc1ðsÞj þ
jocc2ðsÞj ¼ 2 is represented by the rightmost line and the
variable xt;1. Each truth assignment to the variables can be
viewed as picking the lines corresponding to true variables.

Let C be the set of clauses of the instance of 2SAT that we
are constructing. For each pair xs;1; xs;2 of variables, the
clauses :xs;1 _ :xs;2 and xs;1 _ xs;2 are added to C. More-
over, for each symbol s such that there is only one pair in
o1ðsÞ � o2ðsÞ, add the clause xs;1 to C (this corresponds to
forcing the variable xs;1 to be true). Two lines (or two
variables) are called crossing if they cross in the drawing
built as in Fig. 2.

If there exists a solution S of 2SAT that satisfies all of
the clauses in C, then S picks exactly one of the lines
associated with each symbol. More formally, notice that
each variable xs;i is associated with an occurrence of
symbol s in sequence s1 (denoted as s1ðs; iÞ) and an
occurrence of symbol s in sequence s2 (denoted as s2ðs; iÞ).
A pair xs;i; xt;j of variables is crossing if, in s1, the symbol
s1ðs; iÞ precedes s1ðt; jÞ and, in s2, the symbol s2ðs; iÞ does
not precede s2ðt; jÞ or, symmetrically, if, in s1, the symbol
s1ðs; iÞ does not precede s1ðt; jÞ and, in s2, the symbol s2ðs; iÞ
precedes s2ðt; jÞ. For each pair xs;i; xt;j of crossing variables,
the clause :xs;i _ :xt;j is added to C.

Theorem 6. The problem of determining if a feasible solution
exists for an instance of 2-ELCS where each mandatory symbol
appears in total at most three times in the input sequences can
be solved in polynomial time.

Proof. We prove that the original instance of 2-ELCS has a
feasible solution iff the corresponding instance of 2SAT is
satisfiable, that is, there is a truth assignment for all
variables such that all clauses inC are evaluated to be true.
Assume that there is a feasible solution z of the instance of
2-ELCS, then, for each symbol s, we pick the lines
connecting the symbols retained in z. By definition of
common subsequence, there cannot be two crossing lines
and exactly one of the lines associated with each symbol
must be picked as z in an exemplar common subsequence;
thus, all the symbols must belong to s. Therefore, we have
constructed a feasible solution of 2SAT.

Conversely, given a truth assignment A for variables
that satisfies all clauses in C, it follows that there are no

two crossing variables in A. Indeed, for each pair of
crossing variables xs;i; xt;j, a clause :xs;i _ :xt;j is in C
and this clause can be true iff at least one of xs;i and xt;j is
false. Moreover, the two clauses :xs;1 _ :xs;2 and xs;1 _
xs;2 are true iff there is exactly one of the variables xs;1
and xs;2 true in A and one of the variables xs;1 and xs;2
false in A. Hence, there is exactly one line for each
symbol; therefore, it is immediate to construct a feasible
solution of 2-ELCS that contains all symbols. tu

The overall complexity of the algorithm is quadratic
since we build a clause for each pair xs;i; xt;j of crossing
variables.

Notice that the above result holds for all of the
restrictions of the 2-ELCS considered here as no symbol
appears twice in both input sequences; therefore, it can
appear at most once in any solution.

4.2 NP-Hardness

In what follows, we will show that slightly relaxing the
constraint on the number of occurrences of each symbol
makes the problem NP-hard.

Theorem 7. The problem of determining if a feasible solution
exists for an instance of 2-ELCS where each mandatory symbol
appears at most three times in each input sequence is NP-hard.

Proof. We will prove the theorem reducing 3SAT to 2-ELCS,
with a reduction very similar to the one shown before.
Let C ¼ fC1; . . . ; Ckg be a set of clauses, each one
consisting of at most three (possibly negated) literals.
We construct an instance of 2-ELCS associating a block
with each variable. The block of s1 associated with
variable xi is defined as the symbol xi, followed by the
sequence of clauses containing xi, and then by the
sequence of clauses containing :xi, where, in each
sequence, the clauses are ordered according to the index
in fC1; . . . ; Ckg. In s2, the block associated with
variable xi is defined as the symbol xi, followed by the
sequence of clauses containing :xi, and then by the
sequence of clauses containing xi (again the clauses are
ordered according to the index in fC1; . . . ; Ckg). For
example, if x1 appears negated in C1 and not negated in
C2 and C3, then the corresponding blocks are x1C2C3C1

(in s1) and x1C1C2C3 (in s2). Both sequences s1 and s2

consist of the sequence of all blocks associated with the
variables of the original instance of 3SAT. All symbols
are mandatory; also, notice that each symbol appears at
most three times in each sequence as each clause
contains at most three literals.

