
Effective Caching Techniques
for Accelerating Pattern Matching Queries

Arash Fard, Satya Manda, Lakshmish Ramaswamy, and John A. Miller
Computer Science Department

The University of Georgia
Athens, GA, USA

Email: {ar, manda, laks, jam}@cs.uga.edu

Abstract—Using caching techniques to improve response time
of queries is a proven approach in many contexts. However, it is
not well explored for subgraph pattern matching queries, mainly
because of subtleties enforced by traditional pattern matching
models. Indeed, efficient caching can greatly impact the query
answering performance for massive graphs in any query engine
whether it is centralized or distributed. This paper investigates
the capabilities of the newly introduced pattern matching models
in graph simulation family for this purpose. We propose a novel
caching technique, and show how the results of a query can be
used to answer the new similar queries according to the similarity
measure that is introduced. Using large real-world graphs, we
experimentally verify the efficiency of the proposed technique in
answering subgraph pattern matching queries.

Keywords—data-intensive computing; subgraph pattern match-
ing; caching technique; graph simulation; subgraph isomorphism

I. INTRODUCTION

Recently, there has been renewed research interest in
developing platforms, algorithms and techniques for scalable
processing of graphs. This has largely been driven by many
emerging applications such as web data analytics and social
network mining which are characterized by massive graphs.
One important class of graph queries is the subgraph pattern
matching [1]. At a very high-level, subgraph pattern matching
seeks to find subgraphs of a data graph that are similar to
a given query graph. Subgraph pattern matching queries are
being increasingly employed in analysis of social networks [2],
[3].

Early research on subgraph pattern matching focused on
the subgraph isomorphism model, which searches for exact
matches. However, subgraph isomorphism is proven to be NP-
complete [4]. More recently, researchers have explored graph
simulation models as alternatives to subgraph isomorphism [5],
[6], [7], [3]. Unlike subgraph isomorphism, these models are
tractable (have polynomial time complexities). Furthermore,
graph simulation models are known to capture semantically
meaningful similarity features better than their traditional
counterparts [2], [8], [9], [10], [11]. Thus, graph simulation
models are increasingly being adopted for applications such
as social network analytics. The state-of-the-art in this family
is the tight simulation model [5].

Although graph simulation models are tractable, they are
still highly computation-intensive for massive graphs. Re-
searchers have adopted techniques such as smarter indexing

strategies and parallel algorithms to achieve better scalability.
Surprisingly, very few researchers have explored the idea of
utilizing results of an earlier query graph to answer subse-
quent pattern matching queries. In other words, most existing
subgraph pattern matching systems treat each incoming query
completely independently from previous queries. We contend
that reusing query results can yield significant performance
benefits. This is because results from a previous query can
help considerably narrow down the search space for related
subsequent queries. Intuitively, it will be much more efficient
to search for the results of a new query within a relatively-
small graph resulting from a structurally-similar prior query
rather than repeatedly searching in the massive data graph (as
long as it can be guaranteed that the result from the prior
query contains all matches of the incoming query). Similarity
among queries is quite common in real-life scenarios. For
example, there are small, highly popular regions in social-
network graphs. Studies on Facebook reveal that despite users
having links to numerous objects, less than 10% of data were
accessed during a 6-day trace [12].

While some preliminary ideas for results reuse has been
recently explored in the context of SPARQL queries [13], [14],
their applicability for subgraph pattern matching in generic
graphs has not been studied. The other related work was
published very recently [15]. However, this work adopts pre-
computed views rather than reusing query results. Designing
effective caching strategies for subgraph pattern matching is
inherently challenging on many fronts. First and foremost,
we need to address the pattern containment problem; i.e.,
we should determine the similarity conditions under which
it would be guaranteed that all the results of a query are
contained in the results of another query. Second, we should
store the results of a query graph in such a way that it utilizes
less memory, while preserves pattern containment conditions
and improves cache hit rate. Third, we need techniques to
quickly determine which previous query results (if any) can
be used to answer an incoming query.

This paper presents a unique query-results caching and
reuse framework for subgraph pattern matching. To the best
of our knowledge, this is one of the first research works to
explore caching as a mechanism for enhancing the scalability
and performance of subgraph pattern matching. Our framework
embodies four major research contributions.

• First, we present a novel pattern containment scheme
based on tight simulation model to quickly and effi-
ciently determine whether an incoming query can be



answered by the results of the previous queries that are
already present in the cache. This technique not only is
useful for accelerating a tight simulation-based query
engine, but also can be easily adapted for speeding up
subgraph isomorphism queries.

• Second, we introduce novel variants of dual and tight
simulation, which produce significantly more mean-
ingful results in addition to being more amenable for
caching in real-world data graphs.

• Third, we present several important properties of
graph simulation models that we have discovered
while designing our caching technique and proving
its correctness. We believe these important properties
will have considerable impact on future research in
the field of graph pattern matching.

• Fourth, we present a detailed experimental study in-
volving several real-world graphs. Through these ex-
periments, we not only demonstrate the effectiveness
of the proposed techniques, but also investigate the
effects of various key parameters on the scalability
and performance of caching frameworks for subgraph
pattern matching.

Our caching framework can be easily integrated with exist-
ing distributed graph pattern matching systems [6]. We believe
that such an integrated platform will be very attractive for
modern applications such as real-time social network querying
and analytics.

The remainder of this paper is organized as follows. In
the next section, we review several pattern matching concepts
related to this research. Motivation of this work and its
design overview are explained in section III. In section IV,
we introduce new versions of dual and tight simulation. The
pattern containment conditions and the caching mechanism are
explained in section V. Section VI is dedicated to empirical
studies. It is followed by a section on related work. The paper
ends with a conclusions section.

