
Information Processing Letters 35 (1990) 317-323

North-Holland

15 September 1990

AN O(iVP) SEQUENCE COMPARISON ALGORITHM

Sun WU, Udi MANBER *, Gene MYERS * *

Department of Computer Science, University of Arizona, Tucson, AZ 85721, USA

Webb MILLER * * *

Department of Computer Science, The Pennsylvania State University, University Park, PA 16802, USA

Communicated by G.R. Andrews

Received 13 September 1989

Revised 25 April 1990

Let A and B be two sequences of length M and N respectively, where without loss of generality N 2 M, and let D be the

length of a shortest edit script (consisting of insertions and deletions) between them. A parameter related to D is the number

of deletions in such a script, P = :D - S(N - M). We present an algorithm for finding a shortest edit distance of A and B

whose worst-case running time is 0(NP) and whose expected running time is 0(N + PD). The algorithm is simple and is very
efficient whenever A is similar to a subsequence of B. It is nearly twice as fast as the 0(ND) algorithm of Myers, and much

more efficient when A and B differ substantially in length.

Keywords: Algorithm, longest common subsequence, sequence comparison, shortest edit script

1. Introduction

Let A and B be two sequences of length A4
and N respectively, where without loss of gener-
ality N > M, and let D be the length of a shortest
edit script between them. The parameter D is also
known as the simple Levenshtein distance between
the sequences [6]. The number of deletions and
insertions in such a shortest script are also well-
defined quantities. In particular, P, the number of
deletions in a shortest edit script, is always equal
to +D - i(N - M), because there are D inser-
tions and deletions and N - A4 more insertions
than deletions.

* Supported in part by an NSF Presidential Young Investi-
gator Award (grant DCR-8451397), with matching funds
from AT&T.

** Supported in part by the National Institutes of Health
(grant LM-04970).

* * * Supported in part by the National Institutes of Health
(grant LM-05110).

The problem of determining a shortest edit
script (SES) or a longest common subsequence
(LCS) between two sequences of symbols has been
studied extensively [2,4,5,7,9,11,14,16]. The classic
dynamic programming algorithm, invented by
Wagner and Fischer [16] and others [12,15], has
O(MN) worst-case running time. Masek and
Paterson [7] improved this algorithm by using the
“Four-Russians” technique [l] to reduce the
worst-case running time to 0(MN log log N/log
N) and O(MN/log N) for arbitrary and finite
alphabet sets respectively. In terms of the input
parameters M and N this bound has not been
improved upon, but several recent designs have
complexities that depend on output parameters
such as D and P. For example, Hunt and Szy-
manski [5] presented an algorithm whose running
time is 0(R log M), where R is the total number
of ordered pairs of positions at which the two
sequences match. Later, Myers [9], Ukkonen [14],
and Nakatsu et al. [ll] gave algorithms with

0020-0190/90/!$03.50 0 1990 - Elsevier Science Publishers B.V. (North-Holland) 317

Volume 35, Number 6 INFORIvMTION PROCESSING LE’ITERS 15 September 1990

worst-case time complexity O(ND), which are ef-
ficient when A and B are similar. Such algorithms
have been used in file comparison programs [8]
and for economically updating the video screen by
a text editing program [lo]. Our algorithm is an
improvement over the algorithms above since P
= :D - iA, where A = N - M, and in practice
our algorithm is always twice as fast as the O(ND)
algorithms. Its superiority is even more pro-
nounced when the problem is highly asymmetric,
i.e., A x=- 0.

Our algorithm is best explained by casting the
longest common subsequence problem as a shor-
test paths problem on a grid-like graph called an
edit graph (e.g., see [9]). The algorithm improves
upon Myers’s algorithm [9] by exploring fewer of
the vertices in the edit graph. It does so by using a
path-compression technique that has been used as
a heuristic for shortest paths problems [13]. This
technique was also used by Hadlock [2] to give an
0(NP) sequence comparison algorithm, however,
Hadlock used a version of Dijkstra’s algorithm
and thus the expected running time of his al-
gorithm is also O(NP), whereas the expected run-
ning time of our algorithm is 0(N + PD). Our
fusion of a notion of compressed distances and
Myers’s greedy approach give an O(NP) al-
gorithm (when P > 0) that is very simple and thus
very efficient in practice. The algorithm’s depen-
dence on P implies that it is particularly efficient
when A is similar to a subsequence of the longer
sequence B. The algorithm is O(N) when P = 0,
i.e., when A is a subsequence of B. By using
Hirschberg’s divide-and-conquer technique [3,9],
the algorithm can be modified to deliver a shortest
edit script using only linear space.

