
A Shapelet Transform for Time Series Classification

Jason Lines
University of East Anglia

Norwich, Norfolk
United Kingdom

j.lines@uea.ac.uk

Luke M. Davis
University of East Anglia

Norwich, Norfolk
United Kingdom

luke.davis@uea.ac.uk
Jon Hills

University of East Anglia
Norwich, Norfolk
United Kingdom

j.hills@uea.ac.uk

Anthony Bagnall
University of East Anglia

Norwich, Norfolk
United Kingdom

anthony.bagnall@uea.ac.uk

ABSTRACT
The problem of time series classification (TSC), where we
consider any real-valued ordered data a time series, presents
a specific machine learning challenge as the ordering of vari-
ables is often crucial in finding the best discriminating fea-
tures. One of the most promising recent approaches is to
find shapelets within a data set. A shapelet is a time series
subsequence that is identified as being representative of class
membership. The original research in this field embedded
the procedure of finding shapelets within a decision tree. We
propose disconnecting the process of finding shapelets from
the classification algorithm by proposing a shapelet trans-
formation. We describe a means of extracting the k best
shapelets from a data set in a single pass, and then use these
shapelets to transform data by calculating the distances from
a series to each shapelet. We demonstrate that transfor-
mation into this new data space can improve classification
accuracy, whilst retaining the explanatory power provided
by shapelets.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Data Mining

Keywords
time series, shapelet, filter, transformation

1. INTRODUCTION
The problem of time series classification (TSC), in which we

consider any real-valued ordered data a time series, presents
a specific machine learning challenge as the ordering of vari-
ables is often crucial in finding the best discriminating fea-
tures. Until recently, the vast majority of data mining TSC

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’12, August 12–16, 2012, Beijing, China.
Copyright 2012 ACM 978-1-4503-1462-6 /12/08 ...$15.00.

research has focused on alternative distance measures for
1-Nearest Neighbour (1-NN) classifiers based on either the
raw data, or on compressions or smoothing of the raw data
(see [7] for a comprehensive summary). Despite the evidence
in favour of 1-NN classifiers with Euclidean or Dynamic Time
Warping (DTW) distance, there has been a spate of recent
research proposing alternative approaches. These include
shapelets [13, 20, 19], weighted dynamic time warping [10],
support vector machines built on variable intervals [16], tree
based ensembles constructed on summary statistics [6], fusion
of alternative distance measures [2], and transform-based en-
sembles [1]. We consider the shapelet approach one of the
most promising of these new methods.

A shapelet is a time series subsequence that is representa-
tive of class membership. The initial shapelet-based classifica-
tion algorithm is proposed in [19]. The algorithm constructs a
decision tree classifier by recursively searching for a discrimi-
natory shapelet on data split via an information gain measure,
calculated on the distance to the branching shapelet. The
distance between a shapelet and a full series is defined as the
closest subsequence in the series to the shapelet, as measured
by the normalised Euclidean distance. This was extended by
the research presented in [13], where they describe a form
of oblique/multi-variate decision tree that uses a branching
condition based on conjunctions or disjunctions of shapelets.
Shapelets have also been used in futher applications, such as
early classification [18] and gesture recognition [8].

Classification with shapelets offers several benefits over
competing approaches. Firstly, shapelets are directly inter-
pretable and can offer explanatory insights into the problem
domain. Secondly, the shapelet classifier is more compact
than many of the alternatives, and hence classifying new
instances is faster. Thirdly, shapelets allow for the detection
of phase-independent shape-based similarity of subsequences.
This type of similarity is often hard to detect with algorithms
based on whole series.

In both [20] and [13], the shapelet algorithm is embedded
within the decision tree classifier. Whilst decision trees are
highly interpretable, they are often outperformed by other
classifiers and have a tendency to overfit unless post-pruned
or used with a conservative stopping condition. Furthermore,
the recursive nature of the decision tree algorithm means that
the relatively time-consuming shapelet detection method is
called repeatedly. Techniques that significantly speed up the

289

shapelet search are described in [13], but it is still a costly
operation, especially with multi-class problems.

