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Support vector regression has been applied to stock market forecasting problems. However, it is usually
needed to tune manually the hyperparameters of the kernel functions. Multiple-kernel learning was
developed to deal with this problem, by which the kernel matrix weights and Lagrange multipliers can
be simultaneously derived through semidefinite programming. However, the amount of time and space
required is very demanding. We develop a two-stage multiple-kernel learning algorithm by incorporating
sequential minimal optimization and the gradient projection method. By this algorithm, advantages from
different hyperparameter settings can be combined and overall system performance can be improved.
Besides, the user need not specify the hyperparameter settings in advance, and trial-and-error for deter-
mining appropriate hyperparameter settings can then be avoided. Experimental results, obtained by run-
ning on datasets taken from Taiwan Capitalization Weighted Stock Index, show that our method
performs better than other methods.
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1. Introduction

Accurate forecasting of stock prices is an appealing yet difficult
activity in the modern business world. Many factors influence the
behavior of the stock market, including both economic and non-
economic. Therefore, stock market forecasting is regarded as one
of the most challenging topics in business. In the past, methods
based on statistics were proposed for tackling this problem, such
as the autoregressive (AR) model (Champernowne, 1948), the
autoregressive moving average (ARMA) model (Box & Jenkins,
1994), and the autoregressive integrated moving average (ARIMA)
model (Box & Jenkins, 1994). These are linear models which are,
more than often, inadequate for stock market forecasting, since
stock time series are inherently noisy and non-stationary. Recently,
nonlinear approaches have been proposed, such as autoregressive
conditional heteroskedasticity (ARCH) (Engle, 1982), generalized
autoregressive conditional heteroskedasticity (GARCH) (Bollerslev,
1986), artificial neural networks (ANN) (Hansen & Nelson, 1997;
Kim & Han, 2008; Kwon & Moon, 2007; Qi & Zhang, 2008; Zhang
& Zhou, 2004), fuzzy neural networks (FNN) (Chang & Liu, 2008;
Oh, Pedrycz, & Park, 2006; Zarandi, Rezaee, Turksen, & Neshat,
2009), and support vector regression (SVR) (Cao & Tay, 2001,
2003; Fernando, Julio, & Javier, 2003; Gestel et al., 2001; Pai &
ll rights reserved.
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Lin, 2005; Tay & Cao, 2001; Valeriy & Supriya, 2006; Yang, Chan,
& King, 2002).

ANN has been widely used for modeling stock market time ser-
ies due to its universal approximation property (Kecman, 2001).
Previous researchers indicated that ANN, which implements the
empirical risk minimization principle, outperforms traditional sta-
tistical models (Hansen & Nelson, 1997). However, ANN suffers
from local minimum traps and difficulty in determining the hidden
layer size and learning rate. On the contrary, SVR, proposed by
Vapnik and his co-workers, has a global optimum and exhibits bet-
ter prediction accuracy due to its implementation of the structural
risk minimization principle which considers both the training error
and the capacity of the regression model (Cristianini & Shawe-Tay-
lor, 2000; Vapnik, 1995). However, the practitioner has to deter-
mine in advance the type of kernel function and the associated
kernel hyperparameters for SVR. Unsuitably chosen kernel func-
tions or hyperparameter settings may lead to significantly poor
performance (Chapelle, Vapnik, Bousquet, & Mukherjee, 2002;
Duan, Keerthi, & Poo, 2003; Kwok, 2000). Most researchers use
trial-and-error to choose proper values for the hyperparameters,
which obviously takes a lot of efforts. In addition, using a single
kernel may not be sufficient to solve a complex problem satisfacto-
rily, especially for stock market forecasting problems. Several
researchers have adopted multiple-kernels to deal with these
problems (Bach, Lanckriet, & Jordan, 2004; Bennett, Momma, &
Embrechts, 2002; Crammer, Keshet, & Singer, 2003; Gönen et al.,
2008; Lanckriet, Cristianini, Bartlett, Ghaoui, & Jordan, 2004;
Ong, Smola, & Williamson, 2005; Rakotomamonjy, Bach, Canu, &
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Grandvalet, 2007, 2008; Sonnenburg, Ratsch, Schäfer, & Schölkopf,
2006; Szafranski, Grandvalet, & Rakotomamonjy, 2008; Tsang &
Kwok, 2006; Wang, Chen, & Sun, 2008).

