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Abstract

The problem of computing the similarity of two run-length encoded strings has been studied for various scoring metrics. Many
algorithms have been developed for the longest common subsequence metric and some algorithms for the Levenshtein distance
metric and the weighted edit distance metric. In this paper we consider similarity based on the affine gap penalty metric which
is a more general and rather complicated scoring metric than the weighted edit distance. To compute the similarity in this model
efficiently, we convert the problem into a path problem on a directed acyclic graph and use some properties of maximum paths
in this graph. We present an O(nm′

+ n′m) time algorithm for computing the similarity of two run-length encoded strings in the
affine gap penalty model, where n and m are the lengths of given two strings whose run-length encoded lengths are n′ and m′,
respectively.
c© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

A string S is run-length encoded if it is described as an ordered sequence of pairs (σ, i), often denoted “σ i ”, each
consisting of an alphabet symbol σ and an integer i [2]. Each pair corresponds to a run in S, consisting of i consecutive
occurrences of σ . Let A and B be two strings with lengths n and m, respectively. Let A′ and B ′ be two run-length
encoded strings of A and B, and n′ and m′ be the lengths of A′ and B ′, respectively.

The problem of computing the similarity of two run-length encoded strings, A′ and B ′, has been studied for various
scoring metrics. For the longest common subsequence metric, Bunke and Csirik [3] presented an O(nm′

+ n′m) time
algorithm, while Apostolico, Landau, and Skiena [1] gave an O(n′m′ log(n′m′)) time algorithm and Mitchell [13]
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Table 1
Various scoring metrics

Metric Match Mismatch Indel Indel of k characters

Longest common subsequence 1 0 0 0

Levenshtein distance 0 1 1 k

Weighted edit distance 0 δ µ kµ

Affine gap penalty 1 −δ −γ − µ γ − kµ

obtained an O((d + n′
+ m′) log(d + n′

+ m′)) time algorithm, where d is the number of matches of compressed
characters. Mäkinen, Navarro, and Ukkonen [12] conjectured an O(n′m′) time algorithm on average without proof.

For the Levenshtein distance metric, Arbell, Landau, and Mitchell [2] and Mäkinen, Navarro, and Ukkonen [11]
presented O(nm′

+ n′m) time algorithms, independently. Mäkinen, Navarro, and Ukkonen [11] posed as an open
problem the challenge of extending these results to more general scoring metrics. Crochemore, Landau, and Ziv-
Ukelson [5,4] and Mäkinen, Navarro, and Ukkonen [12] gave O(nm′

+ n′m) time algorithms for the weighted edit
distance metric using techniques completely different from each other.

In this paper we consider similarity based on the affine gap penalty metric. Table 1 shows the differences between
four metrics. The affine gap penalty metric is the most general of the four and it is a rather complicated scoring metric
than the weighted edit distance. To compute the similarity in this model efficiently, we convert the problem into a path
problem on a directed acyclic graph and we use some properties of paths in this graph to select only essential paths,
i.e., the paths that must be considered to compute entries correctly. It is not necessary to build the graph explicitly
since we come up with new recurrences from the essential paths.

We present an O(nm′
+ n′m) time algorithm for computing similarity of two run-length encoded strings in the

affine gap penalty model, where n and m are the lengths of given two strings whose run-length encoded lengths are n′

and m′, respectively. This result shows that we successfully extended comparison of run-length encoded strings to a
more general scoring metric.

The remainder of the paper is organized as follows. In Section 2, we describe the global alignment algorithm due
to Gotoh, convert the alignment problem into a path problem on a directed acyclic graph, and give some properties of
maximum paths in this graph. In Section 3, we present new recurrences for a white block and a black block using the
properties of the graph and give an efficient algorithm for computing similarity of two run-length encoded strings in
the affine gap penalty model based on the new recurrences. We conclude in Section 4.

2. Preliminaries

We first give some definitions and notations that will be used in this paper. A string is concatenations of zero or more
characters from an alphabet Σ . A space is denoted by ∆ /∈ Σ ; we regard ∆ as a character for convenience. The length
of a string A is denoted by |A|. Let ai denote the i th character of a string A and A[i.. j] denote substring ai ai+1 . . . a j
of A. When a string α is a substring of string A, we denote it by α ≺ A. Given two strings A = a1a2 . . . an and
B = b1b2 . . . bm , an alignment of A and B is A∗

= a∗

1a∗

2 . . . a∗

l and B∗
= b∗

1b∗

2 . . . b∗

l constructed by inserting zero
or more ∆s into A and B so that each a∗

i maps to b∗

i for 1 ≤ i ≤ l. There are three kinds of mappings in a∗ and b∗

according to the characters of a∗

i and b∗

i .

• match : a∗

i = b∗

i 6= ∆,
• mismatch : (a∗

i 6= b∗

i ) and (a∗

i , b∗

i 6= ∆),
• insertion or deletion (indel for short) : either a∗

i or b∗

i is ∆.

Note that we do not allow the case of a∗

i = b∗

i = ∆.

2.1. Global alignments

Given two strings A and B, let SG(A, B) denote the similarity of A and B, which we define formally below.
Informally, it is the similarity score of an optimal global alignment between A and B.
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A well-known algorithm to find an optimal global alignment was given by Waterman et al. [14] and Gotoh [7].
Given two strings A and B where |A| = n and |B| = m, the algorithm computes SG(A, B) using a dynamic
programming table (called the H table) of size (n + 1)(m + 1). Let Hi j for 0 ≤ i ≤ n and 0 ≤ j ≤ m denote
SG(A[1..i], B[1.. j]). Then, Hi j can be computed by the following recurrence:

Hi,0 = −gi for 0 ≤ i ≤ n

H0, j = −g j for 0 ≤ j ≤ m

Hi j = max
{

Hi−1, j−1 + s(ai , b j ), Ci j , Ri j
}

for 1 ≤ i ≤ n, 1 ≤ j ≤ m

(1)

where gk , s(ai , b j ), Ci j , and Ri j are defined as follows.