In [1] we show that transforming a TSC problem into
an alternative data space prior to classification can provide
a greater level of improvement than developing classifier
refinements. Hence, we propose a shapelet transform that
creates a new classification data set independently of the
classifier. By doing so, we wish to increase classification
accuracy while reducing training time and maintaining the
interpretability of the model. The essence of the technique is
to find the best k shapelets and then derive a new attribute
for each shapelet, where the attribute value represents the
distance from each case to a shapelet. In doing so, we have
introduced several alterations to the shapelet algorithm. Our
contributions can be summarised as follows:

1. We introduce a caching algorithm to store the k best
shapelets from a data set in a single pass.

2. We propose an alternative shapelet evaluation method
that is easier to use with multi-class problems.

3. We evaluate our proposed algorithms and compare
them with the tree-based shapelet algorithm.

The paper is structured as follows. Section 2 provides
background into time series classification and summarises
the shapelet algorithms proposed in [19, 20]. In Section 3,
we describe the changes we have made to the shapelet algo-
rithm and propose a way of generating a shapelet transform.
In Section 4, we describe our experimental design, and in
Section 5, we evaluate the proposed algorithms. Finally, in
Section 6, we form our conclusions and discuss future work.

2. BACKGROUND

2.1 Time Series Classification
A time series is a sequence of data that is typically recorded

in temporal order at fixed intervals of time. For the problem
of time series classification, suppose we have a set of n time
series, T = {T1, T2, ..., Tn}, where each time series has m
ordered real-valued observations Ti =< ti1, ti2, ..., tim > and
a class value ci. The objective is to find a function that maps
from the space of possible time series to the space of possible
class values. Note, we assume for simplicity that all series
are the same length.

Classification is a widely explored problem in machine
learning and, to some extent, all classification problems rely
on a measure of similarity between data. What makes time
series classification a distinct and interesting area of inves-
tigation is that similarity between series is often embedded
within the autocorrelation structure of the data. There
are three general approaches to measuring similarity be-
tween time series: similarity in time (i.e. correlation-based),
similarity in shape (shape-based) and similarity in change
(autocorrelation-based). A fuller discussion can be found in
the literature [11, 12]. The majority of research has focused
on similarity in time or shape. For shape-based similarity, it
is common to use elastic measures such as DTW in conjunc-
tion with an instance based classifier. Whilst this approach
has been shown to work well in a wide variety of domains,
using an elastic measure on the whole series means the dis-
criminatory shape can be masked by noise. Shapelets offer
a mechanism for detecting phase-independent shape-based

similarity of subsequences, and hence represent a better solu-
tion to a class of shape-based similarity problems than global
elastic measures.

2.2 Shapelets
Shapelets are a time series data mining primitive that

can be used to determine similarity based on small common
shapes occurring at any point in a series. Finding a shapelet
requires generating a set of candidates, defining a distance
measure between a shapelet and each time series, and defining
a measure of the discriminatory power of a shapelet.

2.2.1 Generating Candidates
A subsequence S of length l of a time series T of length m is

a contiguous sequence of l points in T , where l ≤ m. Any time
series of length m contains (m− l) + 1 distinct subsequences
of length l. We denote the set of all subsequences of length
l for series Ti to be Wi,l and the set of all subsequences of
length l for data set T to be

Wl = {W1,l, . . . , Wn,l}.

The set of all candidate shapelets for data set T is

W = {Wmin, Wmin+1, . . . , Wmax},

where min ≥ 3 and max ≤ m. Note that W is very large,
with O(m3) candidate shapelets. The majority of the re-
search in [19, 20, 13] relates to the efficient pruning of W to
improve the time complexity of the exhaustive search. Our
main focus, as described in Section 3, is using shapelets more
effectively for classification. The generic shapelet finding
algorithm is defined in Algorithm 1.

Algorithm 1 ShapeletSelection (T , min,max)

1: best = 0;
2: bestShapelet = ∅;
3: C = classLabels(T);
4: W = generateCandidates(T, min, max);
5: for l = min to max do
6: for all subsequence S in Wl do
7: DS = findDistances(S, Wl);
8: quality = assessCandidate(S, DS);
9: if quality > best then

10: best = quality;
11: bestShapelet = S;
12: end if
13: end for
14: end for
15: return bestShapelet;

Note that we independently normalise all elements of W .
This is justified because we are interested in detecting lo-
calised shape similarity, and wish to be invariant to scale and
offset. Although there is no reference to normalisation in [19,
20], an amortised constant time normalisation method based
on maintaining updated statistics is proposed in [13]. We
have separated the procedures findDistances and assessCan-
didate for clarity, but for the implementation they may be
combined to take advantage of speed-up techniques.

290

2.2.2 Measuring Distances
We denote the Euclidean distance between two subse-

quences S and R of length l as

dist(S, R) =

lX
i=1

(si − ri)
2.

The distance between a subsequence S of length l and time se-
ries Ti is the minimum distance between S and all normalised
subsequences of Ti of length l, i.e.

di,S = min
R∈Wi,l

dist(S, R).

We generate all distances between a candidate shapelet S
and all series in T to generate a list of n distances,

DS =< d1,S , d2,S , . . . , dn,s > .