The simplest way to combine multiple-kernels is by averaging
them. But each kernel having the same weight may not be appro-
priate for the decision process, and therefore the main issue con-
cerning multiple-kernel combination is to determine optimal
weights for participating kernels. Lanckriet et al. (2004) used a lin-
ear combination of matrices to combine multiple-kernels. They
transformed the optimization problem into a semidefinite pro-
gramming (SDP) problem, which, being convex, has a global opti-
mum. However, the amount of time and space required by this
method is demanding. Other multiple-kernel learning algorithms
include Bach et al. (2004), Sonnenburg et al. (2006), Rak-
otomamonjy et al. (2007), Rakotomamonjy, Bach, Canu, and Grand-
valet (2008), Szafranski et al. (2008) and Gönen et al. (2008). These
approaches deal with large-scale problems by iteratively using the
sequential minimal optimization (SMO) algorithm (Platt, 1999) to
update Lagrange multipliers and kernel weights in turn, i.e., La-
grange multipliers are updated with fixed kernel weights and ker-
nel weights are updated with fixed Lagrange multipliers
alternatively. Although these methods are faster than SDP, they
are likely to suffer from local minimum traps. Multiple-kernel
learning based on hyperkernels has also been studied (Ong et al.,
2005; Tsang & Kwok, 2006). Tsang and Kwok (2006) reformulated
the problem as a second-order cone programming (SOCP) form.
Crammer et al. (2003) and Bennett et al. (2002) used boosting
methods to combine heterogeneous kernel matrices.

We propose a regression model, which integrates multiple-ker-
nel learning and SVR, to deal with the stock price forecasting prob-
lem. A two-stage multiple-kernel learning algorithm is developed
to optimally combine multiple-kernel matrices for SVR. This learn-
ing algorithm applies SMO (Platt, 1999) and the gradient projection
method (Bertsekas, 1999) iteratively to obtain Lagrange multipliers
and optimal kernel weights. By this algorithm, advantages from
different hyperparameter settings can be combined and overall
system performance can be improved. Besides, the user need not
specify the hyperparameter settings in advance, and trial-and-er-
ror for determining appropriate hyperparameter settings can then
be avoided. Experimental results, obtained by running on datasets
taken from Taiwan Capitalization Weighted Stock Index (TAIEX),
which is a stock market index for companies traded on the Taiwan
Stock Exchange, show that our method performs better than other
methods.

The rest of this paper is organized as follows. Section 2 presents
basic concepts about support vector regression. Section 3 describes
our proposed multiple-kernel support vector regression approach
for stock price forecasting. Experimental results are presented in
Section 4. Finally, a conclusion is given in Section 5.
2. Support vector regression (SVR)

In a regression problem, we are given a set of training patterns
(x1,y1), . . . , (xl,yl), where xi 2 Rn, i = 1, . . . , l, and yi 2 R. Each yi is the
desired target, or output, value for the input vector xi. A regression
model is learned from these patterns and used to predict the target
values of unseen input vectors. SVR is a nonlinear kernel-based
regression method which tries to locate a regression hyperplane
with small risk in high-dimensional feature space. It possesses
good function approximation and generalization capabilities.

Among the various types of support vector regression, the most
commonly used is e-SVR which finds a regression hyperplane with
an e-insensitive band (Cristianini & Shawe-Taylor, 2000; Vapnik,
1995). To make the method more robust, the image of the input
data does not need to lie strictly on or inside the e-insensitive band.
Instead, the images which lie outside the e-insensitive band are
penalized and slack variables are introduced to account for these
images. For convenience, in the sequel, the term SVR is used to
stand for e-SVR. The objective function and constraints for SVR are

min
w;b

1
2
hw;wi þ C

Xl

i¼1

ðni þ n̂iÞ;

s:t: ðhw;/ðxiÞi þ bÞ � yi 6 eþ ni;

yi � ðhw;/ðxiÞi þ bÞ 6 eþ n̂i;

ni; n̂i P 0; i ¼ 1; . . . ; l; ð1Þ

where l is the number of training patterns, C is a parameter which
gives a tradeoff between model complexity and training error, ni