Each symbol xi appears exactly once in each sequence;
hence, there is no ambiguity on which occurrence is
retained in any exemplar common subsequence. Conse-
quently, each symbol retained must correspond to
occurrences taken from the same block. Inside the block
associated with xi, retaining the clauses where xi appears
as a positive literal is mutually exclusive with retaining
the clauses where xi appears as a negative literal, by
definition of exemplar common subsequence. The first
case (that is, retaining the clauses where xi appears as a
positive literal) corresponds to setting xi to be true,
whereas the second case corresponds to setting xi to be
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false. In both cases, the clauses retained are satisfied by
the assignment of variables xi.

Any feasible solution of 2-ELCS over sequences s1 and
s2 must contain all symbols associated with the clauses;
therefore, we have computed a truth assignment of the
variables that satisfies all clauses in C, completing the
proof. tu

The above results have a definitive consequence on the
approximability of the 2-ELCS problem where each
mandatory symbol appears at most three times in both
input sequences as they rule out any polynomial-time
approximation algorithm (regardless of the approximation
factor).

5 INSTANCES OF MORE THAN TWO SEQUENCES

Since the problem can be extended to instances consisting of
a set of sequences, it is interesting to know if the above
results can be made stronger. In fact, the well-known
inapproximability results in [6] for the LCS problem
immediately also apply to the ELCSð� 1Þ problem since
ELCSð� 1Þ is more general than LCS. A closer inspection of
their proofs shows that their results also apply to all
versions of ELCS as the optimal solutions in their reduc-
tions contain at most one occurrence of each symbol,
excluding any Oðn1��Þ ratio polynomial-time approxima-
tion algorithm unless P ¼ NP, even if no mandatory
symbol is allowed and all symbols appear at most twice
in each sequence.

6 INSTANCES CONTAINING NO MANDATORY

SYMBOL

Consider the restrictions of problems 2-ELCSð1;� 1Þ and
2-ELCSð� 1;� 1Þ where Am ¼ ;. Observe that the two
problems are equivalent since each feasible solution of the
two problems consists only of optional symbols and each
optional symbol can occur at most once. Denote by
2-ELCSð	;� 1Þ the restriction above. Next, we will show
that the 2-ELCSð	;� 1Þ is NP-hard by modifying the
reduction in Section 3.1, replacing all of the mandatory
symbols by optional symbols.

First, each mandatory symbol xi can be replaced by a
sufficiently long sequence wj of new optional symbols. Let
jwjj ¼ 10n, where n represents the number of vertices of the
cubic graph G, that is, n ¼ jV j. It follows that, for each xi,
either all or no symbols of wj are included in the solution.
Indeed, if a set of symbols of wj appears in a solution, it
follows that we could add all of the remaining symbols of
wi without shortening the resulting exemplar common
subsequence. Furthermore, since jwij ¼ 10n, all sequences
wi must be included in an exemplar common subsequence;
otherwise, the resulting solution is too short. Notice that
each xi appears exactly once in the reduction.

It remains to replace the mandatory symbols associated
with edges, each with a sequence of unique symbols.
Replace each edge symbol sðeijÞ with a sequence zðeijÞ of
new optional symbols such that jzðeijÞj ¼ n. Again, either all
or no edge symbols are included in the solution.

Now, if edge eij is incident to vertices vi and vj, zðeijÞwill
appear in blocks i and j of s1 and s2. It follows that one of the
two occurrences of zðeijÞmight be taken. Since all symbols of
wi are taken, either the occurrences of zðeijÞ in block i of both
s1 and s2 or the occurrences of zðeijÞ in block j of both s1 and
s2 are taken, that is, the threading scheme of zðeijÞ cannot
cross the threading scheme of wi. Observe that, at most one
occurrence of zðeijÞ can be taken in a solution of
2-ELCSð	;� 1Þ. Still, at least one symbol of both occurrences
of zðeijÞ must be taken; otherwise, the resulting sequence is
too short and it is always possible to take only the symbols
of one of the occurrences of zðeijÞ without shortening the
resulting exemplar common subsequence.