• gk is the gap penalty for an indel of k ≥ 1 bases such that gk = γ + kµ where γ and µ are non-negative constants.
• s(ai , b j ) is the similarity score between elements ai and b j such that

s(ai , b j ) =

{
1 if ai = b j
−δ if ai 6= b j

where δ is a non-negative constant.
• Ci j (resp. Ri j ) is the highest similarity among global alignments of A[1..i] and B[1.. j] such that the last mapping

is insertion (resp. deletion). Ci j and Ri j are computed by the following recurrence:

C0, j = Ri,0 = −∞ for 0 ≤ i ≤ n, 0 ≤ j ≤ m

Ci j = max
{

Hi−1, j − g1, Ci−1, j − µ
}

for 1 ≤ i ≤ n, 1 ≤ j ≤ m

Ri j = max
{

Hi, j−1 − g1, Ri, j−1 − µ
}

for 1 ≤ i ≤ n, 1 ≤ j ≤ m.

(2)

Then the value Hnm is SG(A, B) and it is computed in O(nm) time.

2.2. Gap penalty models [8]

We defined the gap penalty gk as gk = γ + kµ where γ and µ are non-negative constants. This is called the affine
gap penalty model, where γ is the gap initiation penalty and µ is the gap extension penalty. We define g0 = 0. When
there is no gap initiation penalty, i.e., gk = kµ, it is called the linear gap penalty model.

The problem we consider in this paper is as follows.

Problem 1. Let A and B be two strings, and let A′ and B ′ be run-length encoded strings of A and B, respectively.
Given A′ and B ′, compute SG(A, B) with affine gap penalty.

2.3. Black and white blocks [2]

We divide the H table into submatrices, which called “blocks”. A block is a submatrix Hi1..i2, j1.. j2 made up of two
runs — one of A and one of B. Thus, by definition, the H table is divided into exactly n′m′ blocks where n′ and m′

are the run-length encoded lengths of A and B, respectively. The blocks are of two types: black block, corresponding
to a pair of identical letters ai1 = b j1 , and white block, corresponding to a pair of distinct letters ai1 6= b j1 .

Within one block, there exists only one kind of similarity score s(ai , b j ). In a black block, every ai is equal to every
b j and thus s(ai , b j ) is always 1. In a white block, every ai is different from every b j and thus s(ai , b j ) is always −δ.

2.4. Dependency of elements

The computation of similarity can be viewed as a path problem on a directed acyclic graph called an alignment
graph [9]. See Fig. 1. At each position (i, j) for 0 ≤ i ≤ n and 0 ≤ j ≤ m, there are three kinds of vertices: an
H-vertex, a C-vertex and an R-vertex. An alignment graph has the following edges:

(1) h1 : a horizontal edge from an H -vertex at (i, j) to an R-vertex at (i, j + 1). The edge weight |h1| is −γ − µ.
(2) ĥ1 : a horizontal edge from an R-vertex at (i, j) to an R-vertex at (i, j + 1). |ĥ1| = −µ.
(3) v1 : a vertical edge from an H -vertex at (i, j) to a C-vertex at (i + 1, j). |v1| = −γ − µ.
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Fig. 1. An alignment graph for ai+1 = g and b j+1b j+2 = gt .

(4) v̂1 : a vertical edge from a C-vertex at (i, j) to a C-vertex at (i + 1, j). |v̂1| = −µ.
(5) d1 : a diagonal edge from an H -vertex at (i, j) to an H -vertex at (i + 1, j + 1). There are two kinds of diagonal

edges: db
1 when ai+1 = b j+1 and dw

1 when ai+1 6= b j+1. |db
1 | = 1 and |dw

1 | = −δ.
(6) Edges at (i, j) from an R-vertex to an H -vertex and from a C-vertex to an H -vertex. The edge weights are 0.

The edges from 1 to 4 are defined from recurrence (2) and the edges from 5 to 6 are defined from recurrence (1). Since
Ri j is the maximum of Hi, j−1 − g1 and Ri, j−1 − µ in recurrence (2), we define an edge h1 from an H -vertex to an
R-vertex with edge weight −γ − µ and define an edge ĥ1 from an R-vertex to an R-vertex with −µ. The other edges
are defined similarly.

We can define a path 〈·〉 from a vertex to a vertex. A horizontal path 〈ĥi 〉 for i > 1 is defined as i consecutive
ĥ1 edges, i.e., 〈ĥ1 . . . ĥ1〉 and a horizontal path 〈hi 〉 is defined as 〈h1ĥi−1〉. Vertical paths 〈v̂i 〉 and 〈vi 〉 are defined
similarly. A diagonal path 〈di 〉 is defined as i consecutive d1 edges. A path P from (k, l) to (i, j) is a sequence of
edges from a vertex at (k, l) to a vertex at (i, j). For example, 〈h2d1v1〉 is a path from an H -vertex at (i, j) to a
C-vertex (or an H -vertex) at (i + 2, j + 3). Let |〈·〉| denote a path weight of 〈·〉 which is the sum of all edge weights
in the path. For example, the path weight of 〈h2dw

1 v1〉 is |〈h2dw
1 v1〉| = −γ − 2µ − δ − γ − µ.

We now describe various properties of paths which will be used in Section 3. Let ↔ denote an equivalence relation
between two paths which means that the numbers of each kind of edges are the same on both sides. This implies that
the path weights of the two paths are the same. Note that ↔ is symmetric.

We can merge two paths into one or divide a path into two. For example, if 〈dahb〉〈ĥcvd〉 is a sequence of paths from
(k, l) to (i, j), then 〈dahbĥcvd〉 is also a path from (k, l) to (i, j), i.e., 〈dahb〉〈ĥcvd〉 ↔ 〈dahbĥcvd〉. Also 〈dahbĥcvd〉

can be divided into 〈dahb〉〈ĥcvd〉, i.e., 〈dahbĥcvd〉 ↔ 〈dahb〉〈ĥcvd〉.

Fact 1. 〈α〉〈β〉 ↔ 〈αβ〉 where α and β are sequences of edges.

By definition of a path, 〈dahbĥcvd〉 ↔ 〈dahb+cvd〉. However, for the following cases, the path weights are changed:

Fact 2. |〈hahb〉| ≤ |〈ha+b〉| and |〈vavb〉| ≤ |〈va+b〉|.

We can exchange the order of two adjacent edges in a path. If 〈havbdc〉 is a path from (k, l) to (i, j), then 〈vbhadc〉

is also a path from (k, l) to (i, j) and the path weights are the same.

Fact 3. 〈havb〉 ↔ 〈vbha〉.

However, an exchange of edge d can cause the change of a path weight because d depends on the match/mismatch
of the position. Since |dw

1 | < |db
1 |, we get the following fact.