and n̂i are slack variables for exceeding the target value by more
than e and for being below the target value by more than e, respec-
tively. Note that / : X ? F is a possibly nonlinear mapping function
from the input space to a feature space F. Also, h � , � i indicates the
inner product of the involved arguments. The regression hyperplane
to be derived is

f ðxÞ ¼ hw;/ðxÞi þ b; ð2Þ

where w and b are weight vector and offset, respectively.
To solve Eq. (1), one can introduce the Lagrangian, take partial

derivatives with respect to the primal variables and set the result-
ing derivatives to zero, and turn the Lagrangian into the following
Wolfe dual form

maxa;â

Xl

i¼1

yiðâi � aiÞ � e
Xl

i¼1

ðâi þ aiÞ

� 1
2

Xl

i¼1

Xl

j¼1

ðâi � aiÞðâj � ajÞKðxi;xjÞ;

s:t:
Xl

i¼1

ðâi � aiÞ ¼ 0;

C P ai; âi P 0; i ¼ 1; . . . ; l; ð3Þ

where ai and âi, i = 1, . . . , l, are Lagrange multipliers, and
a = [a1,a2, . . . ,al] and â ¼ ½â1; â2; . . . ; âl�. Note that K(xi,xj) is a kernel
function which represents the inner product h/(xi),/(xj)i. The most
widely adopted kernel function is the radial basis function (RBF)
which is defined as

Kðxi;xjÞ ¼ h/ðxiÞ;/ðxjÞi;
¼ expð�ckxi � xjk2Þ; ð4Þ

where c is the width parameter of the RBF kernel. Now, Eq. (3) can
be solved by SMO (Platt, 1999). Suppose a�i and â�i , i = 1, . . . , ,l, are the
optimal values obtained. The regression hyperplane for the underly-
ing regression problem is then given by:

f ðxÞ ¼
Xl

i¼1

â�i � a�i
� �

Kðxi;xÞ þ b�; ð5Þ

where b� ¼ yk þ e�
Pl

i¼1 â�i � a�i
� �

Kðxi;xkÞ is obtained from any a�k
with 0 < a�k < C.
3. Proposed method

In this section, the idea of multiple-kernel support vector
regression is formulated. Then a two-stage multiple-kernel learn-
ing algorithm for deriving optimal kernel weights and Lagrange
multipliers is described.
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3.1. Multiple-kernel support vector regression

The SVR method presented earlier uses a single mapping func-
tion /, and hence a single kernel function K. If a dataset has a lo-
cally varying distribution, using a single kernel may not catch up
the varying distribution very well. Kernel fusion can help to deal
with this problem. Instead of using one single mapping function,
several mapping functions are combined to do aggregate mapping.
A simple direct sum fusion applies a vector of M mapping func-
tions, i.e.,

UðxÞ ¼ ½/1ðxÞ/2ðxÞ . . . /MðxÞ�; ð6Þ

to map the input space to the feature space. We adopt the weighted
sum fusion with the following mapping function:

UðxÞ ¼
ffiffiffiffiffiffi
l1

p
/1ðxÞ

ffiffiffiffiffiffi
l2

p
/2ðxÞ . . .

ffiffiffiffiffiffiffi
lM

p
/MðxÞ

� �
; ð7Þ

where l1, l2, . . . , lM are weights of component functions. Now, the
regression problem includes the optimization of two parts. One part
is the regression hyperplane f(x). The other part is the weight vector
l = [l1,l2, . . . ,lM]. Note that it was shown that U of Eq. (7) is a valid
mapping if all the weights are non-negative (Cristianini & Shawe-
Taylor, 2000). Also, we require the sum of weights be unity to re-
strict the range of the search space to prevent the occurrence of
overfitting. By referring to Eq. (1), the objective function and con-
straints for multiple-kernel SVR become

min
l

minw;b
1
2
hw;wi þ C

Xl

i¼1

ðni þ n̂iÞ;

s:t: ðhw;UðxiÞi þ bÞ � yi 6 eþ ni;

yi � ðhw;UðxiÞi þ bÞ 6 eþ n̂i;

ni; n̂i P 0; i ¼ 1; . . . ; l;

ls P 0; s ¼ 1; . . . ;M;XM

s¼1

ls ¼ 1; ð8Þ

where U is the vector of function mappings of Eq. (7).
By introducing the Lagrangian, as usual, Eq. (8) can be converted

to the following Wolfe dual form:

min
l

maxa;â

Xl

i¼1

yiðâi � aiÞ � e
Xl

i¼1

ðâi þ aiÞ

� 1
2

Xl

i¼1

Xl

j¼1

ðâi � aiÞðâj � ajÞeK ðxi;xjÞ

s:t:
Xl

i¼1

ðâi � aiÞ ¼ 0;