II. PRELIMINARIES

In this research, we consider a data graph as a massive
labeled directed-graph notated by G(VG, EG, lG) where VG

is its set of vertices, EG ⊆ VG × VG is its set of directed
edges, and lG is a function that maps each vertex to its label.
For simplicity, we assume that there are no multiple edges in
the graph. For any u ∈ VG, we call v ∈ VG its child when
(u, v) ∈ EG; the same way, we call w ∈ VG its parent when
(w, u) ∈ EG. Each query graph, like Q(VQ, EQ, lQ), is a fairly
small directed graph without any multiple edges. Without loss
of generality, we assume that each query is a connected graph.
The goal of subgraph pattern matching is to find all subgraphs
of G that match to Q. Processing these queries is usually very
time consuming. In the presence of popular queries, reusing
the results of the old queries to answer a portion of new
queries can boost the performance. The goal of this research
is investigating this technique, which can be eventually used
in a cache system for answering subgraph pattern matching
queries. In this section, we review several subgraph pattern
matching models that are closely related to this research.

A. Pattern Matching Models

Subgraph isomorphism is the most famous pattern match-
ing model that retrieves the exact topological matches. Never-
theless, it is NP-complete in the general case [4], and it can
potentially produce an exponential number of subgraph results.
Therefore, it may not be a feasible model for massive graphs.
Graph simulation [16], as an alternative model, relaxes the
restrictions enforced by subgraph isomorphism and provides
a quadratic algorithm [17] for finding a set of all results. In
simple words, a vertex of the data graph, u′, is in a graph-
simulation relation to a vertex of the query, u, if it has the
same label and it has children that are in graph-simulation
relation with the children of that vertex. Intuitively, graph
simulation model only preserves the child relationships of each
vertex. Dual simulation [7] is an extension to graph simulation
model. It improves the result of graph simulation by taking into
account not only the children of each query vertex, but also
its parents. Moreover, the time complexity of its algorithm
is cubic. The difference of models is illustrated through an
example in figure 1. This example is inspired from Amazon
product co-purchasing network [18], where if a product i is
frequently co-purchased with product j, the graph contains a
directed edge from i to j. Here, each letter inside the vertex is
the category of the product and represents its label. Moreover,
each number beside a vertex represents its ID number. The
subgraph matching results of this example are displayed in
table I.

A

B

C
M

A

BA

a) Q: Pattern b) G: Data Graph

A

B

C C

1

2

3 4 5

8

6

A

C

C

10

7

12

9

11

CC

A: Arts Book
B: Biography Book
C: Children’s Book
M: Music CD

1

2

3 4

B

13

14
C

Fig. 1. An example for different subgraph pattern matching models

TABLE I
RESULTS OF DIFFERENT PATTERN MATCHING MODELS

Model Symbol Subgraph Results

subgraph isomorphism Q �iso G f(1, 2, 3, 4) → (1, 2, 3, 4)

, (1, 2, 3, 5), (1, 2, 4, 5)

graph simulation Q �sim G R(1, 2, 3, 4) → ({1, 6, 8, 12}, {2, 7, 13}
, {3, 4, 5, 9, 11, 14}, {3, 4, 5, 9, 11, 14})

dual simulation Q �D
sim G R(1, 2, 3, 4) → ({1, 6, 8, 12}, {2, 7, 13}

, {3, 4, 5, 9, 14}, {3, 4, 5, 9, 14})
tight simulation Q �T

sim G R(1, 2, 3, 4) → (1, 2, {3, 4, 5}
(based on �D

sim) , {3, 4, 5}), (12, 13, 14, 14)
CAR-dual simulation Q �CD

sim G R(1, 2, 3, 4) → ({1, 6, 8}, {2, 7}
, {3, 4, 5, 9}, {3, 4, 5, 9})

CAR-tight simulation Q �CT
sim G R(1, 2, 3, 4) → (1, 2, {3, 4, 5}

(based on �CD
sim) , {3, 4, 5})

In figure 1, the subgraph isomorphic match of pattern Q
to data graph G has three subgraph results. In comparison,
graph simulation and dual simulation always produce a single
subgraph result although it might be a disconnected subgraph.
An important difference from subgraph isomorphism is that
the relationship from the vertices in the query graph to the
data graph is not a function; i.e., a vertex in the query graph
can be related to several vertices of the subgraph result. As it



is displayed in table I, the result of graph simulation contains
all the vertices of G except 10 because they all have the same
label and meet the child relationship constraint with respect to
their counterpart vertices in Q. Only vertex 11 will be omitted
in the result of dual simulation because it does not satisfy the
parent relationship constraint.

In this paper, we mainly use tight simulation [5], which
is the state-of-the-art model in graph simulation family. This
model adds a locality condition to dual simulation to improve
the quality of its result, while the time complexity of its
algorithm still remains cubic. In simple terms, a few candidate
vertices on the graph result of dual simulation are selected, and
then for each candidate vertex its neighborhood is extracted as
a potential subgraph result. Dual simulation is applied again
on these subgraphs to find the final results. The candidate
vertices in G (2, 7, and 13 in figure 1, for example) are those
that are dual match to the center of Q (2 in our example).
Moreover, the distance for finding the neighbor vertices equals
to the radius of Q (one in our example). It should be noticed
that the vertices of a graph with minimum eccentricity are the
centers of the graph, and the value of their eccentricity is the
radius of the graph [19]. Similar to subgraph isomorphism,
tight simulation may return several subgraph results. It is also
proved that these subgraph results contain all the results of
subgraph isomorphism [5]. As it is displayed in table I, the
result of tight simulation in our example will be two subgraphs.

III. MOTIVATION AND OVERVIEW

In this section, we first review the motivation of a caching
system for subgraph pattern matching queries, and try to
identify its related problems. Then, we give a brief overview
of our proposed system.

