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Let A and B be two sequences of length M and N respectively, where without loss of generality N 2 M, and let D be the 

length of a shortest edit script (consisting of insertions and deletions) between them. A parameter related to D is the number 

of deletions in such a script, P = :D - S(N - M). We present an algorithm for finding a shortest edit distance of A and B 

whose worst-case running time is 0( NP) and whose expected running time is 0( N + PD). The algorithm is simple and is very 
efficient whenever A is similar to a subsequence of B. It is nearly twice as fast as the 0( ND) algorithm of Myers, and much 

more efficient when A and B differ substantially in length. 
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1. Introduction 

Let A and B be two sequences of length A4 
and N respectively, where without loss of gener- 
ality N > M, and let D be the length of a shortest 
edit script between them. The parameter D is also 
known as the simple Levenshtein distance between 
the sequences [6]. The number of deletions and 
insertions in such a shortest script are also well- 
defined quantities. In particular, P, the number of 
deletions in a shortest edit script, is always equal 
to +D - i( N - M), because there are D inser- 
tions and deletions and N - A4 more insertions 
than deletions. 
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gator Award (grant DCR-8451397), with matching funds 
from AT&T. 

** Supported in part by the National Institutes of Health 
(grant LM-04970). 
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The problem of determining a shortest edit 
script (SES) or a longest common subsequence 
(LCS) between two sequences of symbols has been 
studied extensively [2,4,5,7,9,11,14,16]. The classic 
dynamic programming algorithm, invented by 
Wagner and Fischer [16] and others [12,15], has 
O(MN) worst-case running time. Masek and 
Paterson [7] improved this algorithm by using the 
“Four-Russians” technique [l] to reduce the 
worst-case running time to 0( MN log log N/log 
N) and O(MN/log N) for arbitrary and finite 
alphabet sets respectively. In terms of the input 
parameters M and N this bound has not been 
improved upon, but several recent designs have 
complexities that depend on output parameters 
such as D and P. For example, Hunt and Szy- 
manski [5] presented an algorithm whose running 
time is 0( R log M), where R is the total number 
of ordered pairs of positions at which the two 
sequences match. Later, Myers [9], Ukkonen [14], 
and Nakatsu et al. [ll] gave algorithms with 
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worst-case time complexity O(ND), which are ef- 
ficient when A and B are similar. Such algorithms 
have been used in file comparison programs [8] 
and for economically updating the video screen by 
a text editing program [lo]. Our algorithm is an 
improvement over the algorithms above since P 
= :D - iA, where A = N - M, and in practice 
our algorithm is always twice as fast as the O( ND) 
algorithms. Its superiority is even more pro- 
nounced when the problem is highly asymmetric, 
i.e., A x=- 0. 

Our algorithm is best explained by casting the 
longest common subsequence problem as a shor- 
test paths problem on a grid-like graph called an 
edit graph (e.g., see [9]). The algorithm improves 
upon Myers’s algorithm [9] by exploring fewer of 
the vertices in the edit graph. It does so by using a 
path-compression technique that has been used as 
a heuristic for shortest paths problems [13]. This 
technique was also used by Hadlock [2] to give an 
0( NP) sequence comparison algorithm, however, 
Hadlock used a version of Dijkstra’s algorithm 
and thus the expected running time of his al- 
gorithm is also O( NP), whereas the expected run- 
ning time of our algorithm is 0( N + PD). Our 
fusion of a notion of compressed distances and 
Myers’s greedy approach give an O(NP) al- 
gorithm (when P > 0) that is very simple and thus 
very efficient in practice. The algorithm’s depen- 
dence on P implies that it is particularly efficient 
when A is similar to a subsequence of the longer 
sequence B. The algorithm is O(N) when P = 0, 
i.e., when A is a subsequence of B. By using 
Hirschberg’s divide-and-conquer technique [3,9], 
the algorithm can be modified to deliver a shortest 
edit script using only linear space. 