C P ai; âi P 0; i ¼ 1; . . . ; l;

ls P 0; s ¼ 1; . . . ;M;XM

s¼1

ls ¼ 1 ð9Þ

where

eK ðxi;xjÞ ¼ hUðxiÞ;UðxjÞi
¼ l1h/1ðxiÞ;/1ðxjÞi þ l2h/2ðxiÞ;/2ðxjÞi þ � � �
þ lMh/MðxiÞ;/MðxjÞi

¼ l1K1ðxi;xjÞ þ l2K2ðxi; xjÞ þ � � � þ lMKMðxi;xjÞ

¼
XM

s¼1

lsKsðxi;xjÞ ð10Þ

is a weighted sum of M kernel functions K1, K2, . . . , KM, correspond-
ing to mapping functions /1, /2, . . . , /M, respectively. Now, if we can
find l, a, and â by solving Eq. (9), the regression hyperplane would
be:

f ðxÞ ¼
Xl

i¼1

â�i � a�i
� �eK ðxi;xÞ þ b�; ð11Þ

where b� ¼ yk þ e�
Pl

i¼1ðâ�i � a�i ÞeK ðxi;xkÞ is obtained from any a�k
with 0 < a�k < C.

3.2. Two-stage multi-kernel learning

We develop a two-stage optimization algorithm for solving Eq.
(9). The algorithm consists of two-stages in which SMO and gradient
projection are applied, respectively. These stages are iteratively per-
formed until the specified stopping criterion is met, as shown in
Fig. 1. Note that the iteration number is indicated by t. In the first
stage, the weight vector l is kept fixed, i.e., eK ðxi;xjÞ ¼PM

s¼1lsKsðxi;xjÞ is known. Then Eq. (9) becomes:

max
a;â

Xl

i¼1

yiðâi � aiÞ � e
Xl

i¼1

ðâi þ aiÞ

� 1
2

Xl

i¼1

Xl

j¼1

ðâi � aiÞðâj � ajÞeK ðxi;xjÞ;

s:t:
Xl

i¼1

ðâi � aiÞ ¼ 0;

C P ai; âi P 0; i ¼ 1; . . . ; l: ð12Þ

This equation is, obviously, identical in form to Eq. (3) and can be
solved by SMO (Platt, 1999). In the second stage, the Lagrange mul-
tipliers are kept fixed, and the weight vector l is updated by the
gradient projection method (Bertsekas, 1999). Since SMO is a stan-
dard algorithm for solving the Wolfe dual form, we won’t describe it
here. Detailed description about SMO can be found in Platt (1999).
In the following, we describe how gradient projection is applied to
obtain optimal l in the second stage.

Since the Lagrange multipliers are considered as known in the
second stage, Eq. (9) can be rewritten as follows:

min
l

JðlÞ;

s:t: ls P 0; s ¼ 1; . . . ;M;XM

s¼1

ls ¼ 1; ð13Þ

where

JðlÞ ¼
Xl

i¼1

yiðâi � aiÞ � e
Xl

i¼1

ðâi þ aiÞ �
1
2

Xl

i¼1

Xl

j¼1

ðâi � aiÞðâj

� ajÞ
XM

s¼1

lsKsðxi;xjÞ: ð14Þ

Note that J(l) only depends on l. By gradient projection (Bertsekas,
1999), we have

lkþ1 ¼ lk þ gk l̂k � lk
� �

; ð15Þ

where lk is the weight vector of the kth iteration, 0 < gk
6 1 is the

step-size, and l̂k is defined as

l̂k ¼
z; if z belongs to the feasible region;
z?; otherwise;

�
ð16Þ

z ¼ lk � skrJðlkÞ; ð17Þ

where sk is a positive scalar, and z\ denotes the projection of z on
the feasible region. The feasible region contains all the vectors
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Fig. 1. Two-stage multiple-kernel learning algorithm.
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v = [v1,v2, . . . ,vM] such that vs P 0, 1 6 s 6M, and
PM

s¼1vs ¼ 1.
rJ(lk) is the following gradient:

rJ lk
s

� �
¼ @J
@

lk
s ¼ �

1
2

Xl

i¼1

Xl

j¼1

ðâi � aiÞðâj � ajÞKsðxi;xjÞ ð18Þ

for s = 1, . . . ,M.
The projection z\ of z onto the feasible region can be obtained

by solving the following constraint problem:

min
z?

kz� z?k2
;

s:t: all components of z? are non-negative and
their sum is unity; ð19Þ

which can be reformulated as the following form of quadratic
programming:

min
z?