A. Motivation and challenges

Given a set of query graphs and a data graph, the idea
is to store their results of subgraph pattern matching in a
cache-like system, and use them to answer new queries. This
technique can reduce the average response time of queries
provided that there are popular new queries that their answers
are contained in the answer of the old queries. Hence, the
main challenge in designing an effective content-aware cache
system for subgraph pattern matching is the problem of pattern
containment.

The main focus of this paper is about pattern containment
problem. Let us assume that Qold is an old query graph on G
and its set of results is Aold. The subproblems are (1) how to
store the pair of Qold, Aold in the cache space; (2) receiving
a new query Qnew different from Qold, how we can evaluate
the relation between the two to realize if the answer of the
new query is contained in Aold. The goal is to answer greater
number of new queries without referring to G.

Each time a new query is received, it should be compared
to all old queries in the cache to find out if there is any match.
For a large graph, it is likely that after awhile the number of
stored queries in the cache grows to a large number; therefore,
the overhead of the search process in the cache can become
restricting. We have designed simple methods to filter the
queries in the cache space when we search for a match to

Fig. 2. The overall architecture of the proposed cache system

a new query. The implemented mechanism for searching the
cache is shown to be very efficient in our experiments.

When the cache space becomes full, an appropriate replace-
ment mechanism should be available to remove some of the
old contents from the cache in order to open space for new
queries. Cache replacement strategies are extensively studied
in other contexts [20]. The most popular cache replacement
policies are based on replacing least frequently used (LFU), or
least recently used (LRU) items. As a future work, it might be
worthwhile to design a specific replacement policy for pattern
matching queries. At this work, we have only implemented a
simple replacement mechanism which works based on LFU
policy in order to test our proposed caching mechanism. We
have not tested LRU policy, and we do not expect it to
significantly affect the results.

B. Architectural overview

The caching system proposed in this paper works based on
the tight simulation model; nevertheless, it can also be used
to retrieve subgraph isomorphic matches because the result
of tight simulation always contains the result of subgraph
isomorphism. The overall architecture of the proposed cache
system is depicted in figure 2. The block, which is labeled
Graph Pattern Matching Engine, is the main query processing
engine that maintains the data graph. It can be a centralized or
a distributed system. The cache system resides on top of this
engine.

At the warm-up phase of the system, or when a query
cannot be answered using the contents of the cache, it will be
submitted to the main query engine. Then its result will be
stored in the cache space for the future usage. Nevertheless,
instead of storing the original query, we retain its spanning
polytree. Using the polytree has several advantages. First, it
can be used to answer a wider range of new queries because it
is more generic. Second, a polytree has a number of properties
that make pattern-containment conditions simpler, which will
improve the cache hit rate. Moreover, it is possible to compute
dual-simulation of a polytree instead of tight-simulation for our
purpose. Dual-simulation is always faster than tight-simulation.
We explain these properties in detail in section V-B.

The data structure of the cache space is a key-value map
from a polytree to a subgraph. To find the appropriate map-
value for this polytree, we first find its tight-simulation result
in the data graph and then extract the induced subgraph



corresponding to all the vertices in this result. The pair of
polytree and its corresponding induced subgraph is stored in
the cache space. In order to facilitate the search in the cache
space, we have designed a simple indexing system based on
the signature of the polytrees. The data structure of the index is
a key-value map from a signature to a set of polytrees. When a
new query matches to a polytree based on pattern containment
conditions, all of its expected results can be retrieved from the
polytree’s correspondent subgraph; therefore, there would be
no need to refer to the original data graph. We will explain
signature and pattern containment conditions in section V-A.

IV. CARDINALITY RESTRICTED SIMULATION

As it was explained in the previous section, we store key-
value pairs in the cache space, where a polytree is the key
and its corresponding subgraph is the value. Regarding the
fact that the memory size of a cache is always limited, it is
appealing to shrink the size of the subgraphs stored in this
space. Moreover, a smaller subgraph means less computation
time when the query result is retrieved from cache. In this
section, we propose new versions of dual and tight simulations,
in which we shrink the size of their results, and improve their
expressiveness as well.

Dual simulation, the way it was first introduced in [7],
does not consider cardinality of vertices in the child or parent
relationships. Referring back to the example displayed in
figure 1, vertex 13 in G is a dual match to vertex 2 in Q
because the vertex 14 is a dual match to both vertices 3 and
4 at the same time. We found that in many real-world graphs,
like co-purchasing and citation networks, distribution of labels
are very skewed; e.g., there are communities that many vertices
have the same label. Dual simulation produces less meaningful
results in these regions because when several vertices in the
query have the same label, they all may match to a single
vertex or a cycle of two vertices with the same label in the
data graph.

Here, we introduce a modified version, called cardinality
restricted or CAR-dual simulation, in which the number of
matched children or parents with the same label in the data
graph should not be less than their correspondents in the query.
This extra condition does not increase the time complexity
of dual simulation, but it improves its expressiveness. Our
experiments show a significant drop in the number of vertices
in the results of CAR-dual simulation in comparison to dual
simulation. All the models defined so far based on dual simu-
lation; e.g., strong [7], strict [6], and tight simulation [5], can
be revised to employ CAR-dual simulation. This modification,
not only improves the quality of their results, but also can
potentially impact their performance because they will be
constructed on less number of vertices. In example of figure 1,
vertices 12, 13, and 14 are excluded in the result of CAR-
dual simulation. Consequently, CAR-tight simulation, which is
defined based on the new dual simulation, will have a single
subgraph result as it is displayed in table I. A smaller result is
clearly more amenable for cache storage. We now present the
formal definition of these new models.