Note that since di,S is a minima, [20] propose speeding up
the calculation of di,S with an early abandon.

2.2.3 Measuring The Quality of a Shapelet
The original shapelet papers use information gain to de-

termine the quality of a shapelet [19, 20, 13]. This involves
sorting the distance list DS , then evaluating the information
gain on the class values for each possible split value. [20]
propose an early abandon on calculating DS through main-
taining an upper bound on the quality of the candidate whilst
generating DS . If this upper bound falls below the best found
so far, the calculation of DS can be abandoned. After each
di,S is found, the current best information gain split is calcu-
lated and the upper bound is found by assuming the most
optimistic division of the remaining distances.

3. SHAPELET TRANSFORM
The transformation we propose handles shapelets in three

distinct stages, Firstly, the algorithm conducts a single scan
of the data to extract the best k shapelets. Note that whilst
k is a parameter to set, it is simply a cut-off value for the
maximum number of shapelets to store and has no effect on
the quality of the individual shapelets that are extracted.
Secondly, an appropriate value for the number of shapelets
to use in the final transformed data set is estimated using
a simple cross-validation approach. Finally, a new trans-
formed data set is created where each attribute represents
a shapelet, and the value of each attribute is the distance
from the shapelet to the original series. The key motivation
for transforming the data in this way is that we can disas-
sociate shapelet finding from building a classifier, allowing
the transformed data set to be used in conjunction with any
classifier.

3.1 Alternative Quality Measure
As discussed in Section 2.2, the original shapelet decision

tree uses information gain to assess the quality of a candidate.
The motivation for this is two-fold; firstly, information gain
is suitable for identifying how to produce a partition of the
data, which is essential when it is necessary to recursively
divide the data. Secondly, it is possible to use information
gain in conjunction with the upper bounding/early aban-
don technique described in [20]. We use an alternative to
information gain for the following reasons.

Firstly, since we are trying to generate a set of shapelets
from the entire data set, our concern is not necessarily how

well a candidate splits the data. Rather, we are concerned
with how the distribution of the distances of the alternative
classes differ. To elaborate, if we have the list of distances DS ,
rather than find the best way of partitioning DS we address
the issue of how different are the lists D1

S , D2
S , . . . , Dc

S , where
Dj

S contains all the distances from the candidate to time
series of class j.

Secondly, the upper bounding technique for information
gain relies on identifying the ideal partition of a number of
unevaluated distances. However, the utility of this approach
degrades with multi-class problems, as a simple binary split
is impossible with 3 or more class values. In the most pes-
simistic cases, all possible optimistic combinations of uneval-
uated distances must be considered and can quickly become
untenable.

There are several alternative approaches we could adopt
to assess the difference in distributions between the class
distances. The simplest approach, which we adopt, is to use
the F-statistic used for the difference of means in an ANOVA.
Whilst a non-parametric test, such as multiple-sample Mann-
Whitney, would possibly be more robust, the fact that we
are not actually performing a hypothesis test (but instead
using the test statistic as a comparative metric) means the
reduced power of the F-statistic in the face of outliers is less
of a problem. Hence the assessCandidate method we use is
simply the F-statistic of a fixed effects ANOVA.

3.2 Shapelet Generation
The process of extracting the k best shapelets is defined

in Algorithm 2.

Algorithm 2 ShapeletCachedSelection(T , min, max, k)

1: kShapelets = ∅;
2: C = classLabels(T);
3: for all time series Ti in T do
4: shapelets = ∅;
5: for l = min to max do
6: Wi,l = generateCandidates(Ti, min, max);
7: for all subsequence S in Wi,l do
8: DS = findDistances(S, Wi,l);
9: quality = assessCandidate(S, DS);

10: shapelets.add(S, quality);
11: end for
12: end for
13: sortByQuality(shapelets);
14: removeSelfSimilar(shapelets);
15: kShapelets = merge(k, kShapelets, shapelets);
16: end for
17: return kShapelets;

The algorithm begins by processing the data in a very
similar manner to the original shapelet selection algorithm
of [20], defined earlier in Algorithm 1. For each series in the
data set, all subsequences of all possible lengths according to
the min and max length parameters are visited. However,
unlike Algorithm 1, where all candidates are assessed and
only the best is stored, the caching algorithm stores all
candidates for a given time series along with their associated
quality measures (line 10). Once all candidates of a series
have been assessed, the candidates are sorted in order of
fitness and self-similar shapelets are removed. We define
two shapelets as being self-similar if they are taken from the
same series and have any overlapping indices. Once we have

291

the set of non self-similar shapelets for a series, we merge
these with the current best shapelets and retain the top k,
and continue to iterate through the data until all series have
been processed. Note that we do not store all candidates
indefinitely; after processing each series, we simply retain
those that belong to the best k so far overall, and discard
all other shapelets. This means that we can avoid the large
space overhead that would be caused by retaining all possible
candidates.