2. Preliminaries

Let A =a,a,a,... aM and B= b,b,b,... b,,
N 3 M, be two strings of length M and N respec-
tively. A sequence C = c1cZc3. _ _ cL is called a sub-
sequence of A if C can be derived from A by
deleting some characters of A. C is called a com-
mon subsequence of A and B if C is a subse-
quence of both A and B. C is called the longest
common subsequence of A and B if the length of C

318

is the maximum among all common subsequences
of A and B. An edit script that edits sequence A
into B is a list of delete/insert instructions where
a delete instruction specifies which character of A
to delete and an insert instruction specifies which
character of B to insert. A shortest edit script is an
edit script whose length is minimum among all
possible edit scripts that edit A into B. For ex-
ample, if

A = ‘acbdeacbed’ and B = acebdabbabed’,

then a longest common subsequence is ‘acbdabed’,
and a shortest edit script is “insert b,, delete u5,
delete a,, insert b,, insert b,, insert bg”, where a,
denotes the ith character of A and bi denotes the
ith character of B. The problem of finding a
longest common subsequence (LCS) and of find-
ing a shortest edit script (SES) are dual problems
as reflected in the equality D + 2L = M + N
(where L is the size of the LCS and D is the size
of the SES).

The edit graph for sequences A and B is a
directed graph with a vertex at each grid point

(KY), 0 G x G M- and 0 G y G N. Each vertex has
a horizontal and a vertical edge to its right and
lower neighbor if they exist. There is also a diago-
nal edge from (x, y) to (x + 1, y + 1) if a,,, =
b y+l. The edit graph is constructed so that a path
from source (0, 0) to sink (M, N) corresponds to
an edit script that converts A into B: a horizontal
edge corresponds to an insertion, a vertical edge
corresponds to a deletion, and a diagonal edge
represents a common symbol. By assigning cost 1
to the horizontal and vertical edges, and 0 to
diagonal edges, the cost of a path equals the
number of vertical and horizontal edges in it. Thus
the problem of finding an SES/LCS is equivalent
to finding a shortest source-to-sink path in the
edit graph. Figure 1 shows the edit graph for

A = ‘acbdeacbed’ and B = ‘acebdabbabed’.

A shortest path is highlighted and shows that
D = 6 and P = 2.

Let diagonal k of the edit graph be those
vertices (x, y) for which y - x = k. With this
definition diagonals are numbered from -M to
N, diagonal 0 contains the source, and diagonal
A = N - M contains the sink. The algorithm of

Volume 35, Number 6 INFORMATION PROCESSING LETTERS 15 September 1990

a c e bdabbabed

_ _ _ _ _ _ _ _ _ _ _ . : A shortest path
Fig. 1. Edit graph for A = ‘acbdeacbed’ and

B = ‘acebdabbabed’.

Myers [9] examines vertices between diagonal -D
and D, shown as the D-band in Fig. 2. Our
algorithm only examines vertices in the smaller
region between diagonals -P and A + P, shown
as the P-band in Fig. 2. This is possible because
any path passing outside the P-band must have
more than P vertical edges. To wit, if it passes
through a vertex on a diagonal below -P, then it
must traverse greater than P vertical edges to
reach the source, and if it passes through a vertex
on a diagonal above A + P, then it must traverse
greater than P vertical edges to reach the sink.

Let the edit distance to (x, y), denoted
D(x, y), be the cost of the shortest path from the
source to (x, y) on diagonal k = y - x. Suppose
that such a path contains u vertical and h hori-
zontal edges. Then the number of nondiagonal

B

(030) (0,D) y- .

A

(-D, 0

X

I

Of, N)

edges is u + h = D(x, y) and the path must end
on diagonal h - u = k. Thus the number of verti-
cal edges in a shortest path to (x, y), V(x, y), is
well defined: it is equal to i(D(x, y) - k). Simi-
larly, the number of horizontal edges, H(x, y), is
equal to $(D(x, y) + k). Let the compressed dis-
tance to (x, y), P(x, y), be defined as follows:

qx, Y>>

p(x, Y> =
if (x, JJ) is below diagonal A,

v(x, Y) + (k - A),

\ if (x, y) is above diagonal A.