2. Preliminaries 

Let A =a,a,a,... aM and B= b,b,b,... b,, 
N 3 M, be two strings of length M and N respec- 
tively. A sequence C = c1cZc3. _ _ cL is called a sub- 
sequence of A if C can be derived from A by 
deleting some characters of A. C is called a com- 
mon subsequence of A and B if C is a subse- 
quence of both A and B. C is called the longest 
common subsequence of A and B if the length of C 
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is the maximum among all common subsequences 
of A and B. An edit script that edits sequence A 
into B is a list of delete/insert instructions where 
a delete instruction specifies which character of A 
to delete and an insert instruction specifies which 
character of B to insert. A shortest edit script is an 
edit script whose length is minimum among all 
possible edit scripts that edit A into B. For ex- 
ample, if 

A = ‘acbdeacbed’ and B = acebdabbabed’, 

then a longest common subsequence is ‘acbdabed’, 
and a shortest edit script is “insert b,, delete u5, 
delete a,, insert b,, insert b,, insert bg”, where a, 
denotes the ith character of A and bi denotes the 
ith character of B. The problem of finding a 
longest common subsequence (LCS) and of find- 
ing a shortest edit script (SES) are dual problems 
as reflected in the equality D + 2L = M + N 
(where L is the size of the LCS and D is the size 
of the SES). 

The edit graph for sequences A and B is a 
directed graph with a vertex at each grid point 

(KY), 0 G x G M- and 0 G y G N. Each vertex has 
a horizontal and a vertical edge to its right and 
lower neighbor if they exist. There is also a diago- 
nal edge from (x, y) to (x + 1, y + 1) if a,,, = 
b y+l. The edit graph is constructed so that a path 
from source (0, 0) to sink (M, N) corresponds to 
an edit script that converts A into B: a horizontal 
edge corresponds to an insertion, a vertical edge 
corresponds to a deletion, and a diagonal edge 
represents a common symbol. By assigning cost 1 
to the horizontal and vertical edges, and 0 to 
diagonal edges, the cost of a path equals the 
number of vertical and horizontal edges in it. Thus 
the problem of finding an SES/LCS is equivalent 
to finding a shortest source-to-sink path in the 
edit graph. Figure 1 shows the edit graph for 

A = ‘acbdeacbed’ and B = ‘acebdabbabed’. 

A shortest path is highlighted and shows that 
D = 6 and P = 2. 

Let diagonal k of the edit graph be those 
vertices (x, y) for which y - x = k. With this 
definition diagonals are numbered from -M to 
N, diagonal 0 contains the source, and diagonal 
A = N - M contains the sink. The algorithm of 
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a c e bdabbabed 

_ _ _ _ _ _ _ _ _ _ _ . : A shortest path 
Fig. 1. Edit graph for A = ‘acbdeacbed’ and 

B = ‘acebdabbabed’. 

Myers [9] examines vertices between diagonal -D 
and D, shown as the D-band in Fig. 2. Our 
algorithm only examines vertices in the smaller 
region between diagonals -P and A + P, shown 
as the P-band in Fig. 2. This is possible because 
any path passing outside the P-band must have 
more than P vertical edges. To wit, if it passes 
through a vertex on a diagonal below -P, then it 
must traverse greater than P vertical edges to 
reach the source, and if it passes through a vertex 
on a diagonal above A + P, then it must traverse 
greater than P vertical edges to reach the sink. 

Let the edit distance to (x, y), denoted 
D(x, y), be the cost of the shortest path from the 
source to (x, y) on diagonal k = y - x. Suppose 
that such a path contains u vertical and h hori- 
zontal edges. Then the number of nondiagonal 

B 

(030) (0,D) y- . 

A 

(-D, 0 

X 

I 

Of, N) 

edges is u + h = D(x, y) and the path must end 
on diagonal h - u = k. Thus the number of verti- 
cal edges in a shortest path to (x, y), V(x, y), is 
well defined: it is equal to i(D(x, y) - k). Simi- 
larly, the number of horizontal edges, H(x, y), is 
equal to $(D(x, y) + k). Let the compressed dis- 
tance to (x, y), P(x, y), be defined as follows: 

qx, Y>> 

p(x, Y> = 
if (x, JJ) is below diagonal A, 

v(x, Y) + (k - A), 

\ if (x, y) is above diagonal A. 

The definition of compressed distance is the verti- 
cal distance I/(x, y) plus a lower bound on the 
number of vertical edges that must be in a path 
that continues from (x, y) to the sink vertex. This 
bound is zero below diagonal A and is k - A 

above it since at least k - A vertical edges must be 
traversed to return to diagonal A. Figure 3 depicts 
all D-values not greater than D = 6 and P-values 
not greater than P = 2 for the sequences of Fig. 1. 

Like Myers’s algorithm, our algorithm centers 
on computing a set of farthest vertices in order of 
distance until the sink is reached. The furthest 

d-point in diagonal k is the vertex on diagonal k 
with D-value d that has the greatest y- (or x-) 
coordinate. Let the y-coordinate of this point be 
denoted by 

fd(k, d)=max{y: D(y-k, y)=d}. 