We choose to store shapelets from a series separately and
merge them later, rather than keeping the best k on the fly,
to ensure that we are left with the best shapelets after re-
moving self-similar candidates. For example, if we have a set
of the best k shapelets at a given point in the series, the next
candidate that is processed could potentially overlap two or
perhaps more shapelets in the store. If this current shapelet
is deemed to be better, all overlapping self-similar candidates
must be removed from the store. A problem would then arise
if a better shapelet is found later in the series that overlaps
the one currently being stored, but isn’t self-similar to at
least one of the previously removed candidates. As each
subsequence is only ever visited once, it would be impossible
to get back the previously removed candidates, even if they
ultimately should be amongst the best k shapelets. There-
fore to avoid this problem, we initially extract all possible
shapelets from a series, sort them by their quality and then
remove those that are self similar in order. This gives prior-
ity to the best shapelets and ensures that no candidates are
prematurely removed. We can then safely merge these with
the existing k best shapelets before moving on to processes
the next series. At this point it is safe to discard all other
shapelets from the current series as they are not in the top k
and cannot be self-similar to shapelets from another series.

3.2.1 Length Parameter Approximation
Similarly to the original shapelet finding algorithm of [20],

the algorithm that we define in Algorithm 2 requires two
length parameters to be set: min and max. These values
define the range of possible candidate shapelet lengths, which
provides scope to the search and can help make the algorithm
more efficient. However, setting the parameters incorrectly
can be detrimental to the outcome of the shapelet transforma-
tion if they prevent the most informative subsequences from
being considered. To accommodate running the shapelet fil-
ter on a range of data sets without any specialised knowledge
of the data, we define a simple algorithm for estimating the
min and max parameters.

Algorithm 3 EstimateMinAndMax(T)

1: shapelets = ∅;
2: length = T1.length;
3: for i = 1 to 10 do
4: randomiseOrder(T);
5: T ′ = [T1, T2, ..., T10];
6: currentShapelets = ShapeletCachedSelection(T ′, 1,

length, 10);
7: shapelets.add(currentShapelets);
8: end for
9: orderByLength(shapelets);

10: min = shapelets25.length;
11: max = shapelets75.length;
12: return min, max;

The procedure outlined in Algorithm 3 takes 10 random
series from the dataset T and uses Algorithm 2 to find the 10
best shapelets within this small subset of data. The search
parameters here are set from 1 to the length of a whole series
in T , meaning no constraints are placed on the length of
shapelets in this search. This is repeated 10 times in total,
producing a set of 100 shapelets. The shapelets are sorted
in order of their length and the lengths of the 25th and
75th shapelets are extracted and returned as min and max
respectively. Note that this will not necessarily result in
the optimal solution for parameter finding. However, it was
important that we could adopt an automatic approach to
approximate min and max parameters across a number of
datasets to allow us to compare our filter fairly against the
original tree implementation of shapelets. Therefore we use
this approach to approximate min and max for each data
set and build all shapelet trees and filters using these values.

3.3 Data Transformation
One of the main motivations of the proposed transforma-

tion is to allow shapelets to be used with a diverse range
of classification algorithms. Rather than restricting them
to classification through decision tree structures, our algo-
rithm uses shapelets to transform instances of data into a
number of features that can then be treated as a generic
classification problem. The transformation process is defined
in Algorithm 4.

Algorithm 4 FilterData(Shapelets S, Dataset D)

1: output = ∅;
2: for all time series ts in D do
3: transformed = ∅;
4: for all shapelets s in S do
5: dist = subsequenceDist(ts, s);
6: transformed.add(dist);
7: end for
8: output.add(transformed);
9: end for

10: return output;

The transformation process is carried out using the subse-
quence distance calculation described in Section 2.2.2. Firstly,
a set of k shapelets, S, is generated from the training data
T , as seen in the previous section. For each instance of data
Ti, the subsequence distance is computed between Ti and
Sj , where j = 1, 2, . . . , k. The resulting k distances are used
to form a new instance of transformed data, where each
attribute corresponds to the distance from each shapelet to
the original time series. When using data split into training
and test partitions, the shapelet extraction is carried out on
only the training data to avoid bias; these shapelets are then
used to transform each instance of the training and test data
to create transformed data sets, which can then be used with
any traditional classification algorithm.