Fact 4. |〈vadw
b 〉| ≤ |〈dbva〉| and |〈vadb

b 〉| ≥ |〈dbva〉|.

For a maximum path in one block, of course, the order exchange of d does not change the path weight because
there is only one kind of edge d in one block.

Fact 5. |〈αdw
b 〉| = |〈dw

b α〉| and |〈αdb
b 〉| = |〈db

b α〉| within one block.
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Fig. 2. Three cases for edge selection. |〈dw
k 〉| is compared with (a) |〈vk hk 〉|, (b) |〈v̂k hk 〉|, (c) |〈vk ĥk 〉|.

We also define a maximum path from (k, l) to (i, j) which is a path that has the maximum path weight among all
paths from (k, l) to (i, j). A maximum path from an H-vertex to another H-vertex will be called an HH-mp. Similarly,
we will use a CC-mp, an RR-mp, an HC-mp, etc. Each maximum path has some restrictions: An H x-mp cannot start
with v̂ or ĥ (x is a do-not-care symbol). A Cx-mp and an Rx-mp must start with v̂ and ĥ, respectively. An xC-mp
must end with v or v̂ and an x R-mp must end with h or ĥ.

From recurrence (1), we can get a relation between Hi j and its previously defined entries.

Lemma 6. Let P be an HH-mp from (k, l) to (i, j). Then Hi j ≥ Hkl + |P|.

Note that the symmetric versions of Lemma 6 hold for a CC-mp, an RR-mp, an HC-mp, etc.
Now we consider a maximum path in one block. By Facts 2, 3 and 5, we get the following fact.

Fact 7. Every maximum path in one block is represented as a permutation of at most one di , at most one h j and at
most one vk (except CC-mp and RR-mp which may have additionally one v̂p and one ĥq , respectively).

The number of diagonal edges in a maximum path depends on the weight of d and those of v and h. For a black
block, |〈db

k 〉| = k > 0 and |〈hk〉| = |〈vk〉| ≤ 0 (also |〈ĥk〉| = |〈v̂k〉| ≤ 0). Thus we get the following fact.

Fact 8. In a black block, the number of diagonal edges in a maximum path must be maximized.

For a white block, Fact 8 does not hold because the similarity score for mismatch, −δ, is also less than or equal
to 0. Instead, we show that for an HH-mp from (i, j) to (i + k, j + k), the number of diagonal edges in a maximum
path is either k or 0. By Fact 7, a maximum path from (i, j) to (i + k, j + k) for 0 ≤ t ≤ k is 〈vk−t dw

t hk−t 〉. Then the
path weight is |〈vk−t dw

t hk−t 〉| = −2gk−t − tδ = −2γ d(k − t)/ke − 2kµ + (2µ − δ)t since gk−t = −γ − (k − t)µ
if t < k; it is 0 if t = k. The term −2γ d(k − t)/ke has a maximum value when t = k and the term (2µ − δ)t has a
maximum value when t = k for 2µ − δ ≥ 0 and when t = 0 for 2µ − δ < 0. By these, the path has the maximum
weight only when t = k or t = 0, i.e., maximum path 〈vk−t dw

t hk−t 〉 is either 〈dw
k 〉 when t = k or 〈vkhk〉 when t = 0.

Thus we get the following fact.

Fact 9. In a white block, an HH-mp from (i, j) to (i + k, j + k) is either 〈dw
k 〉 or 〈vkhk〉. In addition, an HH-mp from

(i, j) to (i + k + s, j + k) for s > 0 is either 〈vsdw
k 〉 or 〈vs+khk〉. An HH-mp from (i, j) to (i + k, j + k + s) is either

〈dw
k hs〉 or 〈vkhk+s〉. (See Fig. 2.)

Note that the symmetric versions of Fact 9 hold for a CH-mp, an RH-mp, a CC-mp, etc.

3. Algorithm

In this section we present an algorithm that computes the similarity between two run-length encoded strings with
affine gap penalty.

The outline of the algorithm is the same as that for the LCS [3], the Levenshtein distance [2,11] and the weighted
edit distance [5,12]. Given two run-length encoded strings A′ and B ′, we compute blocks from left to right and from
top to bottom. For each block, we compute the bottom row from left to right and the rightmost column from top to
bottom. See Fig. 3.

Given a block Hi+1..i+p, j+1.. j+q , our goal is to compute the value of Ci+p, j+l , Ri+p, j+l and Hi+p, j+l for
1 ≤ l ≤ q (bottom row) and Ci+k, j+q , Ri+k, j+q and Hi+k, j+q for 1 ≤ k ≤ p (rightmost column) in O(p + q)

time using Ci+k, j , Ri+k, j and Hi+k, j for 0 ≤ k ≤ p (leftmost column) and Ci, j+l , Ri, j+l and Hi, j+l for 0 ≤ l ≤ q
(top row).

We present two algorithms, one for a white block and another for a black block. For each block, we first present
how to compute the values of C and R, and then show how to compute the values of H .
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Fig. 3. H table for ar c pbt and asbq cu is divided into 9 blocks which consist of 3 black blocks and 6 white blocks. For one of the white blocks,
Hi+1..i+p, j+1.. j+q , we only need to compute Hi+p, j+1.. j+q and Hi+1..i+p, j+q from Hi..i+p, j and Hi, j.. j+q .

3.1. White blocks

We give an algorithm for a white block. We only show how to compute the values of the elements on the bottom
row of the block. Computing the elements on the rightmost column is done similarly.

3.1.1. Computing Ci+p, j+l

To compute the value of Ci+p, j+l for 1 ≤ l ≤ q , we need Ri+k, j for 1 ≤ k ≤ p, Ci, j+s for 1 ≤ s ≤ l, Hi+k, j
for 1 ≤ k ≤ p, and Hi, j+s for 0 ≤ s ≤ l. Since there are various ways from each element to Ci+p, j+l , we give some
lemmas to select essential paths, i.e., the paths that must be considered to compute Ci+p, j+l .

Lemma 10. Let Hi+k, j+l for 1 ≤ k ≤ p be an element within a white block and P1 be a CH-mp from (i, j + l − s) to
(i +k, j +l) for 0 ≤ s < l. Then, there exists an element Ci, j+l such that Ci, j+l−s +|P1| ≤ Ci, j+l +|P2| where P2 is a
CH-mp from (i, j +l) to (i +k, j +l) or there exists Hi, j+l−t for 0 ≤ t < s such that Ci, j+l−s +|P1| ≤ Hi, j+l−t +|P3|

where P3 is an HH-mp from (i, j + l − t) to (i + k, j + l).