1) CAR-dual Simulation: We first present formal math-
ematical definition of dual simulation, and based on that
we define CAR-dual simulation. By definition [7], pattern

Q matches data graph G via dual simulation, denoted by
Q �D

sim G, if there is a binary relation RD ⊆ VQ × VG such
that it meets the following conditions: (1) Having the same
label: (u, u′) ∈ RD ⇒ lQ(u) = lG(u

′); (2) All vertices of
Q are covered: ∀u ∈ VQ, ∃u′ ∈ VG : (u, u′) ∈ RD; (3)
Child relationship: ∀(u, u′) ∈ RD[(u, v) ∈ EQ ⇒ ∃v′ ∈
VG : (v, v′) ∈ RD ∧ (u′, v′) ∈ EG] (4) Parent relationship:
∀(u, u′) ∈ RD[(w, u) ∈ EQ ⇒ ∃w′ ∈ VG : (w,w′) ∈
RD ∧ (w′, u′) ∈ EG].

The result of this model is defined as a maximum dual
match set, RD ⊆ VQ × VG, which is the largest relation set
between Q and G with respect to Q�D

sim G. The result dual
match graph, GD(VD, ED, lD), for this model is a subgraph of
G that can represent RD. By definition, GD is a subgraph of
G that satisfies these conditions: (1) (u, u′) ∈ RD ⇔ u′ ∈ VD;
(2) ∀(u, u′)(v, v′) ∈ RD[(u, v) ∈ EQ ⇔ (u′, v′) ∈ ED].

To define CAR-dual simulation, we add cardinality con-
dition to the children and parents with the same labels. The
other definitions remain the same.

Definition 1: Pattern Q matches data graph G via CAR-
dual simulation, denoted by Q �CD

sim G, if there is a relation
RD with respect to Q�D

simG, and for every (u, u′) ∈ RD: (1)
the number of children of u′ in GD with a particular label is
not less than the number of children of u in Q with the same
label; (2) the number of parents of u′ in GD with a particular
label is not less than the number of parents of u in Q with the
same label. 2

2) CAR-tight Simulation: The only difference between
CAR-tight simulation and tight simulation, defined in [5], is
its construction based on CAR-dual simulation instead of dual
simulation. To find the neighborhood of a vertex to enforce
locality condition, it uses a concept called ball [7]. A ball b
in G, denoted by Ĝ[c, r], is a subgraph of G that contains
all vertices within distance r from the vertex c (including c).
The vertex c is called the center of the ball, and the integer
value r is called the radius of the ball. Moreover, the ball
contains all edges in G that connect these vertices (i.e., it is
an induced connected subgraph). Given two vertices u and v
in a connected graph, the distance between them is defined
as the minimum number of edges in an undirected path that
connects them.

Definition 2: Pattern Q matches data graph G via CAR-
tight simulation, denoted by Q �CT

sim G, if there are vertices
u ∈ Q and u′ ∈ G such that (1) u is a center of Q with highest
defined selectivity; (2) (u, u′) ∈ RD where RD is maximum
dual match set with respect to Q�CD

simG; (3) Q�CD
simĜD[u′, rQ]

with maximum dual match set Rb
D, where ĜD[u′, rQ] is a ball

extracted from GD(VD, ED, lD). GD is the result dual match
graph with respect to Q �CD

sim G, and rQ is the radius of Q;
(4) u′ is a member of at least one of the pairs in Rb

D. 2

The connected part of the result match graph of each ball
with respect to its Rb

D that contains u′ is called a maximum
perfect subgraph (MaxPG) of G with respect to Q. The
subgraph results of the model are actually these MaxPGs. The
criterion for selectivity of u in Q is the ratio of its degree to
its label frequency.

After this point, when we mention dual or tight simulation,
we mean their new forms unless it is explicitly expressed. It is



A

B D

EC

a) A received query b) The stored key in the cache

c) A new query hitting the cache d) Another query hitting the cahce

1

2

3

4

5

A

B D

EC

1

2

3

4

5

A

B

D

E

C

1

2

3
4

5

D

E

6

7

A

D
B

C

E

1

2 34

5

B

6

Generating
polytree

Signature:
{(A,B),(A,D),
(B,C),(E,D)}

Signature:
{(A,B),(A,D),
(B,C),(E,D),
(C,A),(D,E)}

Signature:
{(A,B),(A,D),
(B,C),(E,D),
(B,E)}

Fig. 3. An example for the procedure of caching and reusing the results

straightforward to show that CAR-tight simulation, preserves
all the nice features of the old tight simulation including the
fact that it contains all the results of subgraph isomorphism.

V. PATTERN CONTAINMENT AND RESULTS REUSE

In this section, we first introduce our mechanism based
on pattern containment for reusing the results of old subgraph
pattern matching queries to answer other new queries. Then,
we present the theoretical detail to show why our approach
can always retrieve all the correct results.

A. The caching mechanism

As it was mentioned earlier, we store pairs of polytree-
subgraph in the cache space. We show that any new query that
is a cover-tight match to a polytree can be answered using its
corresponding subgraph. We call graph Q2 cover-tight match
to graph Q1, if there is a tight-simulation relation from Q1 to
Q2 and this relation covers all the vertices in Q2.

Figure 3 shows the main idea. The initially received query
is displayed in subfigure 3(a). Its extracted polytree is illus-
trated in part (b). After storing the pair of this polytree and its
pattern matching result based on tight simulation in the cache,
queries in (c) and (d) can be answered without using the data
graph because they are cover-tight matches to the polytree.

The designed system has two main modules, each contain-
ing several steps as follows.

1) Storing the result of an old query: When a query
cannot be answered using the cache contents, we store its
corresponding key-value item in the cache space. In order to
create the key-value element:

• We first find the spanning polytree of the query graph.

• We perform a CAR-dual simulation for the polytree
on the data graph, and find the set of vertices in
the data graph that are present in the resulting dual-
relation set. We will show in the next section that this
set of vertices are the same as the set of vertices in
the maximum perfect subgraphs if we had performed
CAR-tight simulation.

• We extract an induced subgraph of the data graph
using the set of vertices found in the previous step.