1
2
ðz?ÞT Hz? � zT z?;

s:t: kT
s z? P 0; 1 6 s 6 M;

eT z? ¼ 1; ð20Þ

where H is an identity matrix of rank M, ks is an M-vector with the
sth component being 1 and the other components being 0, and e is
an M-vector with all components being 1. The step-size gk is deter-
mined by using the Armijo rule along the feasible direction. Here, by
choosing b and r with 0 < b < 1 and 0 < r < 1, we can set gk ¼ bmk ,
where mk is the first non-negative integer m for which

J lkþ1
� �

� J lkþ1 þ bm l̂kþ1 � lkþ1
� �� �

P �rbmrJ lkþ1
� �T

l̂kþ1 � lkþ1
� �

: ð21Þ

The detailed procedure of the gradient projection algorithm is de-
picted in Fig. 2. Note that the iteration number is indicated by k.
In each application of gradient projection, k starts with 0 and the
initial weights are set to lt. Then Eq. (15) is iteratively applied until
the stopping criterion is met. When the algorithm terminates, the
final weights obtained are set to lt+1.
4. Experimental results

To test the forecasting performance of our proposed method, we
have conducted three experiments on the datasets taken from Tai-
wan Capitalization Weighted Stock Index (TAIEX). We also com-
pare the performance of our proposed method with that of other
methods, i.e., single kernel support vector regression (SKSVR)
(Tay & Cao, 2001), autoregressive integrated moving average (AR-
IMA) model (Box & Jenkins, 1994), and TSK type fuzzy neural net-
work (FNN) (Chang & Liu, 2008). For convenience, we abbreviate
our multiple-kernel support vector regression method as MKSVR.

4.1. Experiment I

First of all, we compare the performance of MKSVR with that of
SKSVR. In this experiment, the daily stock closing prices of TAIEX
for the period of October 2002 to December 2005 are used, and a
one-season moving-window testing approach is used for generat-
ing the training/validating/testing data. Four datasets, DS-I to DS-
IV, are formed, following the way done in Tay and Cao (2001).
For instance, DS-I contains the daily stock closing prices from Octo-
ber 2002 to September 2004 selected as training dataset, the daily
stock closing prices from October 2004 to December 2004 selected
as validating dataset, and the daily stock closing prices from Janu-
ary 2005 to March 2005 selected as testing dataset. The corre-
sponding time periods for DS-I to DS-IV are listed in Table 1.

Given the original daily stock closing prices p = {p1,p2, . . . ,pt, . . .},
we follow (Tay & Cao, 2001) to derive training patterns (xt,yt) for
SKSVR and MKSVR. Firstly, the n-day exponential moving average
of the tth day, EMAn(t), is defined as

EMAnðtÞ ¼ EMAnðt � 1Þ þ a� ðpt � EMAnðt � 1ÞÞ; ð22Þ

where pt is the tth day daily stock closing prices and a ¼ 2
1þn. The

output variable yt is defined by:

yt ¼ RDPþ5ðtÞ ¼
EMA3ðtÞ � EMA3ðt � 5Þ

EMA3ðt � 5Þ � 100: ð23Þ

The input vector xt consists of five components, i.e., xt = [xt,1 xt,2 xt,3

xt,4 xt,5]. A transformed closing price is obtained by subtracting a n-
day EMA from the closing price, defined by:
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Fig. 2. Gradient projection for multiple-kernel learning.

Table 1
The datasets for Experiment I.

Datasets Training Validating Testing

DS-I 2002/10 – 2004/09 2004/10 – 2004/12 2005/01 – 2005/03
DS-II 2003/01 – 2004/12 2005/01 – 2005/03 2005/04 – 2005/06
DS-III 2003/04 – 2005/03 2005/04 – 2005/06 2005/07 – 2005/09
DS-IV 2003/07 – 2005/06 2005/07 – 2005/09 2005/10 – 2005/12
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Fig. 3. Forecasting performance of SKSVR with different hyperparameters in
Experiment I.