Proof. In a white block, the CH-mp P1 is 〈v̂lhs〉, 〈v̂l−sdw
s 〉, or 〈v̂1dw

k−1hs−k+1〉 by Fact 9. We prove the lemma in
three cases.

(i) P1 = 〈v̂lhs〉 : See Fig. 4(a). By recurrence (2), there exists Hi−u, j+l−s such that Ci, j+l−s = Hi−u, j+l−s − gu ,
i.e., Ci, j+l−s = Hi−u, j+l−s + |〈vu〉|. By Facts 1 and 3, 〈vu〉〈v̂khs〉 ↔ 〈vu v̂khs〉 ↔ 〈hsvu v̂k〉 ↔ 〈hsvu〉〈v̂k〉. Now we
consider the element Ci, j+l . Then Ci, j+l ≥ Hi−u, j+l−s + |〈hsvu〉| by Lemma 6 and the CH-mp P2 from (i, j + l) to
(i + k, j + l) is 〈v̂k〉. Thus,

Ci, j+l−s + |P1| = Hi−u, j+l−s + |〈vu〉| + |〈v̂khs〉|

= Hi−u, j+l−s + |〈hsvu〉| + |〈v̂k〉|

≤ Ci, j+l + |〈v̂k〉| = Ci, j+l + |P2|

and the lemma holds.
(ii) P1 = 〈v̂k−sdw

s 〉 : As in (i), Ci, j+l−s = Hi−u, j+l−s + |〈vu〉|. By Facts 1 and 4, 〈vu〉〈v̂k−sdw
s 〉 ↔ 〈vu+k−sdw

s 〉

and |〈vu+k−sdw
s 〉| ≤ |〈dsvu+k−s〉|. Suppose that u > s. See Fig. 4(b). We consider the element Ci, j+l . Then

Ci, j+l ≥ Hi−u, j+l−s + |〈dsvu−s〉| by Lemma 6 and the CH-mp P2 from (i, j + l) to (i + k, j + l) is 〈v̂k〉. Thus,

Ci, j+l−s + |P1| = Hi−u, j+l−s + |〈vu〉| + |〈v̂k−sdw
s 〉|

≤ Hi−u, j+l−s + |〈dsvu−s〉| + |〈v̂k〉|

≤ Ci, j+l + |〈v̂k〉| = Ci, j+l + |P2|.

Suppose that u ≤ s. See Fig. 4(c). We consider the element Hi, j+l−t where t = s − u. Then Hi, j+l−t ≥

Hi−u, j+l−s + |〈du〉| by Lemma 6 and the HH-mp P3 from (i, j + l − t) to (i + k, j + l) is 〈dtvk−t 〉. Thus,
Ci, j+l−s + |P1| ≤ Hi−u, j+l−s + |〈du〉| + |〈dtvk−t 〉| ≤ Hi, j+l−t + |P3| and the lemma holds.

(iii) P1 = 〈v̂1dw
k−1hs−k+1〉 : See Fig. 4(d). As in (i), Ci, j+l−s = Hi−u, j+l−s + |〈vu〉|. By Facts 1 and 5,

〈vu〉〈v̂1dw
k−1hs−k+1〉 ↔ 〈vu v̂1dw

k−1hs−k+1〉 ↔ 〈hs−k+1vu v̂1dw
k−1〉. A CH-mp from (i, j + l − k + 1) to (i + k, j + l)



274 J.W. Kim et al. / Theoretical Computer Science 395 (2008) 268–282

Fig. 4. Proof of Lemma 10.

Fig. 5. Proof of Lemma 11.

is 〈v̂1dk−1〉. Thus,

Ci, j+l−s + |P1| = Hi−u, j+l−s + |〈hs−k+1vu〉| + |〈v̂1dw
k−1〉|

= Ci, j+l−k+1 + |〈v̂1dw
k−1〉|

and then it becomes case (ii). Hence the lemma holds. �

Lemma 11. Let P1 be a CC-mp from (i, j + l − s) to (i + p, j + l) for 0 ≤ s < l. Then, there exists an element Ci, j+l
such that Ci, j+l−s + |P1| ≤ Ci, j+l + |P2| where P2 is a CC-mp from (i, j + l) to (i + p, j + l) or there exists an
element Hi, j+l−t for 0 ≤ t < s such that Ci, j+l−s + |P1| ≤ Hi, j+l−t + |P3| where P3 is an HC-mp from (i, j + l − t)
to (i + p, j + l).

Proof. See Fig. 5. Because P1 is a CC-mp from (i, j+l−s) to (i+p, j+l), P1 = P ′

1+〈vr 〉 for 1 ≤ r < k where P ′

1 is a
CH-mp from (i, j+l−s) to (i+p−r, j+l) , i.e., Ci, j+l−s+|P ′

1| = Hi+p−r, j+l and Hi+p−r, j+l+|〈vr 〉| = Ci+p, j+l . By
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Fig. 6. Proof of Lemma 12.

Lemma 10, there exists an element Ci, j+l such that Ci, j+l−s +|P ′

1| ≤ Ci, j+l +|P ′

2| or there exists an element Hi, j+l−t
such that Ci, j+l−s +|P ′

1| ≤ Hi, j+l−t +|P ′

3|. Thus, Ci, j+l−s +|P1| = Ci, j+l−s +|P ′

1|+ 〈vr 〉 ≤ Ci, j+l +|P ′

2|+ 〈vr 〉 ≤

Ci, j+l + |P2| or Ci, j+l−s + |P1| ≤ Hi, j+l−t + |P ′

3| + 〈vr 〉 ≤ Hi, j+l−t + |P3|. �

Lemma 12. Let P1 be an RC-mp from (i + k, j) to (i + p, j + l) for 1 ≤ k ≤ p − 1. If −δ > −2µ, there exists an
element Ri+p−1, j such that Ri+k, j +|P1| ≤ Ri+p−1, j +|P2| where P2 is an RC-mp from (i + p−1, j) to (i + p, j +l)
or there exists Hi+t, j for k < t ≤ p −1 such that Ri+k, j +|P1| ≤ Hi+t, j +|P3| where P3 is an HC-mp from (i + t, j)
to (i + p, j + l).