• The polytree and the induced subgraph will be stored
in the cache space as a key-value pair.

• In order to facilitate the later search in the cache, the
signature of the new polytree is calculated. Here, we
define the signature of each graph as its set of label-
edges. An label-edge for an edge is the pair of the
labels of its source vertex and its target vertex. The
signature of the graphs in figure 3 are displayed for
example. We store a map from any created signature to
the set of polytrees with the same signature. Therefore,
the new polytree will be added to such a set of
polytrees with the same signature.

2) Search in the cache: When a new query is received,
the cache space should be searched for any old polytree that
is a cover-tight match to this query. Clearly, it can be very
time consuming to check all the polytrees that are available in
the cache space. Therefore, we use the stored signatures for a
simple filtering technique. The main steps are:

• The signature of the new query is calculated.

• The signature of the new query is compared against
all the signatures stored in the cache to find the set of
candidate match polytrees. There are two comparison
conditions: (1) the two signatures must have exactly
the same set of individual labels; (2) the signature of
the polytree must be a subset of the signature of the
new query.

• Any polytree found through the previous step as a
candidate match will be compared with the new query
to check for cover-tight match. Indeed, the new query
might be cover-tight match with several polytrees; this
means that any of them can be used to answer the new
query. Therefore, when the first tight-cover match is
found the other candidates will be ignored.

• When a cover-tight match is found among candidate
polytrees, its corresponding value in the cache space,
which is an induced subgraph of the data graph, will
be used to perform tight simulation and the results will
be returned as the final results.

• When there is no cover-tight match present in the
cache for the new query, it should be answered using
the original data graph.

B. Proof of correctness

In this section, we present the theoretical concepts used
to prove the correctness of our approach. Here, we explain
the terms only for CAR-dual and CAR-tight simulation, but
they are also valid for the previous version of these models.
Theorem 1 guarantees existence of pattern containment under
the aforementioned conditions. In order to prove the theorem,
we first need to define a few new concepts and prove a few
lemmas.

Definition 3: A graph Q2 is a cover-tight match to another
graph Q1 when all of its vertices are present in the MaxPGs
returned by Q1 �

CT
sim Q2. 2

Definition 4: Assuming RD as the maximum dual match
set for Q�CD

simG, we define RminD ⊆ RD as a minimum dual
match set when (1) it is a complete match set; i.e., u ∈ VQ ⇒
∃u′ ∈ G : (u, u′) ∈ RminD (2) removing any vertex of G that



participate in the match set from RminD makes it incomplete.
We also call the subgraph of G corresponding to a RminD, a
minimum dual match subgraph. 2

Lemma 1: Any maximum perfect subgraph produced by
CAR-tight simulation is a union of some minimum dual match
subgraphs. 2

Lemma 2: When a query graph Q is a polytree with
diameter dQ, none of its minimum dual match subgraphs on
G has a diameter bigger than dQ. 2

Proposition 1: When Q is a polytree, the set of vertices in
the MaxPGs resulting by Q�CT

sim G is the same as the set of
vertices in the result dual match graph resulting by Q�CD

simG.
2

Lemmas 1 and 2 are used to prove proposition 1, and then
the proposition is used to prove theorem 1. Moreover, this
proposition indicates that for extracting the induced subgraph,
which should be stored for a polytree in the cache, it would
be enough to run dual simulation instead of tight simulation.
It should be noticed that dual simulation is a preliminary step
in calculating tight simulation; therefore, the extra cost of ball
creation would be avoided. For the same reason, it would be
enough to run dual simulation when a new query should be
compared to the existent polytree to realize if it is a cover-tight
match for that polytree.

Theorem 1: Consider G as a data graph and Q1 as a query
graph. Given that P is a spanning polytree of Q1, and VP is
the set of all vertices in the MaxPGs resulting by P �CT

sim G,
for Q1 or any other new query Qi that is a cover-tight match
to P , the set of the vertices, VR, in the MaxPGs resulting by
Qi �

CT
sim G is a subset of VP (VR ⊆ VP ). 2

VI. EMPIRICAL STUDIES

We have conducted several sets of experiments to evaluate
the effectiveness of the proposed caching technique. We call a
query that can be answered by cache a hit query. We calculate
catch hit-rate by finding the percentage of hit queries in a
workload of queries. Moreover, the response time of a query
is the elapsed time from submitting the query until receiving
its results either from the cache or main engine.

A. Experimental setup

We have implemented a basic cache system in Java. A data
graph is provided in adjacency-list format from a text file. The
queries are also fed to the system by their files, which have
the same format. All the experiments were performed on a
machine that has 128GB DDR3 RAM, and two 2GHz Intel
Xeon E5-2620 CPUs, each with 6 cores. Moreover, we used
JDK-1.7.0 55 to compile and run our program.

We have used three real-world labeled graphs for our
experiments: (a) Patent graph [21], a dataset on US patents
where each vertex represents a patent and an edge from i to
j means that patent i cites patent j. There are about 3.7M
vertices and 16M edges in this graph. The label of the vertices
are 37 different subcategories of the patents. (b) Citation
graph [22], a citation network of papers where an edge from
vertex i to vertex j means paper i has cited paper j. It has about
2.2M vertices and 4.3M edges. We selected publishing year of

the papers as the label of vertices, which means 80 different
labels. (c) Amazon product co-purchase network [18], with
about 548K vertices and 1.7M edges. Each vertex is a product,
and an edge from i to j means that product i is frequently co-
purchased with product j. We used the first category of each
product as its label, which led to total of 104 distinct labels.

To generate a query with guaranteed result in the data
graph, we randomly extract a connected subgraph from a given
dataset. Our query generator has a pair of input parameters
(n, d̄), where n is the number of vertices in the query, and d̄
is the desired average degree of each vertex. The program first
randomly picks a vertex of the data graph, and then randomly
extracts between 0 and d̄ neighbors of this vertex regardless
of the edge-direction. It continues extracting the local vertices
in a BFS-fashion until the requested number of vertices are
added to the subgraph.