The definition of compressed distance is the verti-
cal distance I/(x, y) plus a lower bound on the
number of vertical edges that must be in a path
that continues from (x, y) to the sink vertex. This
bound is zero below diagonal A and is k - A

above it since at least k - A vertical edges must be
traversed to return to diagonal A. Figure 3 depicts
all D-values not greater than D = 6 and P-values
not greater than P = 2 for the sequences of Fig. 1.

Like Myers’s algorithm, our algorithm centers
on computing a set of farthest vertices in order of
distance until the sink is reached. The furthest

d-point in diagonal k is the vertex on diagonal k
with D-value d that has the greatest y- (or x-)
coordinate. Let the y-coordinate of this point be
denoted by

fd(k, d)=max{y: D(y-k, y)=d}.

B

(090) (0, A+P)

c-p, 0)

A

P-band D -band

Fig. 2. D-band and P-band of an edit graph.

319

Volume 35, Number 6 INFORMATION PROCESSING LETTERS 15 September 1990

acebdabbabed -
0 0 0 1 2

a100012 a
c21QOO12

2110012 E
221QQL2 d

221112 e
2 1 1 1 2 a ----

2 2 2 2
2222 k

2 e

(a)

2 d

acebdabbabed

0123456
10123456
210123456
3212123456
43232123456
5434323456
65434323456

65z543456
6365335 6

E 626 6
6 6

Fig. 3. An example of (a) P-values and (b) D-values.

The set of farthest d-points is

FD(d) = {(y-k, y):y=fd(k, d)

and -d<k<d}.

The set FD(d) is the frontier of vertices whose
edit distance is d. In Fig. 3, the farthest points are
underlined. Our algorithm uses compressed dis-
tance, for which we make the analogous defini-
tions:

FP(P)= {(y-k, y): y=fp(k, P>

and -pGk<p+A},

where

fp(k, P) = max{ y: P(y - k, Y> =P>.

3. The O(NP) algorithm

Our algorithm computes the set FP(p) from
the set FP(p - 1) until (M, N) E FP(p)
whereupon P and D = A + 2P are known. We
first give an operational description of the al-
gorithm and then formalize it in a recurrence that
is rigorously proved. Let qkp be the farthest p-point
in diagonal k (i.e., the point (y - k, y), such that
y = fp (k, p)). Assume that

FP(p-1) = {qP&t q’;pl-2)r...rq~S:p--l)}

has already been found. The algorithm first com-
putes q!,, qP-+i), . . . , qi_ 1 in this order (we now

320

assume that k < A). Vertex q[is found from qkp_l
and qfii as follows. Let a be the vertex im-
mediately to the right of qkp_l and b be the vertex
immediately below qkp;: (see Fig. 4(a)). Both these
vertices are on diagonal k. From the vertex with
greatest y-coordinate, we follow diagonal edges
until a vertex is reached that has no outgoing
diagonal edge or that is on the lower boundary of
the edit graph. This vertex is qkp as proved in
Lemma 1. The algorithm then goes above the
diagonal and computes qffp, i+ p 1 ,...,qf+l
(see Fig. 4(b)), this time using qqpl’ -) k I and &‘+I to

compute qkp in the same fashion. (This time a is
the vertex immediately to the right of qkp1; and b

is the vertex immediately below qkp+l.) Finally, qz

is computed from qz_1 and qf+l.
The procedure for computing FP(p - 1) from

FP(p) is formalized in Lemma 1 which gives a
recurrence expression for fp(k, p) in terms of the
y-coordinates of previously computed farthest
points. Let snake(k, y) denote the y-coordinate
of the farthest point on diagonal k that can be
reached from (y - k, y) by traversing diagonal
edges. Formally

snake(k, y)

= max{z: ay+l_k... ar-k = b,,, . . . h},

and informally snake models the process of fol-
lowing diagonal edges above. The correctness of
the recurrence depends on a proper treatment of
the boundary cases: p = 0, k = -p, and

Volume 35, Number 6 INFORMATION PROCESSING LETTERS 15 September 1990

........-.__._.. \ .*..\ qe;;

.,. 4?=-.* : .*... ,
.-..

. .
*.., : *..