Proof. Since −δ > −2µ, the RC-mp P1 = 〈ĥl−adw
a vp−k−a〉 where a = min{l − 1, p − k − 1}. By recurrence

(2), there exists Hi+k, j−u for u > 0 such that Ri+k, j = Hi+k, j−u + |〈hu〉|. Then, Ri+k, j + |P1| = Hi+k, j−u +

|〈hu ĥl−adw
a vp−k−a〉|. By Fact 4, |〈hu ĥl−adw

a vp−k−a〉| ≤ |〈dahu+l−avp−k−a〉|. Since −δ > −2µ, we can maximize
the number of diagonal edges without considering the type of a block. Let b = min{u + l − a, p − k − a − 1}. Then,
|〈dahu+l−avp−k−a〉| < |〈da+bhu+l−a−bvp−k−a−b〉|.

Suppose a + b < u. See Fig. 6(a). Now we consider the element Ri+p−1, j . Then Ri+p−1, j ≥ Hi+k, j−u +

|〈da+bhu−a−b〉| by Lemma 6 and the RC-mp P2 from (i + p − 1, j) to (i + p, j + l) is 〈ĥlv1〉. Thus, Hi+k, j−u +

|〈da+bhu+l−a−bvp−k−a−b〉| ≤ Ri+p−1, j + |〈ĥlvp−k−a−b〉|. Since i + k + a + b = i + p − 1, p − k − a − b = 1 and
thus Ri+k, j + |P1| ≤ Ri+p−1, j + |P2| from above all.

Suppose a + b ≥ u. See Fig. 6(b) and Fig. 6(c). We note that k + a + b ≤ p − 1. We consider Hi+t, j where
t = k + u ≤ p − 1. By Lemma 6, Hi+t, j ≥ Hi+k, j−u + |〈du〉| and thus Hi+k, j−u + |〈da+bhu+l−a−bvp−k−a−b〉| ≤

Hi+t, j + |〈da+b−uhu+l−a−bvp−k−a−b〉|. Since 〈da+b−uhu+l−a−bvp−k−a−b〉 is a path from (i + t, j) to (i + p, j + l),
the weight of this path is not greater than that of the HC-mp P3. Hence Ri+k, j + |P1| ≤ Hi+k+u, j + |P3| from above
all. �

If −δ ≤ −2µ, the RC-mp from (i + k, j) to (i + p, j + l) for 1 ≤ k ≤ p − 1 is 〈ĥlvp−k〉 and it is an essential path
for every 1 ≤ k ≤ p − 1.

Lemma 13. Let P1 be an HC-mp from (i, j + l − s) to (i + p, j + l) for 0 ≤ s ≤ l. Then, there exists an element
Hi, j+l−t for 0 ≤ t ≤ min{l, p−1} such that Hi, j+l−s +|P1| ≤ Hi, j+l−t +|P2| where P2 is an HC-mp from (i, j+l−t)
to (i + p, j + l).

Proof. If s < p, then let t be s and it is done. Now, we consider that s ≥ p. In a white block, the HC-mp P1 is
〈vp−1hsv1〉 or 〈dp−1hs−p+1v1〉 by Fact 9. We prove the lemma in two cases.

(i) P1 = 〈vp−1hsv1〉 : See Fig. 7(a). By Facts 3 and 2, 〈vp−1hsv1〉 ↔ 〈hsvp−1v1〉 and |〈hsvp−1v1〉| ≤ |〈hsvp〉|.
Now we consider the element Hi, j+l . Then Hi, j+l ≥ Hi, j+l−s +|〈hs〉| by Lemma 6 and the HC-mp P2 from (i, j + l)
to (i + p, j + l) is 〈vp〉. Thus, Hi, j+l−s + |P1| ≤ Hi, j+l−s + |〈hsvp〉| ≤ Hi, j+l + |〈vp〉| = Hi, j+l + |P2| and the
lemma holds.

(ii) P1 = 〈dp−1hs−p+1v1〉 : See Fig. 7(b). By Fact 5, |〈dp−1hs−p+1v1〉| = |〈hs−p+1dp−1v1〉|. Now we consider the
element Hi, j+l−p+1. Then Hi, j+l−p+1 ≥ Hi, j+l−s +|〈hs−p+1〉| by Lemma 6 and the HC-mp P2 from (i, j +l− p+1)

to (i + p, j + l) is 〈dp−1v1〉. Thus, Hi, j+l−s + |P1| = Hi, j+l−s + |〈hs−p+1dp−1v1〉| ≤ Hi, j+l−p+1 + |〈dp−1v1〉| =

Hi, j+l−p+1 + |P2| and the lemma holds. �
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Fig. 7. Proof of Lemma 13.

Fig. 8. Computing Ci+p, j+l in a white block. (a) formulas (i) and (ii), (b) formula (iii), (c) formulas (iv) and (v), (d) formula (vi).

By the lemmas above, we can select essential paths from the top row of C , the leftmost column of R, and the top
row of H of the block to Ci+p, j+l . The maximum paths from the leftmost column of H to Ci+p, j+l , i.e., the HC-mps
from (i + k, j) to (i + p, j + l) for 1 ≤ k ≤ p − 1, are all essential paths. From these, we derive that the value of
Ci+p, j+l is the maximum of the following. See Fig. 8:

(i) max1≤s≤p−1{Ri+s, j − gp−s} − lµ
(ii) Ci, j+l − pµ

(iii) max1≤s≤p−1{Hi+s, j − gp−s} − gl
(iv) max0≤s≤min{l,p−1}{Hi, j+l−s − sδ − gp−s}

(v) max1≤s≤p−1−l{Hi+s, j − gp−s−l} − lδ when l < p − 1
(vi) max1≤s≤min{l−1,p−2}{Hi+p−1−s, j − gl−s − sδ} − g1 when l ≥ 2.

The value of each formula can be computed in O(p) time (of course, (ii) in constant time) and the maximum of them
is computed in constant time. Thus we need O(p) time to compute the value of Ci+p, j+l .

Computing all the values of C of the bottom row needs O(pq) time using the above result. However, since we
compute the bottom row from left to right, i.e., l is increased from 1 to q, we can reduce the time complexity to
O(p + q) using such properties of the recurrences that two adjacent entries are very similar.