B. Experimental results

The experiments are categorized in three groups. First, we
study the potential speedup that can be achieved by reusing
the results of queries. Then, we examine cache hit rate and
performance improvement achieved by our caching technique
for a synthesized workload. Third, we show the effect of
Cardinality Restriction on the size of output results and the
running time of the algorithms.

For our experiments, we randomly extracted a set of base
queries from each data graph. They are from five different
sizes: (10, 3), (15, 3), (20, 4), (25, 5), and (30, 5). We ran-
domly extracted 100 queries for each size; hence, each base
query set contains 500 unique queries.

1) Speedup: We use the base query set of each data graph
to test the potential speedup that can be achieved by our
caching mechanism. We first measure the response time of
each individual query without using cache system. Then, we
submit each query again when its corresponding cache contents
is created and stored in the cache space. The cache speedup for
each query equals to the ratio of its response times without and
with cache hit. Table II displays the average speedup of queries
for each data graph. The speedup depends on many features in
both data graph and query graph. Intuitively, one can expect a
relation between the number of vertices in the result of a query
and its cache speedup. The Pearson correlation of these two
variables are displayed in table II. The degrees of freedom in
this experiment is 488. Considering a significance level 0.01
and two-tailed statistical test, the critical value is 0.115. It
indicates a statistically significant negative correlation between
the two variables. We can use this property to determine a
criterion for the queries that are not worth storing their results
in the cache.

Data points in the charts of figure 4 show the cache speedup
of base queries versus the number of vertices in their results,
which is normalized with the total number of vertices in the
data graph. We found that the Power regression is a good
choice for presenting these data points. After drawing the
Power-regression curve, we can select 0.7% as a common
optimal criterion for storing the results of queries in the cache;
i.e., we do not consider the queries in which the normalized
number of vertices in their results is bigger than this limit.
In our experiments, the percentage of the queries in the base



query set that should not be considered for caching according
to this criterion, are 9.6%, 1.2%, and 8.8% respectively for
Amazon, Citation, and Patent graphs.

TABLE II
SPEEDUP ACHIEVED BY CACHING

Data graph Amazon Citation Patent

Average speedup 99 487 887

Pearson correlation between the number of vertices in -0.37 -0.39 -0.29
the results and the cache speedup of individual queries

2) Cache Hit: To evaluate the proposed caching technique,
an appropriate workload of queries is needed. Because of the
lack of such a workload, we had to create our own. In order to
provide an appropriate test-set of queries for each data graph,
we use the set of base queries to create similar queries. We
incrementally add a new vertex to each base query and connect
it to a random number of old vertices with random directions.
The label of the new vertex is also randomly selected from the
set of available labels. We continue this incremental process
until 5 steps; therefore, we synthesize 5 new query graphs for
each base query. At the end, we have 2500 newly synthesized
queries. This approach for generating new queries resembles
the behavior of real users who tweak their old queries to
explore more interesting patterns. It is noteworthy to mention
that there is no guarantee that newly synthesized queries meet
the similarity condition (cover-tight match) in order to be
eligible for pattern containment. Moreover, many of these
synthesized queries may not have any match in the data
graph similar to the real-life situations. We form the test-
set from the union of the base and the synthesized queries;
hence, it contains 3000 unique queries. The workload is a
sequence of queries randomly sampled from the the test-set
with replacement. In a real-life situation, popular queries may
be submitted many times. To simulate this situation, we set
the number of queries in the workload 5 times bigger than
the number of unique queries; i.e., the workload comprises of
15000 queries.

Figure 5a illustrates the measured hit-rate versus different
cache sizes. The horizontal axis displays the cache size based
on its ratio to the total number of unique queries in the test-
set, and the vertical axis shows the percentage of hit queries to
the total number of queries in the workload. Least frequently
used (LFU) policy is implemented for replacement when the
cache space becomes full. As it is expected, the hit-rate goes
towards saturation after some point.

Improvement in the average response time of CAR-tight
simulation queries versus the cache size is displayed in fig-
ure 5b. It can be observed that the behavior of Citation
graph has been slightly different from the other two data
graphs; e.g., slower increase in the hit-rate, and higher ratio
between average response times in minimum and maximum
cache sizes. This difference can be explained using features of
the graph; i.e., Citation graph is sparser than the others and
has less number of undirected cycles. These features cause
shorter response times, less number of vertices in the results,
and less similarity among the queries in the test-set. Less
similarity among the queries will lead to lower hit-rate, and
having smaller subgraphs corresponding to the polytrees makes
response times from cache even faster.

Table III presents more information about this experiment.
It shows that the main overhead of the cache system, which
is search time, is negligible in our tests. Average store time
includes the spent times for extracting the polytree, finding
its CAR-tight simulation results in data graph, and extracting
corresponding induced subgraph. These steps can be executed
in parallel to the main engine; hence, the store time is not
considered in the response time.

TABLE III
MORE INFORMATION ABOUT CACHE BEHAVIOR

Data graph Amazon Citation Patent

Average number of vertices in cache for each polytree 990 478 5281

Average search time in cache (msec) 2 6 2

Average store time in cache (msec) 567 793 4315

We have also tested cache performance for subgraph iso-
morphism. We used DualIso algorithm [23] to find the first
1000 subgraph isomorphic matches. Exactly the same caching
mechanism used in this test; however, we ran DualIso on
data graph when the query did not hit the cache, and on its
correspondent subgraph when it hit the cache. The average
response time versus the size of the cache is illustrated in
figure 5c.