3.4 Shapelet Selection
Using k shapelets in the filter will not necessarily yield the

best data for classification. Using too few shapelets would
not provide enough information to make informed classifica-
tion decisions, whilst using too many could overfit classifiers
trained with the transformed data and dilute the influence
of important shapelets. In the experiments contained in
this paper, we use two strategies for selecting the number of

292

shapelets to use in the filter for a given set of data; firstly, as
a benchmark we use n

2
shapelets in the filter, where n is the

number of readings in a single series of the data. The second
approach automatically selects the number of shapelets to use
based on the results of a 5-fold cross-validation experiment.

This is performed by firstly partitioning the training data
into five equal parts. For each fold, we use the data as a
testing set and combine the four other folds to form a set
of training data. We then pass the training data into our
filtering algorithm and produce n shapelets. These shapelets
are used to create n different sets of transformed training data,
where the first set is the original training data transformed
by one shapelet, the second is transformed by two, and so on
until the final set consists of n transformed features. This
same procedure is applied to the testing data, creating n sets
of transformed test data. Given the class of the classifier that
we wish to use the final shapelet with, we train a range of
new classifiers using the n sets of transformed training data
and classify the appropriate set of transformed test data.
Therefore, for each of the five folds we obtain n classification
accuracies, each corresponding to the number of shapelets
used to transform the data.

The value of n with the best overall accuracy across all
five folds of the data is selected as the number of shapelets to
use in the final filter. In cases where multiple values obtain
the best results, we evaluated three strategies for selecting
a single value from the set of best values: pick the smallest,
middle or largest value. We found that picking the maximum
marginally outperformed using the middle value, whilst both
approaches performed better than selecting the smallest value.
For brevity, we do not include the experiments for this here,
but they can be found at [15].

4. EXPERIMENTAL DESIGN
To evaluate the shapelet transform, we selected 18 data sets

from the UCR time series repository (listed in Table 1) and
8 new data sets provided by us. We selected these particular
data sets because they have relatively few cases; even with
optimisation, the shapelet algorithm is time consuming. At
the time of writing, we have not evaluated the transform
on any other data sets. We use a simple train/test split
and all reported results are testing accuracy. All shapelet
selection, model selection, and classifier construction is done
exclusively on the training set, whilst the test set is only
used once with the final trained classifier. All algorithms
and experiments were implemented in Java within the Weka
framework, and the shapelet transform is implemented as
a Weka batch filter to allow easy integration into existing
classification code. All the code to generate our results is
available at [15].

4.1 New Data Sets
We provide 8 new data sets that contain data taken from

hand x-rays, originally from [9]. The data consists of images
focusing on eight specific bones of the hand, where each data
set contains 1045 cases of a single type of bone. The eight
bones in the data are the proximal phalanges of the thumb,
little and middle fingers; the middle phalanges of the little
and middle fingers; and the distal phalanges of the thumb,
middle and little fingers. Each instance of data has a class
label that is either infant (0-6 years), junior (7-12 years) or
teen (13-18) years. This approach is similar to the system
proposed in [17].

For each of the 8 bones, the data is partitioned into 200
instances of training and 845 instances of test data. The
images were converted to 1-d series by initially calculating
the outlines of the 1045 hand x-ray images using the algo-
rithm described in [4]. The locations of the tips and webs
of the hand were extracted from these outlines using the
algorithm presented in [3]. From these positions, the axes
of the thumb, middle and little fingers were calculated by
finding the midpoint between adjacent webs in the hand. In
the cases of the thumb and little finger where there is only
one adjacent web for each, the axes were approximated by
extending the line from the previous finger and calculating
where this intersects the hand outline. Once provided with
these axes, region-of-interest boxes were calculated for each
of the eight bones (as shown in Figure 1). Each box was
warped into a rectanglular-shaped mesh (500 × 150 pixels)
using a piecewise affine warp to create a new image for each
of the 8 bones. Each image was converted into 1-d series,
creating 1045 instances of data for each of the 8 bone types.

Figure 1: A hand x-ray with the eight bones boxed:
proximal (purple, bottom), middle (green, middle),
and distal (blue, top) phalanges. Note, the thumb
does not have a middle phalange.

A common method for converting an image into a 1-d series
is to calculate a histogram of the image [14]. However, this
approach doesn’t incorporate any location information from
the original image. To preserve this contextual information,
we convert images to 1-d series by resizing them to 30 × 9
pixels, which is represented as a vector of length 270. This
allows us to retain location information in the data, whilst
converting the images into 1-d series that can be posed as a
TSC problem.

5. RESULTS
We have proposed several changes to the way shapelets can

be used for classification and present a range of experiments
to test these changes.