. . . . -... :
--*. *.., i

.*..*
*...

\

. . I
. . .

boa..,
.-._

**.,
*...

q~_.y;~~+-~
*...

. .._

.*.

*...
-... .-.*

-. q$=. . ..*..
....

. ..* ..* . ..*..

k-l k k+l k-l k k+l

(4 0
Fig. 4. Generating FP(p) from FP(p - 1). (a) below diagonal A, (b) above diagonal A.

k = A +p.These are handled cleanly by defining
fp(k,p)tobe -lwheneverp<OorkE[-p,a

+Pl.

Lemma 1.

‘snake(k, max(fp(k- 1, p) + 1,

fp(k + 1, P - l))),

ifkE[-p,a-11,

snake(k, max(fp(k- 1, p) + 1,

fp(k, P> = (fp(k - 1, P)&

ifk=a,

snake(k,max(fp(k-1, p-1)+1,

fp(k + 1, P>>),

, ifkE[~+l,~+p].

Proof. We give the proof only for the first case,
k < A; the proof for other cases is similar. Let g
be the farthest p-point in diagonal k - 1 (i.e.,
g = qkp_l), and let q be the farthest (p - l)-point
in diagonal k + 1 (i.e., q = qkp;;). Let a be the
vertex immediately to g’s right, let b be the vertex
immediately below q, and let d be the farthest
vertex reached from the farther of a and b along
diagonal edges. The y-coordinate of a is fp(k -

1, p) + 1, that of b is fp(k + 1, p - l), and that
of d is given by the first case of the recurrence of
the lemma. Figure 5 shows the two possible cases
where a is above b (i.e., fp(k + 1, p) + 1 G

fp(k, p - l)), and b is above a. Again we focus
just on the case shown in Fig. 5(a); the treatment
of the other case is similar. The P-value of d must
be p because there is a path to d with compressed
distance p (i.e., the one passing through q and b),

and if there were a shorter path, then the vertex c
shown in Fig. 5(a) would have P-value less than
p - 1 contradicting the choice of q. It remains to
show that d is the farthest such point. A path of
distance p to a farther point cannot pass through
d, because it would contradict the choice of d. But
then it must pass through a vertex of distance p
on diagonal k - 1 below g or a vertex of distance
p - 1 on diagonal k below q, contradicting the
choices of g and q, respectively. Thus such a path
does not exist and d is the farthest p-point in
diagonal k. q

The simple sequence comparison algorithm in
Fig. 6 is obtained directly from Lemma 1. The
outer repeat loop is executed exactly P + 1 times.
In the pth pass of this loop, the upper for loop
generates the points in FP(p) on diagonals below
A. Note that by overwriting the FP(p - 1) points
as it does so, only a single M + N + 1 element
array fp is required for working storage. The lower
for loop generates the points in FP(p) above
diagonal A, and the next statement generates the
farthest point on A. An examination of the recur-
rence reveals that the points visited in the upper

321

Volume 35, Number 6 INFORMATION PROCESSING LETTERS 15 September 1990

k-l k k+l k-l k k+l

Fig. 5. The two cases of Lemma 1.

for loop are strictly increasing in their y-coordi-
nate and the points visited in the lower for loop
are strictly decreasing in their x-coordinate. Thus,
the total time spent for one pass of the outer
repeat loop is O(N). So, the worst-case running
time of the algorithm is O(NP). To obtain the
expected running time of the algorithm we observe
that during a pass the total number of points
visited in a particular diagonal is the number of
diagonal edges traversed plus one (the frontier
point). Let the total number of matched edges
traversed be R,. Then, the total number of points
visited is 0(R, + PD), because at most D + 1
diagonals are covered in the computation. By an
analysis as in [9], we can show that the expected
number of traversed matched edges is 0(N + PD).

Table 1
Experimental results

The expected time complexity of the algorithm is
therefore O(N + PD).