7 FIXED-PARAMETER ALGORITHMS

In this section, we propose some fixed-parameter algo-
rithms for the resolution of the 2-ELCS(1) and 2-ELCSð� 1Þ
problems, where the parameter is the number of mandatory
symbols. First, we describe a naive approach and, then, we
present two dynamic programming algorithms. In what
follows, we denote by s1 and s2 the two input sequences by
Am ¼ f�1; �2; . . . ; �mg, the set of mandatory symbols, and
by n, the maximum of js1j and js2j.

7.1 Naive Approach

We present a naive algorithm for 2-ELCS(1) that is based on
two phases: The first step consists of guessing the exact
ordering of all mandatory symbols in the optimal solution
and the second step basically fills in the gaps between each
pair of mandatory symbols. Since each mandatory symbol
appears exactly once in a feasible solution, the correct
ordering of the mandatory symbol is a permutation of Am,
which can be computed in Oðm!Þ time.

Assume that s is an optimal permutation of mandatory
symbols, the second phase consists of computing an LCS s	

of fs1; s2g. Notice that each optional symbol can appear an
unrestricted number of times in any solution. Let us denote
by s½i� the ith character of the sequence s and by s½i . . . j� the
substring of s starting with s½i� and ending with s½j�. The
recurrence equation for EL½i; j; k�, that is, the length of an
optimal solution over s1½1 . . . i� and s2½1 . . . j�, which are both
supersequences of the sequence s½1� � � � s½k�, is

EL½i; j; k� ¼

max

EL½i� 1; j� 1; k� þ 1 if s1½i� ¼ s2½j�; s1½i� 2 Ao

EL½i� 1; j� 1; k� 1� þ 1 if s1½i� ¼ s2½j� ¼ s½k�
EL½i� 1; j; k�;EL½i; j� 1; k� always:

8><
>:

The boundary conditions are EL½0; j; 0� ¼ 0 and
EL½i; 0; 0� ¼ 0 for 0 � i � js1j and 0 � j � js2j. The value of
an optimal solution can be read in EL½js1j; js2j; jsj�. Once the
matrix EL has been completely filled in, the actual optimal
subsequence can be constructed with standard backtracking
techniques [3]. The recurrence equation described above
can be easily modified for the 2-ELCSð� 1Þ by removing the
requirement s1½i� 2 Ao in the first condition of the equation.

7.2 Dynamic Programming Algorithms

The algorithm described above computes the maximum
length of an exemplar common subsequence by computing
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all of the possible permutations of mandatory symbols.
Observe that, if the number of mandatory symbols is m,
then the number of permutations is m! and the above
algorithm has time complexity Oðm!n2Þ. Next, we present
dynamic programming algorithms to compute the max-
imum length of an exemplar common subsequence of time
complexity Oðm2mn2Þ.

First, we describe a dynamic programming algorithm to
compute the existence of a feasible solution of 2-ELCS.
Denote by ES½i; j�, where 1 � i � js1j and 1 � j � js2j, a
Boolean function that is true iff there exists a feasible
solution of 2-ELCS with input sequences s1½1 . . . i� and
s2½1 . . . j�; otherwise, ES½i; j� is false. Let z be a feasible
solution of 2-ELCS; we call it the restriction of z and denote it
by zr, the subsequence of z consisting only of the rightmost
occurrence of each mandatory symbol.

Lemma 8. Let zr be the restriction of a feasible solution z of
2-ELCS and let � 2 Am be the rightmost mandatory symbol of
zr. Then, there exist two occurrences j1 and j2 of � in s1 and
s2, respectively, such that zr½1 . . .m� 1� is a restriction of an
exemplar common subsequence of s1½1 . . . j1 � 1� and
s2½1 . . . j2 � 1� with the set of mandatory symbols Am � f�g.