5.1 Shapelets: Embedded vs. Transformed
Our first objective is to establish that separating shapelets

from the classifier does not reduce classification accuracy. We
implemented a shapelet decision tree classifier as described
in [20], and compared results to a C4.5 decision tree trained
and tested on shapelet transformed data (using information
gain as the quality measure and n

2
shapelets). Table 1 shows

the results for the 26 data sets used. The Shapelet tree
was best on 13, C4.5 best on 12 and they were tied on one.
There is no significant difference detected by a paired t-test

293

or a Wilcoxon signed rank test. There is no evidence that
performing the shapelet extraction prior to constructing the
decision tree makes the classifier less accurate.

Table 1: Shapelet tree classification vs. C4.5 classi-
fication with n

2
shapelet filtered features

Data
Shapelet

Tree
C4.5

Adiac 29.92% 24.30%
Beef 50.00% 60.00%

ChlorineConcentration 58.80% 56.48%
Coffee 96.43% 85.71%

DiatomSizeReduction 72.22% 75.16%
ECGFiveDays 77.47% 96.17%
ElectricDevices 54.90% 53.45%

FaceFour 84.09% 76.14%
GunPoint 89.33% 90.67%

ItalyPowerDemand 89.21% 90.96%
Lighting7 49.32% 53.42%

MedicalImages 48.82% 44.87%
MoteStrain 82.51% 84.42%

SonyAIBORobotSurface 84.53% 84.53%
Symbols 77.99% 47.14%

SyntheticControl 94.33% 90.33%
Trace 98.00% 98.00%

TwoLeadECG 85.07% 85.25%
DP Little 65.44% 65.92%

DP Middle 70.53% 71.24%
DP Thumb 58.11% 57.99%
MP Little 66.39% 63.43%

MP Middle 71.01% 73.25%
PP Little 59.64% 57.40%

PP Middle 61.42% 62.49%
PP Thumb 60.83% 59.53%

5.2 Information Gain vs F-Statistic
Our second experiment is designed to compare the F-

statistic to information gain for shapelet selection. Figure 2
compares the accuracy of a C4.5 classifier built on a shapelet
transform using information gain and the F-statistic in the
style presented in [7]. Information gain slightly outperforms
the F-statistic, winning 15 of the 26 comparisons. Whilst
this single experiment is not significant, further experiments
with other classifiers indicated that this pattern was repeated.
Qualitatively at least, we think information gain may produce
more discriminatory shapelet features. Table 2 compares
the build time for the shapelet tree, the information gain
shapelet transform and the F-statistic shapelet transform.
The F-statistic filter is faster on all but one of the data sets.
However, there is an important caveat to these results; our
shapelet tree implementation does not employ the informa-
tion gain upper bound. We found that for problems with
multiple classes, it was somewhat counter productive, with
the requirement to recalculate split points offsetting any early
abandon gains. However, we recognize this may be due to
our implementation, and acknowledge a potential source of
implementation bias. We conclude that whilst there is a
case for using the F-statistic over information gain on perfor-
mance grounds, particularly on large multi-class problems,
the marginal accuracy differential means that we continue
with information gain.

5.3 Shapelet Transformation Classifiers
The main contribution of this paper is to demonstrate how

moving the shapelet discovery outside of the classification
algorithm can improve the overall accuracy. Table 3 shows
the classification test accuracy of the shapelet tree, C4.5,
1-NN, Naive Bayes, a Bayesian Network, Random Forest,

Figure 2: A comparison of using the F-stat qual-
ity criteria against information gain for the shapelet
transform. Accuracy results were obtained with a
C4.5 classifier built on the transformed data set.

Table 2: Build times of shapelet tree, information
gain shapelet transform and F-stat transform (time
in seconds)

Data
Shapelet

Tree

Info Gain
Trans-
form

F-Stat
Trans-
form

Adiac 31403.17 20896.47 5321.30
Beef 2501.50 1492.31 1458.21

ChlorineConcentration 121019.15 31723.73 18595.21
Coffee 305.17 295.07 298.51

DiatomSizeReduction 100.88 68.65 66.27
ECGFiveDays 189.52 192.56 187.30
ElectricDevices 5524.90 3040.93 2187.11

FaceFour 8653.46 5821.65 5757.35
GunPoint 743.69 731.84 708.59

ItalyPowerDemand 5.09 4.17 1.94
Lighting7 35877.14 20279.77 19748.46

MedicalImages 36227.04 19877.87 9693.09
MoteStrain 11.13 11.39 10.22

SonyAIBORobotSurface 9.36 9.61 8.08
Symbols 17539.63 10833.19 10790.84

SyntheticControl 4312.67 2801.06 1180.79
Trace 108658.88 72401.39 71566.33

TwoLeadECG 5.35 5.41 4.46
DP Little 13447.14 5941.87 4854.11

DP Middle 16426.07 8414.13 7261.95
DP Thumb 24074.84 12798.50 10868.34
MP Little 33585.39 19364.60 17456.99