First, consider (i) max1≤s≤p−1{Ri+s, j − gp−s}− lµ and (iii) max1≤s≤p−1{Hi+s, j − gp−s}− gl . The index s of the
maximum value in (i) and that in (iii) do not depend on l. Hence we compute (i) and (iii) for l = 1 in O(p) time and
then get the maximum value for l ≥ 2 in constant time by adding −(l − 1)µ.

Second, consider (iv) max0≤s≤min{l,p−1}{Hi, j+l−s − sδ − gp−s}. The range of the column index for H in (iv) is j
to j + l for 1 ≤ l < p and j + l − p + 1 to j + l for l ≥ p. As l increases, the range is increased by one till l < p and
then the position of the range is shifted to the right by one. See Fig. 9(a) and Fig. 9(c). Each time l increases, value
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Fig. 9. The changes from Ci+p, j+l to Ci+p, j+l+1 when (a) (b) l < p − 1 and (c) l ≥ p − 1.

−δ + µ is added to all the rest of the elements. It is almost the same as the recurrence for C in Case 2 of [10]. Thus,
using MQUEUE [10], we can get the maximum value in amortized constant time. We can use a deque with heap order
[6] to get worst-case constant time.

Third, consider (v) max1≤s≤p−1−l{Hi+s, j − gp−s−l} − lδ when l < p − 1. The range of the row index for H in
(v) is i + 1 to i + p − 1 − l for 1 ≤ l < p − 1. That is, the range is decreased by one till l < p − 1. See Fig. 9(a).
Hence we make a stack with heap order for l = 1 in O(p) time and then get the maximum value for l ≥ 2 one-by-one
in constant time by popping one element, getting the maximum value of the stack and adding (l − 1)(−δ + µ) to it.

Last, consider (vi) max1≤s≤min{l−1,p−2}{Hi+p−1−s, j − gl−s − sδ}− g1 when l ≥ 2. The range of the row index for
H in (vi) is i + p − l to i + p − 2 for 2 ≤ l < p − 1 and i + 1 to i + p − 2 for l ≥ p − 1. As l increases, the range is
increased by one till l < p − 1 and then the index s of the maximum value does not depend on l for l ≥ p − 1. See
Fig. 9(b) and Fig. 9(c). Thus, we can get the maximum value for l = 2 in constant time and then get the maximum
value till l < p − 1 one-by-one in constant time by adding −µ to the previous maximum value and comparing it
with a new element. We also get the maximum value for l ≥ p − 1 in constant time by adding −(l − p + 2)µ to the
maximum value for l = p − 2.

From above all, we compute (i) and (iii) in O(p + q) time, (ii), (iv) and (vi) in O(q) time, and (v) in O(p) time.
Therefore, we compute Ci+p, j+l for 1 ≤ l ≤ q in O(p + q) time.

3.1.2. Computing Ri+p, j+l

To compute the value of Ri+p, j+l for 1 ≤ l ≤ q , we need Ri+p, j+l−1 and Hi+p, j+l−1 by recurrence (2). Since we
know the values of Ri+p, j and Hi+p, j and we compute the bottom row of R from left to right, we have no problem to
compute Ri+p, j+l and it takes O(1) time. Therefore, we compute all the values of R of the bottom row in O(q) time.

3.1.3. Computing Hi+p, j+l

To compute the value of Hi+p, j+l for 1 ≤ l ≤ q , we need Ci+p, j+l , Ri+p, j+l and Hi+p−1, j+l−1. Since we know
the values of Ci+p, j+l and Ri+p, j+l , we only need to compute the diagonal incoming value.

Lemma 14. Let P1 be an RH-mp from (i + k, j) to (i + p − 1, j + l − 1) for 1 ≤ k ≤ p − 1. Then,
Ri+k, j + |P1| + |〈dw

1 〉| ≤ Ri+p, j+l .

Proof. We denote the RH-mp P1 by 〈ĥrα〉 for r ≥ 1 where α is a sequence of edges which starts with dw

or v. 〈dw
1 〉 is a diagonal path from (i + p − 1, j + l − 1) to (i + p, j + l). By recurrence (2), there exists

Hi+k, j−u such that Ri+k, j = Hi+k, j−u + |〈hu〉|. See Fig. 10. By Facts 1 and 4, 〈hu〉〈ĥrα〉〈dw
1 〉 ↔ 〈hu+rαdw

1 〉

and |〈hu+rαdw
1 〉| ≤ |〈αd1hu+r 〉|. Let P2 be an HR-mp from (i + k, j − u) to (i + p, j + l). Since 〈αd1hu+r 〉 is
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Fig. 10. Proof of Lemma 14.

Fig. 11. Proof of Lemma 16.

a path from (i + k, j − u) to (i + p, j + l), the weight of this path is not greater than that of P2. By Lemma 6,
Ri+p, j+l ≥ Hi+k, j−u + |P2|. Thus,

Ri+k, j + |P1| + |〈dw
1 〉| = Hi+k, j−u + |〈hu+rαdw

1 〉|

≤ Hi+k, j−u + |〈αd1hu+r 〉|

≤ Hi+k, j−u + |P2|

≤ Ri+p, j+l

and the lemma holds. �

Lemma 15. Let P1 be a CH-mp from (i, j +s) to (i + p−1, j +l−1) for 1 ≤ s ≤ l−1. Then, Ci, j+s +|P1|+|〈dw
1 〉| ≤

Ci+p, j+l .

Proof. Similar to the proof of Lemma 14. �

Lemma 16. Let P1 be an HH-mp from (i + k, j) to (i + p − 1, j + l − 1) for 1 ≤ k ≤ p − 1. Then,
Hi+k, j + |P1| + |〈dw

1 〉| ≤ Ri+p, j+l or Hi+k, j + |P1| + |〈dw
1 〉| ≤ Hi+p−l, j + |〈dw

l 〉| when l ≤ p.