Figure 5d shows the warm-up behavior of the cache for
different data graphs. The horizontal axis is the percentage of
queries submitted from the workload, and the vertical axis is
the cumulative percentage of the queries that hit the cache. As
one may expect, there is a transition phase for warm-up and
then the curve becomes linear. Comparing with figure 5a, it
can also be observed that the pace of the transition is faster
for a data graph with higher hit-rate.

3) Cardinality Restricted models: As expected, our ex-
periments summarized in figure 6 show that the results of
CAR-dual and CAR-tight simulation models are more stringent
than their older counterparts. We used the base query set and
performed dual, CAR-dual, tight, and CAR-tight simulation for
each query graph, and measured the percentage of decrease in
the number of vertices in the results. For CAR-tight simulation,
we also measured the decrease in the number of MaxPGs. As it
is displayed in figure 6a, we observed more than 25% decrease
in the average number of vertices in the results of both models
for all the three data graphs. Moreover, the average number of
MaxPGs in CAR-tight simulation decreased significantly for
Amazon and Patent data graphs. The number of MaxPGs has
dropped faster than the number of their containing vertices
because of the post-processing phase of tight simulation. At
this phase, all the MaxPGs that are the superset of any other
one are filtered. While some MaxPGs share many vertices
in common, they may not be filtered because of their small
differences. CAR-tight simulation usually removes these small
differences; therefore, a higher number of MaxPGs are filtered.

The cost of achieving more meaningful and more stringent
results by CAR modification is longer running time. Figure 6b
shows the percentage of increase in the running time of
dual and tight simulation after CAR modification. Clearly, the
running time of the algorithm for CAR-dual is longer than dual
because it needs to check extra conditions. However, it is more
likely that a decrease in the number of balls can compensate
the extra cost of CAR-dual to some extent. Indeed, we could



(a) Amazon graph (b) Citation graph (c) Patent graph

Fig. 4. Cache speedup

(a) Hit-rate (b) Average response time for
CAR-tight simulation

(c) Average response time for subgraph
isomorphism

(d) Cumulative cache hits

Fig. 5. Cache performance

(a) More stringent results) (b) Difference in running time

Fig. 6. Effect of CAR modification

observe that the running time of CAR-tight decreased about
16% on average for Patent data graph.

VII. RELATED WORK

Subgraph pattern matching is extensively studied during
last decades [24], [1]. Nevertheless, the recently proposed
pattern matching models in graph simulation family promise
a new avenue to tackle old problems [3]. They are especially
shown to be useful for processing massive graphs of social
networks [2].

The concept of dual simulation first was introduced in [7]
and used to define strong simulation model. Several other more
efficient subgraph pattern matching models such as strict [6]
and tight [5] simulations are also defined based on dual
simulation. The new CAR-dual simulation model, introduced
in this paper, improves the expressiveness of the original
model. Moreover, all the other models relying on that can be
updated to have more stringent results. In this paper, we only

present the updated version of tight simulation, called CAR-
tight.

There are rare previous studies about caching techniques
for generic subgraph pattern matching queries. In the field of
semantic web, many RDF engines cache intermediate results of
SPARQL queries in order to speedup the computation of other
queries when they have common triple patterns [25]. These
techniques rely on triple structure of RDF datasets and the fact
that a SPARQL query is mainly composed of triple patterns.
Then, they try to mitigate the cost of expensive joins between
the results of common triple patterns. Martin et al. [13] have
also proposed a caching system for SPARQL queries where
they cache the entire query. Nevertheless, their cache system
is content-blind; i.e., a new query can be answered using the
cache only if it is identical to an old query stored in the cache.
Indeed, their contribution is about cache maintenance; that is,
updating the cache contents according to the changes in the
underlying knowledge bases.

A content-aware caching technique for SPARQL queries is
introduced in [14]. The authors propose a few conditions for
containment checking of conjunctive SPARQL queries with
simple filter conditions. The first difference from our work
is that their work is about SPARQL queries. Properties of
SPARQL queries, which fall in the category of path pattern
queries, are different from the type of subgraph pattern queries
that we study in this research. Because of the nature of
SPARQL queries and the way they store their results, they
also need to define evaluability notion because containment
conditions cannot guarantee that a new query can be answered
using the cache contents.

Another related work has been published very recently



in [15]. The authors have investigated pattern containment
problem for graph simulation [17] and bounded simulation [3]
models. They statically generate a set of views from a given
data graph. Each view represents an interesting part of the
data graph. Then, they define their containment conditions
and show how the queries can be evaluated to learn if their
answers are contained in a view. Their experiments eventually
shows that the response time of the queries will improve when
they can be answered using initially defined views. The main
difference to our work lies in the intrinsic differences of view
and cache. A cache space for graph queries has a dynamic
characteristic; therefore, new issues like cache size, cache hit
rate, and query replacement arise that are not considered under
concept of views. Moreover, our work is based on a different
pattern matching model that suits a completely different set of
applications.

VIII. CONCLUSIONS AND FUTURE WORK

The main focus of this research is about graph pattern
containment. We have proposed a novel pattern containment
approach based on tight simulation model. Furthermore, we
have designed and implemented an efficient cache system
based on this technique. This is one of the first works that
investigates caching techniques for subgraph pattern matching
queries.

Although the employed filtering mechanism for searching
the cache has been very efficient in our experiments, it might
be worthwhile for future work to investigate more complex
indexing algorithms in order to support very heavy workloads
in extremely massive datasets. This problem is very similar
to the problem that is studied under the title of supergraph
query processing in the literature [26]. However, the problem
in the context of our research has two main distinguishing
differences: (1) All the available index systems are only based
on subgraph isomorphism; (2) unlike the previous works the
index should be formed and evolved dynamically for graphs
in a cache space.

The cache replacement policy that we have implemented
in this project is very similar to the policies in other contexts.
Nevertheless, it seems appealing to design new replacement
policies specifically revised for subgraph pattern matching.