MP Middle 20049.11 8370.00 7176.03
PP Little 44027.99 23555.03 20518.56

PP Middle 32190.56 15115.02 13513.17
PP Thumb 22505.93 11749.81 10130.71

294

Table 3: Testing accuracy and ranks of 8 classifiers constructed on the shapelet transform with n/2 shapelets.
Data Shapelet Tree C4.5 1NN Näıve Bayes Bayesian Network Random Forest Rotation Forest SVM (linear)
Adiac 29.92% (3) 24.30% (7) 25.32% (5) 28.13% (4) 25.06% (6) 30.43% (2) 30.69% (1) 23.79% (8)
Beef 50.00% (8) 60.00% (6.5) 83.33% (3) 73.33% (4) 90.00% (1) 60.00% (6.5) 70.00% (5) 86.67% (2)

ChlorineConcentration 58.80% (2) 56.48% (6) 56.93% (5) 45.96% (8) 57.08% (4) 57.58% (3) 63.52% (1) 56.15% (7)
Coffee 96.43% (4.5) 85.71% (8) 100.00% (1.3) 92.86% (6) 96.43% (4.5) 100.00% (1.3) 89.29% (7) 100.00% (1.3)

DiatomSizeReduction 72.22% (8 75.16% (7) 93.46% (1) 78.76% (6) 90.20% (3) 80.39% (5) 83.01% (4) 92.16% (2)
ECGFiveDays 77.47% (8) 96.17% (6) 98.37% (4) 96.40% (5) 99.54% (1) 93.26% (7) 98.61% (3) 98.95% (2)
ElectricDevices 54.90% (2) 53.45% (4) 24.25% (7) 25.37% (5) 53.63% (3) 55.98% (1) 24.25% (7) 24.25% (7)

FaceFour 84.09% (7) 76.14% (8) 100.00% (1.5) 97.73% (4.5) 100.00% (1.5) 87.50% (6) 98.86% (3) 97.73% (4.5)
GunPoint 89.33% (8) 90.67% (7) 98.00% (4) 92.00% (6) 99.33% (2) 96.00% (5) 98.67% (3) 100.00% (1)

ItalyPowerDemand 89.21% (8) 90.96% (7) 92.13% (4.5) 92.52% (2) 92.42% (3) 93.00% (1) 92.03% (6) 92.13% (4.5)
Lighting7 49.32% (7.5) 53.42% (6) 49.32% (7.5) 57.53% (5) 65.75% (2.5) 64.38% (4) 65.75% (2.5) 69.86% (1)

MedicalImages 48.82% (4) 44.87% (6) 45.66% (5) 17.37% (8) 28.16% (7) 50.79% (3) 51.45% (2) 52.50% (1)
MoteStrain 82.51% (8) 84.42% (7) 90.34% (1) 88.82% (3) 89.06% (2) 84.58% (6) 86.98% (5) 88.66% (4)

SonyAIBORobotSurface 84.53% (6) 84.53% (5) 84.03% (7) 79.03% (8) 89.68% (1) 85.19% (4) 89.02% (2) 86.69% (3)
Symbols 77.99% (6) 47.14% (8) 85.63% (2) 77.99% (7) 92.26% (1) 84.62% (3.5) 84.42% (5) 84.62% (3.5)

SyntheticControl 94.33% (1) 90.33% (4) 93.00% (2) 78.00% (7) 76.67% (8) 89.00% (5) 92.00% (3) 87.33% (6)
Trace 98.00% (5) 98.00% (5) 98.00% (5) 98.00% (5) 100.00% (1) 98.00% (5) 98.00% (5) 98.00% (5)

TwoLeadECG 85.07% (8) 85.25% (7) 99.47% (1) 99.12% (3) 98.77% (4) 96.14% (6) 97.98% (5) 99.30% (2)
DP Little 65.44% (8) 65.92% (7) 72.78% (6) 73.49% (3) 72.90% (5) 73.02% (4) 74.67% (2) 75.15% (1)

DP Middle 70.53% (8) 71.24% (7) 73.73% (6) 73.96% (5) 74.67% (4) 75.50% (3) 76.80% (2) 79.64% (1)
DP Thumb 58.11% (7) 57.99% (8) 60.71% (6) 62.96% (5) 63.91% (4) 64.14% (3) 67.10% (2) 69.82% (1)
MP Little 66.39% (7) 63.43% (8) 68.52% (6) 68.76% (5) 69.47% (4) 71.36% (3) 75.15% (1) 75.03% (2)