Proof. We prove the lemma in three cases.
(i) i + k > i + p − l : See Fig. 11(a). Since 0 ≤ p − 1 − k < l − 1, the HH-mp P1 is 〈hl−1vp−1−k〉 or

〈hl−1−p+1+kdp−1−k〉. Without loss of generality, we denote P1 by 〈hrα〉 for r ≥ 1 where α is a sequence of edges.
〈dw

1 〉 is a diagonal path from (i + p − 1, j + l − 1) to (i + p, j + l). By Facts 1 and 5, 〈hrα〉〈dw
1 〉 ↔ 〈hrαdw

1 〉 and
|〈hrαdw

1 〉| = |〈αdw
1 hr 〉|. Let P2 be an HR-mp from (i + k, j) to (i + p, j + l). Since 〈αdw

1 hr 〉 is a path from (i + k, j)
to (i + p, j + l), the weight of this path is not greater than that of P2. By Lemma 6, Ri+p, j+l ≥ Hi+k, j + |P2|. Thus,
Hi+k, j + |P1| + |〈dw

1 〉| = Hi+k, j + |〈αdw
1 hr 〉| ≤ Hi+k, j + |P2| ≤ Ri+p, j+l and the lemma holds.

(ii) i + k < i + p − l : Since p − 1 − k > l − 1, the HH-mp P1 is 〈hl−1vp−1−k〉 or 〈dw
l−1vp−1−k−l+1〉. If

P1 = 〈hl−1vp−1−k〉, it becomes case (i). Now we consider P1 = 〈dw
l−1vp−1−k−l+1〉. See Fig. 11(b). By Facts 1

and 5, 〈dw
l−1vp−k−l〉〈dw

1 〉 ↔ 〈dw
l−1vp−k−ldw

1 〉 and |〈dw
l−1vp−k−ldw

1 〉| = |〈vp−k−ldw
l 〉|. By Lemma 6, Hi+p−l, j ≥

Hi+k, j + |〈vp−l−k〉|. Thus, Hi+k, j + |P1| + |〈dw
1 〉| = Hi+k, j + |〈vp−k−ldw

l 〉| ≤ Hi+p−l, j + |〈dw
l 〉| and the lemma

holds.
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Fig. 12. Computing Hi+p, j+l in a white block.

(iii) i + k = i + p − l : The HH-mp P1 is 〈hl−1vl−1〉 or 〈dw
l−1〉. If P1 = 〈hl−1vl−1〉, it becomes case (i). Now we

consider P1 = 〈dw
l−1〉. By definition of a path, |〈dw

l−1dw
1 〉| = |〈dw

l 〉| and the lemma holds. �

Lemma 17. Let P1 be an HH-mp from (i, j + s) to (i + p − 1, j + l − 1) for 0 ≤ s ≤ l − 1. Then,
Hi, j+s + |P1| + |〈dw

1 〉| ≤ Ci+p, j+l or Hi, j+s + |P1| + |〈dw
1 〉| ≤ Hi, j+l−p + |〈dw

l 〉| when l > p.

Proof. Similar to the proof of Lemma 16. �

By the lemmas above, we derive that the value of Hi+p, j+l is the maximum of the following. See Fig. 12:

(i) Ri+p, j+l

(ii) Ci+p, j+l

(iii) Hi+p−l, j − lδ when l ≤ p
(iv) Hi, j+l−p − pδ when l > p.

Since each value of (i), (ii), (iii) and (iv) is computed in constant time, we can compute all the values of H of the
bottom row in O(q) time.

3.1.4. Analysis
Given a white block with p rows and q columns, the bottom row of the block is computed in O(p + q) time. The

values of C of the bottom row are computed in O(p + q) time and the values of R and H of the bottom row are
computed in O(q) time.

The rightmost column of the block is also computed in O(p + q) time and thus the similarity of the white block
can be computed in O(p + q) time.

3.2. Black blocks

We give an algorithm for a black block. As in white blocks, we only show how to compute the values of the
elements on the bottom row of the block.

3.2.1. Computing Ci+p, j+l

To compute the value of Ci+p, j+l for 1 ≤ l ≤ q , we need Ri+k, j for 1 ≤ k ≤ p, Ci, j+s for 1 ≤ s ≤ l, Hi+k, j for
1 ≤ k ≤ p, and Hi, j+s for 0 ≤ s ≤ l. We give two lemmas for a black block to select essential paths. Since the proofs
of Lemmas 18 and 19 are similar to those of Lemmas 11 and 13, we omit them.

Lemma 18. Let P1 be a CC-mp from (i, j + l − s) to (i + p, j + l) for 1 ≤ s < l. Then, there exists an element
Hi, j+l−s such that Ci, j+l−s + |P1| ≤ Hi, j+l−s + |P2| where P2 is an HC-mp from (i, j + l − s) to (i + p, j + l)

Lemma 19. Let P1 be an HC-mp from (i, j + l − s) to (i + p, j + l) for 0 ≤ s ≤ l. Then, there exists an element
Hi, j+l−t for 0 ≤ t ≤ min{l, p−1} such that Hi, j+l−s +|P1| ≤ Hi, j+l−t +|P2| where P2 is an HC-mp from (i, j+l−t)
to (i + p, j + l).

By Lemmas 18 and 19 and Fact 8, we can select essential paths from the top row of C and the top row of H of the
block to Ci+p, j+l . The maximum paths from the leftmost column of R and the leftmost column of H to Ci+p, j+l are
all essential paths. From these, we derive that the value of Ci+p, j+l is the maximum of the following. See Fig. 13:
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Fig. 13. Computing Ci+p, j+l in a black block. (a) formula (i), (b) formulas (ii) and (iii), (c) formulas (iv) and (v), (d) formula (vi).

(i) max1≤s≤p−l{Ri+s, j − gp−s−l+1} − µ + (l − 1) for l ≤ p − 1
(ii) max0≤s≤min{l−2,p−2}{Ri+p−1−s, j − (l − s)µ + s} − g1 when l ≥ 2

(iii) Ci, j+l − pµ

(iv) max0≤s≤min{l,p−1}{Hi, j+l−s + s − gp−s}

(v) max1≤s≤p−1−l{Hi+s, j − gp−s−l} + l when l < p − 1
(vi) max1≤s≤min{l−1,p−2}{Hi+p−1−s, j − gl−s + s} − g1 when l ≥ 2.

We need O(p) time to compute the value of Ci+p, j+l .
We can compute all the values of C of the bottom row in O(p + q) time. Recurrences (iii), (iv), (v) and (vi) are

essentially the same as recurrences (ii), (iv), (v) and (vi) of a white block, and (i) and (ii) are similar to (v) and (vi),
respectively.

3.2.2. Computing Ri+p, j+l

Computing Ri+p, j+l for 1 ≤ l ≤ q in a black block is the same as in a white block. We can compute Ri+p, j+l by
recurrence (2) and it takes O(1) time. Therefore, we compute all the values of R of the bottom row in O(q) time.