Proof. In order to obtain a feasible solution, we have to
guarantee that each mandatory symbol has at least one
occurrence. Since � is the rightmost symbol in zr, it
follows that zr½1 . . .m� 1� must contain all mandatory
symbols in Am � f�g. Now, assume that zr½m� is taken
from two occurrences j1 and j2 of � in s1 and s2,
respectively. It follows that all of the mandatory symbols
in zr½1 . . .m� 1�, that is, in Am � f�g, must be taken from
s1½1 . . . j1 � 1� and s2½1 . . . j2 � 1�; thus, zr½1 . . .m� 1� is a
restriction of an exemplar common subsequence of
s1½1 . . . j1 � 1� and s2½1 . . . j2 � 1� with the set of manda-
tory symbols Am � f�g. tu

Observe that there must be a mandatory symbol � 2 Am

that is the rightmost mandatory symbol in a feasible
solution. Thus, function ES½n;m� is true iff there exists a
feasible solution ES½rðo1ð�ÞÞ � 1; rðo2ð�ÞÞ � 1� over the sets
of mandatory symbols in Am � f�g, where rðo1ð�ÞÞ (respec-
tively, rðo2ð�ÞÞ) represents the rightmost occurrence of � in
s1 (respectively, s2) with rðo1ð�ÞÞ; rðo2ð�ÞÞ � n.

Denote by ES½j1; j2; A
0�, where A0 � Am is a subset of the

mandatory symbols, a Boolean function that is true iff there
exists a feasible solution of 2-ELCS with input sequences
s1½1 � � � j1�; s2½1 � � � j2� containing all of the mandatory sym-
bols in A0; otherwise, it is false:

ES½i; j; A0� ¼

_
�2A0

ES½i� 1; j� 1; A0 � f�g� if s1½i� ¼ s2½j�; s1½i� 2 A0

ES½i� 1; j� 1; A� if s1½i� ¼ s2½j�; s1½i� 62 A0

ES½i; j� 1; A0�;ES½i� 1; j; A0� always:

8><
>:

ð1Þ

The boundary conditions are ES½i; j; ;� ¼ true for all 0 �
i � js1j and 0 � j � js2j, ES½0; j; A0� ¼ false, and ES½i; 0; A0� ¼
false for 0 � i � js1j and 0 � j � js2j and, for all subsets
A0 � Am, A0 6¼ ;. The existence of a feasible solution of
2-ELCS can be read in ES½js1j; js2j; Am�.

The time complexity of the above algorithm is Oðm2mn2Þ.
Indeed, each partial solution is computed by evaluating at
most OðmÞ equations since we have to choose a mandatory
symbol � 2 A0, jA0j � m. The number of partial solutions is
Oð2mn2Þ since the possible subsets A0 � Am are Oð2mÞ,
whereas indices i and j range over ½1; js1j� and ½1; js2j�,
respectively.

Now, we extend the approach to compute a feasible
solution in order to design an algorithm that computes an
ELCS, that is, a solution of the optimization problem.
Informally, since (1) computes the rightmost occurrence of a
mandatory symbol of set A0 in a (possible) feasible solution,
we have to add to the solution some symbols between a pair
of consecutive mandatory symbols.

First, we discuss the case where the solution must
contain exactly one occurrence of each mandatory symbol,
whereas the occurrences of each optional symbol are
unrestricted. Denote by EL½j1; j2; A

0�, where A0 � Am is a
subset of the mandatory symbols, a function that represents
the length of the longest exemplar common subsequence
with input sequences s1½1 � � � j1� and s2½1 � � � j2� containing
one occurrence of each mandatory symbol in A0. Indeed, the
occurrences of mandatory symbols in A0 � f�g occur at the
left of i1 and i2 since � is the rightmost mandatory symbol
by hypothesis, whereas symbols in Am �A0 � f�g already
have an occurrence in the exemplar subsequence. The
following is the recurrence to compute EL½j1; j2;A0�:

EL½i; j; A0� ¼

max
�2A0

EL½i� 1; j� 1; A0 � f�g� if s1½i� ¼ s2½j� ¼ �;
� 2 A0

EL½i� 1; j� 1; A0� if s1½i� ¼ s2½j�;
s1½i� 2 Ao

EL½i; j� 1; A0�;EL½i� 1; j; A0� always:

8>>>>>><
>>>>>>:

ð2Þ

Denote by LSO½j1; j2� the size of an LCS with input
sequences s1½1 � � � j1�; s2½1 � � � j2�, where all mandatory sym-
bols in Am are removed from intervals ½1; j1� and ½1; j2�. The
boundary conditions are EL½i; j; ;� ¼ LSO½i; j� for 0 � i �
js1j and 0 � j � js2j, EL½0; j; A0� ¼ �1, and EL½i; 0; A0� ¼
�1 for 0 � i � js1j and 0 � j � js2j and for each subset
A0 � Am, A0 6¼ ;. The value of the optimal solution can be
read in EL½js1j; js2j; Am�.