B 

(090) (0, A+P) 

c-p, 0) 

A 

P-band D -band 

Fig. 2. D-band and P-band of an edit graph. 
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Fig. 3. An example of (a) P-values and (b) D-values. 

The set of farthest d-points is 

FD(d) = {(y-k, y):y=fd(k, d) 

and -d<k<d}. 

The set FD(d) is the frontier of vertices whose 
edit distance is d. In Fig. 3, the farthest points are 
underlined. Our algorithm uses compressed dis- 
tance, for which we make the analogous defini- 
tions: 

FP(P)= {(y-k, y): y=fp(k, P> 

and -pGk<p+A}, 

where 

fp(k, P) = max{ y: P(y - k, Y> =P>. 

3. The O(NP) algorithm 

Our algorithm computes the set FP(p) from 
the set FP(p - 1) until (M, N) E FP( p) 
whereupon P and D = A + 2P are known. We 
first give an operational description of the al- 
gorithm and then formalize it in a recurrence that 
is rigorously proved. Let qkp be the farthest p-point 
in diagonal k (i.e., the point (y - k, y), such that 
y = fp (k, p)). Assume that 

FP(p-1) = {qP&t q’;pl-2)r...rq~S:p--l)} 

has already been found. The algorithm first com- 
putes q!,, qP-+i), . . . , qi_ 1 in this order (we now 
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assume that k < A). Vertex q[ is found from qkp_l 
and qfii as follows. Let a be the vertex im- 
mediately to the right of qkp_l and b be the vertex 
immediately below qkp;: (see Fig. 4(a)). Both these 
vertices are on diagonal k. From the vertex with 
greatest y-coordinate, we follow diagonal edges 
until a vertex is reached that has no outgoing 
diagonal edge or that is on the lower boundary of 
the edit graph. This vertex is qkp as proved in 
Lemma 1. The algorithm then goes above the 
diagonal and computes qffp, i+ p 1 ,...,qf+l 
(see Fig. 4(b)), this time using qqpl’ - ) k I and &‘+I to 

compute qkp in the same fashion. (This time a is 
the vertex immediately to the right of qkp1; and b 

is the vertex immediately below qkp+l.) Finally, qz 

is computed from qz_1 and qf+l. 
The procedure for computing FP( p - 1) from 

FP(p) is formalized in Lemma 1 which gives a 
recurrence expression for fp( k, p) in terms of the 
y-coordinates of previously computed farthest 
points. Let snake(k, y) denote the y-coordinate 
of the farthest point on diagonal k that can be 
reached from (y - k, y) by traversing diagonal 
edges. Formally 

snake( k, y) 

= max{z: ay+l_k... ar-k = b,,, . . . h}, 

and informally snake models the process of fol- 
lowing diagonal edges above. The correctness of 
the recurrence depends on a proper treatment of 
the boundary cases: p = 0, k = -p, and 
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Fig. 4. Generating FP( p) from FP( p - 1). (a) below diagonal A, (b) above diagonal A. 

k = A +p.These are handled cleanly by defining 
fp(k,p)tobe -lwheneverp<OorkE[-p,a 

+Pl. 

Lemma 1. 

‘snake(k, max(fp(k- 1, p) + 1, 

fp(k + 1, P - l))), 

ifkE[-p,a-11, 

snake(k, max(fp(k- 1, p) + 1, 

fp(k, P> = ( fp(k - 1, P)& 

ifk=a, 

snake(k,max(fp(k-1, p-1)+1, 

fp(k + 1, P>>), 

, ifkE[~+l,~+p]. 

Proof. We give the proof only for the first case, 
k < A; the proof for other cases is similar. Let g 
be the farthest p-point in diagonal k - 1 (i.e., 
g = qkp_l), and let q be the farthest ( p - l)-point 
in diagonal k + 1 (i.e., q = qkp;;). Let a be the 
vertex immediately to g’s right, let b be the vertex 
immediately below q, and let d be the farthest 
vertex reached from the farther of a and b along 
diagonal edges. The y-coordinate of a is fp( k - 