3.2.3. Computing Hi+p, j+l

To compute the value of Hi+p, j+l for 1 ≤ l ≤ q , we need Ci+p, j+l , Ri+p, j+l and Hi+p−1, j+l−1. Since we know
the values of Ci+p, j+l and Ri+p, j+l , we only need to compute the diagonal incoming value.

To compute Hi+p, j+l , we need more terms than that in a white block. Since Lemmas 14 and 15 do not hold for a
black block, we need to compute paths from Ri+k, j for 1 ≤ k ≤ p − 1 and from Ci, j+s for 1 ≤ s ≤ l − 1.

Lemma 20. Let P1 be an RH-mp from (i + k, j) to (i + p − 1, j + l − 1) for 1 ≤ k ≤ p − 1. Then,
Ri+k, j + |P1| + |〈db

1 〉| ≤ Hi+p−l, j + |〈db
l 〉| when p ≥ l and Ri+k, j + |P1| + |〈db

1 〉| ≤ Hi, j+l−p + |〈db
p〉| when

l > p.

Proof. We will only prove the lemma for the case that l > p. For p ≥ l, we can similarly prove the lemma.
We know that there exists an HR-mp P2 from (0, 0) to (i + k, j) such that H0,0 + |P2| = Ri+k, j and that this path

passes the i th row. Let (i, j − u) for u > 0 be the last position of the i th row which P2 passes. The next position of
(i, j − u) by P2 is (i + 1, j − u) or (i + 1, j − u + 1). In other words, there exists an HR-mp P3 from (i, j − u)

to (i + k, j) such that Hi, j−u + |P3| = Ri+k, j or there exists a CR-mp P4 from (i, j − u) to (i + k, j) such that
Ci, j−u + |P4| = Ri+k, j .

Suppose that there exists an HR-mp P3 from (i, j − u) to (i + k, j). See Fig. 14(a). By Fact 8, the RH-
mp P1 from (i + k, j) to (i + p − 1, j + l − 1) is 〈ĥl−p+kdb

p−k−1〉 and Ri+k, j + |P1| ≤ Hi+p−1, j+l−1
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Fig. 14. Proof of Lemma 20.

Fig. 15. Computing Hi+p, j+l in a black block.

by Lemma 6. Thus, Hi, j−u + |P3| + |P1| ≤ Hi+p−1, j+l−1. We consider the element Hi, j+l−p. By Lemma 6,
Hi, j+l−p ≥ Hi, j−u + |〈hl−p+u〉| and Hi+p−1, j+l−1 ≥ Hi, j+l−p + |〈db

p−1〉|. By Fact 8, an HH-mp from (i, j − u) to

(i + p − 1, j + l − 1) is 〈hl−p+udb
p−1〉. Therefore,

Ri+k, j + |P1| + |〈db
1 〉| = Hi, j−u + |P3| + |〈ĥl−p+kdb

p−k−1〉| + |〈db
1 〉|

≤ Hi, j−u + |〈hl−p+udb
p−1〉| + |〈db

1 〉|

≤ Hi, j+l−p + |〈db
p〉|.

Suppose that there exists a CR-mp P4 from (i, j − u) to (i + k, j). See Fig. 14(b). Let (i + w, j − u) for
w > 0 be the last position of the ( j − u)th column which P2 passes. Then, the path P4 must pass an H -vertex
at (i + w, j − u). We denote P4 by 〈v̂wα〉 where α is a sequence of edges. By Fact 8, an HH-mp from (i + w, j − u)

to (i + p − 1, j + l − 1) is 〈hl−p+w+udb
p−w−1〉. Since Hi, j−u ≥ Ci, j−u by recurrence (2) and |〈db

w〉| > |〈ĥwv̂w〉| by

Fact 8, Hi, j−u +|〈hl−p+udb
p−1〉| ≥ Ci, j−u +|〈v̂whl−p+w+udb

p−w−1〉|. By Lemma 6, Hi, j+l−p ≥ Hi, j−u +|〈hl−p+u〉|.
Thus,

Ri+k, j + |P1| + |〈db
1 〉| = Ci, j−u + |〈v̂wα〉| + |P1| + |〈db

1 〉|

≤ Ci, j−u + |〈v̂whl−p+w+udb
p−w−1〉| + |〈db

1 〉|

≤ Hi, j−u + |〈hl−p+udb
p−1〉| + |〈db

1 〉|

≤ Hi, j+l−p + |〈db
p〉|.

and the lemma holds for l > p. �

Lemma 21. Let P1 be a CH-mp from (i, j +s) to (i + p−1, j +l−1) for 1 ≤ s ≤ l−1. Then, Ci, j+s +|P1|+|〈db
1 〉| ≤

Hi+p−l, j + |〈db
l 〉| when p ≥ l and Ci, j+s + |P1| + |〈db

1 〉| ≤ Hi, j+l−p + |〈db
p〉| when l > p.

Proof. Similar to the proof of Lemma 20. �

By Lemmas 20, 21, 16, 17 and Fact 8, we derive that the value of Hi+p, j+l is the maximum one of the followings.
See Fig. 15:

(i) Ri+p, j+l
(ii) Ci+p, j+l
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(iii) Hi+p−l, j + l when p ≥ l
(iv) Hi, j+l−p + p when l > p.

Since each value of (i), (ii), (iii) and (iv) is computed in constant time, we can compute all the values of H of the
bottom row in O(q) time.

3.2.4. Analysis
Given a black block with p rows and q columns, the bottom row of the block is computed in O(p + q) time. The

rightmost column of the block is also computed in O(p + q) time and thus the similarity of the black block can be
computed in O(p + q) time.

Theorem 22. The similarity of two run-length encoded strings in the affine gap penalty model can be computed in
O(nm′

+ n′m) time.

4. Conclusion

We have presented an efficient algorithm that computes the similarity of two run-length encoded strings with affine
gap penalty. To compute the similarity efficiently, we first converted the alignment problem into a path problem on a
directed acyclic graph and then made new recurrences using some properties of maximum paths in this graph. Based
on these recurrences and some data structures, we gave an O(nm′

+ n′m) time algorithm for computing the similarity
of two run-length encoded strings in the affine gap penalty model.

We successfully extended comparison of run-length encoded strings to a more general scoring metric. Our
technique of skipping some regions using essential paths can be applicable to other problems where dynamic
programming tables are divided into blocks.
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