Table 2
Performance comparison between best SKSVR and MKSVR in Experiment I.

Methods Datasets

DS-I DS-II DS-III DS-IV

SKSVR 0.170 0.179 0.188 0.234
MKSVR 0.161 0.174 0.179 0.219
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dEMAnðtÞ ¼ pt � EMAnðtÞ ð24Þ

and a lagged relative difference in percentage of price (RDP) is de-
fined as:

RDP�nðtÞ ¼
pt � pt�n

pt�n
� 100: ð25Þ

Then the input variables are defined as xt;1 ¼ dEMA15ðt � 5Þ,
xt,2 = RDP�5(t � 5), xt,3 = RDP�10(t � 5), xt,4 = RDP�15(t � 5), and
xt,5 = RDP�20(t � 5). The root mean squared error (RMSE) is adopted
for performance comparison, and is defined as follows:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
T

XT

t¼1

ðyt � ŷtÞ2
vuut ; ð26Þ

where yt and ŷt are desired output and predicted output,
respectively.

For SKSVR, there are three parameters that have to be deter-
mined in advance while using RBF kernel, i.e., C, e, and c. We exam-
ine the forecasting performance of SKSVR with C = 1 and e = 0.001.
Besides, we try with 37 different settings of hyperparameter c,
from 0.01 to 0.09 with a stepping factor of 0.01, from 0.1 to 0.9
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Fig. 5. Forecasting performance of ARIMA with different parameters in
Experiment II.
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with a stepping factor of 0.1, from 1 to 10 with a stepping factor of
1, and from 10 to 100 with a stepping factor of 10. The forecasting
performance obtained by SKSVR on the four datasets is shown in
Fig. 3. From this figure, we can see that SKSVR requires different
c settings for different datasets to obtain good performance. For
DS-I, the best performance occurs when 0.05 6 c 6 0.1. For DS-II,
the best performance occurs when 0.1 6 c 6 0.5. For DS-III, the best
performance occurs when 50 6 c 6 100. For DS-IV, the best perfor-
mance occurs when 0.01 6 c 6 0.05. The best RMSE values ob-
tained by SKSVR are listed in Table 2.

For multiple-kernel learning, a kernel combining all the 37 dif-
ferent RBF kernels is considered, i.e., c 2 {0.01,0.02, . . . ,0.09,
0.1,0.2, . . . ,0.9,1, 2, . . . ,9,10,20, . . . ,100}. Therefore, the combined
kernel matrix is a weighted sum of 37 kernel matrices, i.e.,eK ¼ l1K1 þ l2K2 þ � � � þ l37K37 where l1 denotes the kernel
weight for the first kernel matrix with c = 0.01 and l2 denotes
the kernel weight for the second kernel matrix with c = 0.02, etc.
The RMSE values obtained by MKSVR for the four datasets are also
listed in Table 2. Obviously, MKSVR performs better than the best
SKSVR for each dataset. Note that we don’t need to specify the
hyperparameter settings in advance, and trial-and-error for deter-
mining appropriate hyperparameter settings is avoided.
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4.2. Experiment II

In this experiment, we compare the performance of MKSVR
with that of ARIMA (Box & Jenkins, 1994). The daily stock closing
prices of TAIEX for the period of January 2004 to December 2005
Table 3
The datasets for Experiment II and Experiment III.

Datasets Training Validating Testing

DS-V 2004/01 – 2004/09 2004/10 – 2004/12 2005/01 – 2005/03
DS-VI 2004/04 – 2004/12 2005/01 – 2005/03 2005/04 – 2005/06
DS-VII 2004/07 – 2005/03 2005/04 – 2005/06 2005/07 – 2005/09
DS-VIII 2004/10 – 2005/06 2005/07 – 2005/09 2005/10 – 2005/12
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Fig. 4. An example of (a) p, (b) y0 , and (c) y, TAIEX (2004/04/01 – 2004/12/31).
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Fig. 6. Forecasting performance of SKSVR with different hyperparameters in
Experiment II.
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are used. The one-season moving-window testing approach used in
Pai and Lin (2005) for generating the training/validating/testing
data is adopted and four datasets, DS-V to DS-VIII, are obtained.
For instance, DS-V contains the daily stock closing prices from Jan-
uary 2004 to September 2004 selected as training dataset, the daily
stock closing prices from October 2004 to December 2004 selected
as validating dataset, and the daily stock closing prices from Janu-
ary 2005 to March 2005 selected as testing dataset. The corre-
sponding time periods for DS-V to DS-VIII are listed in Table 3.