1, p) + 1, that of b is fp(k + 1, p - l), and that 
of d is given by the first case of the recurrence of 
the lemma. Figure 5 shows the two possible cases 
where a is above b (i.e., fp(k + 1, p) + 1 G 

fp( k, p - l)), and b is above a. Again we focus 
just on the case shown in Fig. 5(a); the treatment 
of the other case is similar. The P-value of d must 
be p because there is a path to d with compressed 
distance p (i.e., the one passing through q and b), 

and if there were a shorter path, then the vertex c 
shown in Fig. 5(a) would have P-value less than 
p - 1 contradicting the choice of q. It remains to 
show that d is the farthest such point. A path of 
distance p to a farther point cannot pass through 
d, because it would contradict the choice of d. But 
then it must pass through a vertex of distance p 
on diagonal k - 1 below g or a vertex of distance 
p - 1 on diagonal k below q, contradicting the 
choices of g and q, respectively. Thus such a path 
does not exist and d is the farthest p-point in 
diagonal k. q 

The simple sequence comparison algorithm in 
Fig. 6 is obtained directly from Lemma 1. The 
outer repeat loop is executed exactly P + 1 times. 
In the pth pass of this loop, the upper for loop 
generates the points in FP( p) on diagonals below 
A. Note that by overwriting the FP( p - 1) points 
as it does so, only a single M + N + 1 element 
array fp is required for working storage. The lower 
for loop generates the points in FP(p) above 
diagonal A, and the next statement generates the 
farthest point on A. An examination of the recur- 
rence reveals that the points visited in the upper 
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k-l k k+l k-l k k+l 

Fig. 5. The two cases of Lemma 1. 

for loop are strictly increasing in their y-coordi- 
nate and the points visited in the lower for loop 
are strictly decreasing in their x-coordinate. Thus, 
the total time spent for one pass of the outer 
repeat loop is O(N). So, the worst-case running 
time of the algorithm is O(NP). To obtain the 
expected running time of the algorithm we observe 
that during a pass the total number of points 
visited in a particular diagonal is the number of 
diagonal edges traversed plus one (the frontier 
point). Let the total number of matched edges 
traversed be R,. Then, the total number of points 
visited is 0( R, + PD), because at most D + 1 
diagonals are covered in the computation. By an 
analysis as in [9], we can show that the expected 
number of traversed matched edges is 0( N + PD). 

Table 1 
Experimental results 

The expected time complexity of the algorithm is 
therefore O(N + PD). 

4. Implementation 

We implemented our algorithm and compared 
it to Myers’s O(ND) algorithm [9]. Table 1 shows 
the test results for 100 randomly generated strings. 
Table 1 shows average values over 100 trials on 
randomly generated strings over an alphabet of 
size 16. The fifth column of the table shows the 
number of comparisons (the same as the number 
of points visited in the edit graph) that were made 
during the computation for our O(NP) algorithm. 
The sixth column shows the number of compari- 

M N Number of Edit Number of comparisons Execution time 
deletions distance 

G(NP) G(ND) o(NP) o(ND) 

4000 5000 10 1020 21564 526506 0.13 2.61 
4000 5OcKl 50 1100 59520 614391 0.41 3.12 
4000 5000 100 1200 121635 137748 0.83 4.02 
4ooo 5000 200 1400 255157 1004952 1.62 5.87 
4000 5000 400 1800 600216 1693377 3.68 8.94 
4000 5000 600 2200 1016433 2523687 6.41 14.85 
5000 5000 200 400 49202 93139 0.33 0.61 
5000 5000 600 1200 398499 791815 2.34 4.65 
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Algorithm Compare 
begin 

fp[-M...N]:=-1; 
p:= -1. 

repeat 
begin 

p:=p+l; 

fork:=-ptOA-ldo 
fp[k]:=snake(k,max(fp[k-l]+l, 

fp[k + 11)); 
fork:=a+pdowntoA+lby -1do 

jp[k]:=snake(k,max(fp[k-l]+l, 

fP[k + 11)); 

end’[“’ ‘= 
snake(k,max(fp[k-l]+l, fp[k+l])); 

Until fp[A]=N; 
write “The edit distance is:” A + 2p; 

end 

function snake(k, y: int): int 
In+ 

x := y - k; 

whIlex<Mand y<Nand A[x+l]=B[y+l]do 

begin 
x:=x+1; y:=y+l; 

end 
snake := y; 

end 

Fig. 6. Algorithm Compare. 

sons made during the computation of the 0( ND) 
algorithm. The last two columns show running 
times on a VAX 8650 under 4.3bsd UNIX. As can 
be seen in the table, the speedup is quite large 
when A and B differ in length but are quite 
similar. When A is approximately a subsequence 
of B, our algorithm runs in linear time. 
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