Real-world data graphs are time evolving [11]; i.e., there
are minor changes in their structure through the time. The
content of cache for pattern matching queries should be up-
dated according to these changes using incremental algorithms
in order to support time evolving data graphs. Although there
are some preliminary studies [8], incremental algorithms for
subgraph pattern matching are in their infancy stages.

ACKNOWLEDGMENT

This research has been partially funded by the National
Science Foundation under Grant Number CNS-1338276. Any
opinions, findings, and conclusions or recommendations ex-
pressed in this material are those of the authors, and do not
necessarily reflect the views of the NSF.

REFERENCES

[1] B. Gallagher, “Matching structure and semantics: A survey on graph-
based pattern matching,” AAAI FS, vol. 6, pp. 45–53, 2006.

[2] J. Brynielsson, J. Hogberg, L. Kaati, C. Mårtenson, and P. Svenson,
“Detecting social positions using simulation,” in ASONAM. IEEE,
2010, pp. 48–55.

[3] W. Fan, J. Li, S. Ma, N. Tang, Y. Wu, and Y. Wu, “Graph pattern
matching: from intractable to polynomial time,” Proc. VLDB Endow.,
vol. 3, no. 1-2, pp. 264–275, Sep. 2010.

[4] J. R. Ullmann, “An algorithm for subgraph isomorphism,” J. ACM,
vol. 23, no. 1, pp. 31–42, Jan. 1976.

[5] A. Fard, M. U. Nisar, J. A. Miller, and L. Ramaswamy, “Distributed and
scalable graph pattern matching: Models and algorithms,” International
Journal of Big Data (IJBD), vol. 1, no. 1, 2014.

[6] A. Fard, M. Nisar, L. Ramaswamy, J. Miller, and M. Saltz, “A
distributed vertex-centric approach for pattern matching in massive
graphs,” in Big Data Conference, Oct 2013, pp. 403–411.

[7] S. Ma, Y. Cao, W. Fan, J. Huai, and T. Wo, “Capturing topology in
graph pattern matching,” Proc. VLDB Endow., vol. 5, no. 4, pp. 310–
321, Dec. 2011.

[8] W. Fan, J. Li, J. Luo, Z. Tan, X. Wang, and Y. Wu, “Incremental graph
pattern matching,” in ACM SIGMOD, 2011, pp. 925–936.

[9] W. Fan, “Graph pattern matching revised for social network analysis,”
in ICDT, 2012, pp. 8–21.

[10] M. Nisar, A. Fard, and J. Miller, “Techniques for graph analytics on
big data,” in BigData Congress, June 2013, pp. 255–262.

[11] A. Fard, A. Abdolrashidi, L. Ramaswamy, and J. A. Miller, “Towards
efficient query processing on massive time-evolving graphs,” in Collab-
orateCom, oct. 2012, pp. 567 –574.

[12] T. G. Armstrong, V. Ponnekanti, D. Borthakur, and M. Callaghan,
“Linkbench: A database benchmark based on the facebook social
graph,” in ACM SIGMOD, 2013, pp. 1185–1196.

[13] M. Martin, J. Unbehauen, and S. Auer, “Improving the performance of
semantic web applications with sparql query caching,” in The Semantic
Web: Research and Applications, 2010, vol. 6089, pp. 304–318.

[14] Y. Shu, M. Compton, H. Mller, and K. Taylor, “Towards content-aware
sparql query caching for semantic web applications,” in WISE, 2013,
vol. 8180, pp. 320–329.

[15] W. Fan, X. Wang, and Y. Wu, “Answering graph pattern queries using
views,” in ICDE, March 2014, pp. 184–195.

[16] R. Milner, Communication and Concurrency. Upper Saddle River, NJ,
USA: Prentice-Hall, Inc., 1989.

[17] M. R. Henzinger, T. A. Henzinger, and P. W. Kopke, “Computing
simulations on finite and infinite graphs,” in FOCS, 1995, pp. 453–.

[18] J. Leskovec, L. A. Adamic, and B. A. Huberman, “The dynamics of
viral marketing,” ACM Trans. Web, vol. 1, no. 1, May 2007.

[19] M. Farber, “On diameters and radii of bridged graphs,” Discrete
Mathematics, vol. 73, no. 3, pp. 249–260, 1989.

[20] S. Podlipnig and L. Böszörmenyi, “A survey of web cache replacement
strategies,” ACM Comput. Surv., vol. 35, no. 4, pp. 374–398, Dec. 2003.

[21] B. H. Hall, A. B. Jaffe, and M. Trajtenberg, “The nber patent citation
data file: Lessons, insights and methodological tools,” NBER Working
Paper 8498, Tech. Rep., 2001.

[22] J. Tang, J. Zhang, L. Yao, J. Li, L. Zhang, and Z. Su, “Arnetminer:
Extraction and mining of academic social networks,” in ACM SIGKDD,
2008, pp. 990–998.

[23] M. Saltz, A. Jain, A. Kothari, A. Fard, J. A. Miller, and L. Ramaswamy,
“Dualiso: An algorithm for subgraph pattern matching on very large
labeled graphs,” in BigData Congress. IEEE, 2014, pp. 498–505.

[24] D. Conte, P. Foggia, C. Sansone, and M. Vento, “Thirty years of graph
matching in pattern recognition,” Journal of Pattern Recognition and
Artificial Intelligence, vol. 18, no. 03, pp. 265–298, 2004.

[25] T. Lampo, M.-E. Vidal, J. Danilow, and E. Ruckhaus, “To cache or not
to cache: The effects of warming cache in complex sparql queries,” in
OTM, 2011, vol. 7045, pp. 716–733.

[26] H. Shang, K. Zhu, X. Lin, Y. Zhang, and R. Ichise, “Similarity search
on supergraph containment,” in ICDE, March 2010, pp. 637–648.