Given the original daily stock closing prices p = {p1,p2, . . .pt, . . .},
we follow (Box & Jenkins, 1994) to derive training patterns (xt,yt)
for this experiment. Firstly, the natural logarithmic transformation
is applied to the original daily stock closing prices p = {p1,p2,
. . .pt, . . .}, resulting in another time series y0 ¼ fy01; y02; . . . y0t ; . . .g
where y0t ¼ lnðptÞ. The output sequence is y = {y1,y2, . . .yt, . . .} where
yt is defined by:

yt ¼ y0t � y0t�1: ð27Þ

An example of these three different sequences is shown in Fig. 4.
The input vector xt consists of three parts, an autoregressive part,
an integrated part, and a moving average part, characterized by
three parameters m, o, n indicating the order of the autoregressive
part, the order of the differencing part, and the order of the moving
average part, respectively. To distinguish different models, the nota-
Table 4
Performance comparison among best ARIMA, best SKSVR, and MKSVR in Experiment
II.

Methods Datasets

DS-V DS-VI DS-VII DS-VIII

ARIMA 45.421 48.400 45.674 56.957
SKSVR 45.686 48.667 46.401 55.294
MKSVR 45.634 47.297 44.142 54.882
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Fig. 7. Forecasting results by
tion ARIMA (m,o,n) is used. Each input vector consists of (m + n)
components, i.e., xt = [xt,1 xt,2. . . xt,m+n]. The values of the compo-
nents depend on the model used. For instance, for ARIMA (2,1,3)
we have xt,1 = yt�1, xt,2 = yt�2, xt,3 = �t�1, xt,4 = �t�2, and xt,5 = �t�3

where �t�1, �t�2, and �t�3 are forecast errors. The RMSE is defined
as follows:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
T

XT

t¼1

ðpt � p̂tÞ2
vuut ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
T

XT

t¼1

expðy0tÞ � exp ŷ0tð Þð Þ2
vuut

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
T

XT

t¼1

exp y0tð Þ � exp ŷt þ y0t�1

� �� �2

vuut ; ð28Þ

where ŷt is the predicted output obtained from the predictor.
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Fig. 8. Forecasting performance of FNN with different numbers of hidden nodes in
Experiment III.



Table 5
Performance comparison among best FNN, best SKSVR, and MKSVR in Experiment III.

Methods Datasets

DS-V DS-VI DS-VII DS-VIII

FNN 59.260 64.232 50.395 61.774
SKSVR 45.543 47.434 46.669 57.625
MKSVR 45.531 47.398 45.907 57.301
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Fig. 9. Forecasting performance of SKSVR with different hyperparameters in
Experiment III.

2184 C.-Y. Yeh et al. / Expert Systems with Applications 38 (2011) 2177–2186
To compare ARIMA and MKSVR, we consider 25 models which
are ARIMA (m,1,n) with m 2 {1,2,3,4,5} and n 2 {1,2,3,4,5}. The
forecasting performance obtained by ARIMA on the four datasets
is shown in Fig. 5. Interestingly, little variation occurs among dif-
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Fig. 10. Forecasting results by
ferent parameter settings with ARIMA. We run SKSVR and MKSVR
on these four datasets, with the same settings as in Experiment I.
The forecasting performance obtained by SKSVR is shown in
Fig. 6. From this figure, we can see that SKSVR requires different
c settings for different datasets to obtain good performance. The
best RMSE values obtained by ARIMA and SKSVR are listed in Ta-
ble 4. The RMSE values obtained by MKSVR for these datasets are
also listed in Table 4. Obviously, MKSVR can do equally well as,
or even better than, the best ARIMA and SKSVR for each dataset.
However, we don’t need to worry about the hyperparameter set-
tings in MKSVR. Fig. 7 shows the forecasting results for datasets
DS-V to DS-VIII by MKSVR.