4. Implementation

We implemented our algorithm and compared
it to Myers’s O(ND) algorithm [9]. Table 1 shows
the test results for 100 randomly generated strings.
Table 1 shows average values over 100 trials on
randomly generated strings over an alphabet of
size 16. The fifth column of the table shows the
number of comparisons (the same as the number
of points visited in the edit graph) that were made
during the computation for our O(NP) algorithm.
The sixth column shows the number of compari-

M N Number of Edit Number of comparisons Execution time
deletions distance

G(NP) G(ND) o(NP) o(ND)

4000 5000 10 1020 21564 526506 0.13 2.61
4000 5OcKl 50 1100 59520 614391 0.41 3.12
4000 5000 100 1200 121635 137748 0.83 4.02
4ooo 5000 200 1400 255157 1004952 1.62 5.87
4000 5000 400 1800 600216 1693377 3.68 8.94
4000 5000 600 2200 1016433 2523687 6.41 14.85
5000 5000 200 400 49202 93139 0.33 0.61
5000 5000 600 1200 398499 791815 2.34 4.65

322

Volume 35, Number 6 INFORMATION PROCESSING LEI-IERS 15 September 1990

Algorithm Compare
begin

fp[-M...N]:=-1;
p:= -1.

repeat
begin

p:=p+l;

fork:=-ptOA-ldo
fp[k]:=snake(k,max(fp[k-l]+l,

fp[k + 11));
fork:=a+pdowntoA+lby -1do

jp[k]:=snake(k,max(fp[k-l]+l,

fP[k + 11));

end’[“’ ‘=
snake(k,max(fp[k-l]+l, fp[k+l]));

Until fp[A]=N;
write “The edit distance is:” A + 2p;

end

function snake(k, y: int): int
In+

x := y - k;

whIlex<Mand y<Nand A[x+l]=B[y+l]do

begin
x:=x+1; y:=y+l;

end
snake := y;

end

Fig. 6. Algorithm Compare.

sons made during the computation of the 0(ND)
algorithm. The last two columns show running
times on a VAX 8650 under 4.3bsd UNIX. As can
be seen in the table, the speedup is quite large
when A and B differ in length but are quite
similar. When A is approximately a subsequence
of B, our algorithm runs in linear time.

References

[l] V.L. Arlazarov, E.A. Dinic, M.A. Kronrod and LA.
Faradzev, On economic construction of the transitive

PI

]31

[41

151

]61

]71

[81

]91

closure of a directed graph, Dokl. Akad. Nauk SSSR 194
(1970) 487-488 (in Russian); Soviet Math. Dokl. 11 (1975)
1209-1210 (in English).
F. Hadlock, Minimum detour methods for string or se-
quence comparison, Congr. Namer. 61 (1988) 263-274.
D.S. Hirschberg, A linear space algorithm for computing
longest common subsequences, Comm. ACM 18 (1975)
341-343.
D.S. Hirschberg, Algorithms for the longest common sub-
sequence problem, J. ACM 24 (1977) 664-675.
J.W. Hunt and T.G. Szymanski, A fast algorithm for
computing longest common subsequences, Comm. ACM

20 (1977) 350-353.
V.I. Levenshtein, Binary codes capable of correcting dele-
tions, insertions, and reversals, Problems Inform. Trans-

mission 1 (1965) 8-17.
W.J. Masek and M.S. Paterson, A faster algorithm for
computing string edit distances, J. Comput. System Sci. 20
(1980) 18-31.
W. Miller and E.W. Myers, A file comparison program,
Software-Practice & Experience 15 (1985) 1025-1040.
E.W. Myers, An O(ND) difference algorithm and its
variations, Algorithmica 1 (1986) 251-266.

[lo] E.W. Myers and W. Miller, Row replacement algorithms
for screen editors, ACM Trans. Program. Lang. Sysf. 11
(1989) 33-56.

[ll] N. Nakatsu, Y. Kambayashi and S. Yajima, A longest
common subsequence algorithm suitable for similar text
string, Acta Inform. 18 (1982) 171-179.

[12] S.B. Needleman and CD. Wunsch, A general method
applicable to the search for similarities in the amino acid
sequence of two proteins, J. Molecular Biology 48 (1970)
443-453.

[13] R. Sedgewick and J.S. Vitter, Shortest paths in Euclidean
graphs, Algorithmica 1 (1986) 31-48.

[14] E. Ukkonen, Algorithms for approximate string matching,
Inform. and Control 64 (1985) 100-118.

[15] T.K. Vintsyuk, Speech discrimination by dynamic pro-
gramming, Cybernetics 4 (1968) 55-57.

[16] R.A. Wagner and M.J. Fischer, The string to string cor-
rection problem, J. ACM 21 (1974) 168-173.

323