The time complexity of the algorithm is Oðm2mn2Þ.
Indeed, each partial solution is computed by evaluating at
most 4m equations. The number of partial solutions is
Oð2mn2Þ since the possible subsets A0 � Am are Oð2mÞ,
whereas indices i and j range over ½1; js1j� and ½1; js2j�,
respectively.

Next, we consider the case of 2-ELCS when a solution
contains at least one occurrence of each mandatory symbol,
whereas the occurrences of each optional symbol are
unrestricted. Once again, we assume that � is the rightmost
mandatory symbol of a longest exemplar common subse-
quence of length EL½j1; j2; A

0�. With respect to (2), observe
that we can also add to a solution mandatory symbols that
are not in A0 since each mandatory symbol can appear more
than once in a solution:
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EL½i; j; A0� ¼

max
�2A0

EL½i� 1; j� 1; A0 � f�g� if s1½i� ¼ s2½j� ¼ �;
� 2 A0

EL½i� 1; j� 1; A0� if s1½i� ¼ s2½j�;
s1½i� 2 Ao [Am �A0

EL½i; j� 1; A0�;EL½i� 1; j; A0� always:

8>>>>>><
>>>>>>:

ð3Þ

Denote by LSM½j1; j2� the size of an LCS with input
sequences s1½1 � � � j1�; s2½1 � � � j2�. The boundary conditions
are EL½i; j; ;� ¼ LSM½i; j� for 0 � i � js1j and 0 � j � js2j,
EL½0; j; A0� ¼ �1 and EL½i; 0; A0� ¼ �1 for 0 � i � js1j and
0 � j � js2j and, for each subset A0 � Am, A0 6¼ ;. The value
of the optimal solution can be read in EL½js1j; js2j; Am�.

The time complexity of the algorithm is Oðm2mn2Þ.
Indeed, each partial solution is computed by evaluating at
most 4m4 equations. As before, the number of partial
solutions is Oð2mn2Þ since the possible subsets A0 � Am are
Oð2mÞ, whereas indices i and j range over ½1; js1j� and
½1; js2j�, respectively.

8 IMPLEMENTATION

The algorithm described in (2) has been implemented and
tested on randomly generated data. More precisely, we
have tested the algorithm with two input sequences of
length 200 and with an alphabet of mandatory symbols Am

of size 10. The algorithm produces the output in a few
seconds. However, the space complexity of the algorithm,
which grows exponentially with the size of Am, makes the
algorithm not applicable when the size of Am is 20 or more.

We have implemented and tested a different dynamic
programming algorithm to deal with the problem. This
second algorithm uses a different approach and it pre-
processes subsequences of the input sequences consisting
only of optional symbols. However, the first approach turns
out to be much more efficient both in time and space than
the latter one. Both implementations are freely available at
http://www.algo.disco.unimib.it/ and licensed under the
GNU General Public License.

9 OPEN PROBLEMS

In this paper, we have investigated the computational and
approximation complexity of several versions of the ELCS
problem. Some interesting cases concerning the computa-
tional complexity of the ELCS problem still need to be
addressed. More precisely, we have shown that the 2-ELCS
problem when each mandatory symbol appears in total at
most three times in the input sequences admits a
polynomial-time algorithm. Such an algorithm determines
if a feasible solution exists, but different feasible solutions
can lead to exemplar common subsequences of different
lengths. Indeed, the computational complexity of the
general problem of computing an ELCS when each
mandatory symbol appears in total at most three times in
the input sequences is still not known. Furthermore, we
have shown that the 2-ELCS problem is NP-hard when each
mandatory symbol appears at least three times in both
input sequences. Hence, we do not know the computational

complexity of the 2-ELCS problem when each mandatory
symbol appears less than three times in at least one
sequence, whereas it appears in total more than three times
in the two input sequences.

We have proposed some fixed-parameter algorithms to
compute an ELCS. Observe that both the time and space
complexity of these algorithms are exponential on the size
of the set of mandatory symbols Am. In particular, the space
complexity makes the algorithm not applicable when the
size of Am is 20 or more. Hence, an interesting issue
concerning the implementation of these algorithms is the
reduction of the space complexity of such algorithms.
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