4.3. Experiment III

In this experiment, we compare the performance of MKSVR
with that of FNN (Chang & Liu, 2008). We use the same datasets
used in Experiment II, as listed in Table 1. Given the original daily
stock closing prices p = {p1,p2, . . .pt, . . .}, we follow (Chang & Liu,
2008) to derive training patterns (xt,yt) for this experiment. Let
y0t be pt, i.e., y0t ¼ pt . Two technical indices, SMA and BIAS, are used
in generating the input vector xt. SMA, abbreviated for simple mov-
ing average, is used to emphasize the direction of a trend and to
smooth out price and volume fluctuations. The n-day SMA of the
tth day is defined as follows:

SMAnðtÞ ¼
Pt�5

i¼t pi

n
: ð29Þ

BIAS is used to observe the difference between the closing price and
the moving average line. The n-day BIAS of the tth day is defined as
follows:

BIASnðtÞ ¼
pt � SMAnðtÞ

SMAnðtÞ
� 100: ð30Þ
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Let x0t;1 ¼ SMA6ðt � 1Þ and x0t;2 ¼ BIAS6ðt � 1Þ. Now the underlying
dataset is partitioned into K clusters by k-means (Hartigan & Wong,
1979), a popular clustering algorithm. Then the output variable yt is

yt ¼
y0t � �y0j
ry0

j

; ð31Þ

where y0t belongs to the jth cluster, and �y0j and ry0
j

are the mean and
standard deviation in the y0 direction of the jth cluster. The input
vector xt = [xt,1 xt,2] is obtained by:

xt;i ¼
x0t;i � �x0j;i

rx0
j;i

ð32Þ

for i = 1, 2, where ½x0t;1 x0t;2� belongs to the jth cluster, and �x0j;i and rx0
j;i

are the mean and standard deviation, respectively, in the ith direc-
tion of the jth cluster. The RMSE is defined as follows:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
T

XT

t¼1

pt � p̂tð Þ2
vuut ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
T

XT

t¼1

y0t � ŷ0tð Þ2
vuut

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
T

XT

t¼1

y0t � ŷt � ry0
j
þ �y0j

� 	� 	2

vuut ; ð33Þ

where ŷt is the predicted output and j is the index of its correspond-
ing cluster.

For FNN, standard three-layer networks are adopted. There are
2 nodes in the input layer and 1 node in the output layer. To exam-
ine the effect of different architectures on the performance, we set
the number of hidden nodes from 2 to 15 with a stepping factor of
1 in the hidden layer. A hybrid learning algorithm incorporating
particle swarm optimization (PSO) and recursive least square
(RLS) is used for refining the antecedent parameters and the conse-
quent parameters, respectively. The forecasting performance ob-
tained by FNN with different numbers of hidden nodes is
depicted in Fig. 8. From this figure, we can see that FNN requires
different numbers of hidden nodes for different datasets to obtain
good performance. We run SKSVR and MKSVR on these four data-
sets, with the same settings as in Experiment I. The forecasting per-
formance obtained by SKSVR is shown in Fig. 9. Again, we can see
that SKSVR requires different c settings for different datasets to ob-
tain good performance. The best RMSE values obtained by FNN and
SKSVR are listed in Table 5. The RMSE values obtained by MKSVR
for the four datasets are also listed in Table 5. Obviously, MKSVR
works better than the best FNN and SKSVR for each dataset, and
we don’t need to do trail-and-error with MKSVR. Fig. 10 shows
the forecasting results for datasets DS-V to DS-VIII by MKSVR.
5. Conclusion

We have proposed a multiple-kernel support vector regression
approach for stock market price forecasting. A two-stage multi-
ple-kernel learning algorithm is developed to optimally combine
multiple-kernel matrices for support vector regression. The learn-
ing algorithm applies sequential minimal optimization and gradi-
ent projection iteratively to obtain Lagrange multipliers and
optimal kernel weights. By this algorithm, advantages from differ-
ent hyperparameter settings can be combined and overall system
performance can be improved. Besides, the user need not specify
the hyperparameter settings in advance, and trial-and-error for
determining appropriate hyperparameter settings can then be
avoided. Experimental results, obtained by running on datasets ta-
ken from Taiwan Capitalization Weighted Stock Index, have shown
that our method performs better than other methods.
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