MP Middle 71.01% (7) 73.25% (4) 70.89% (8) 71.95% (5) 71.12% (6) 75.15% (2) 74.67% (3) 76.92% (1)
PP Little 59.64% (7) 57.40% (8) 67.22% (5) 69.23% (4) 70.06% (2) 66.63% (6) 69.82% (3) 72.07% (1)

PP Middle 61.42% (8) 62.49% (7) 68.52% (6) 69.82% (5) 71.36% (3) 70.53% (4) 75.38% (2) 75.86% (1)
PP Thumb 60.83% (7) 59.53% (8) 67.69% (6) 69.35% (4) 69.47% (3) 67.81% (5) 72.78% (2) 75.50% (1)

Average Rank 6.27 6.60 4.48 5.10 3.33 4.04 3.33 2.8

Rotation Forest and a Support Vector Machine, all with
default Weka settings. The support vector machine is the
best performing classifier, with an average rank of 2.86 and
best performance in 10 out of 26 problems. Figure 3 shows a
critical difference diagram as described in [5]. This diagram
is derived from the overall test of significance in mean ranks,
and groups classifiers together into cliques, illustrated by
the bars. There is a clear division in performance between
the simpler classifiers (shapelet tree, C4.5, Naive Bayes and
1-NN) and the more complex classifiers (Rotation forest,
Random Forest, Bayesian Networks and SVM). Whilst there
may be a trade off between interpretability and accuracy
(a tree is easier to understand than a SVM), our point is
that by separating the shapelet discovery, there is greater
potential to explore possible solutions.

Figure 3: Critical difference plot for eight shapelet
based classifiers derived from the results in Table 3

5.4 Shapelets Selection
In Section 3.4, we defined a method for shapelet selection

through cross validation. To demonstrate the utility of this
technique, we calculated the number of shapelets to use for
each data set and repeated the classification experiments
from Table 3. The results presented in Table 4 show the
relative performance change of these classifiers against simply
training the classifiers with n/2 shapelets, as in Table 3. The
results show that using an automatically selected number of
shapelets set through cross-validation improves the average

Table 5: Accuracy of the SVM built on a shapelet
transform, Dynamic Time Warping with 1-NN on
the raw data and an ensemble of 1-NN classifiers
built on alternative transformations (see [1])

Shapelet SVM DTW 1-NN Ensemble
Adiac 31.20% 61.13% 64.45%
Beef 83.33% 63.33% 60.00%

Coffee 100.00% 92.86% 82.14%
ElectricDevices 24.25% 65.00% 62.21%

FaceFour 98.86% 81.82% 86.36%
GunPoint 100.00% 91.33% 95.33%
Lighting7 71.23% 71.23% 69.86%

SyntheticControl 90.67% 97.67% 91.00%
Trace 98.00% 99.00% 81.00%

classification accuracy of 7 out of the 8 classifiers. In all cases,
the classifiers achieve equal or better results on over half of
the data sets, with the Random Forest classifier improving
the most overall.

5.5 Other Classifiers
Our final accuracy results are used to demonstrate that

there are problems where a shapelet approach will outperform
others. Table 5 shows the accuracy of three classifiers trained
with 9 of the 26 datasets. The classifiers are: an SVM built
on selected shapelets (results comparable with Table 4),
Dynamic Time Warping with 1-NN on the raw data and an
ensemble of 1-NN classifiers built on transformations into
the power spectrum, autocorrelation function and principle
component space (described in [1]). These data sets were
selected as they are common to both papers.

The comparison is provided for information only; we have
obviously introduced some selection bias by choosing the
best classifier (SVM) from out experiments. Nevertheless, it
is interesting to note that the shapelet approach is clearly
the best on some data sets (Beef, Coffee and FaceFour), and
yet fails dramatically on others (Adiac and ElectricDevices).
This offers promising support for shapelet-based approaches,
suggesting that they fill a classification niche that has not
been covered in the literature.

295

Table 4: Relative accuracies of the classifiers when trained with an automatically selected number of shapelets
through cross-validation vs. using n/2 shapelets (as in Table 3)

Data C4.5 1NN Näıve Bayes Bayesian Network Random Forest Rotation Forest SVM (linear)
Adiac 2.30% 0.00% 3.58% 5.37% 4.86% 7.16% 7.42%
Beef -10.00% -13.33% 0.00% -6.67% 20.00% 0.00% -3.33%

ChlorineConcentration -1.09% -2.63% 4.32% 0.36% 0.05% 0.83% 0.03%
Coffee 0.00% 0.00% 3.57% 0.00% 0.00% 3.57% 0.00%

DiatomSizeReduction 0.00% -0.65% -21.24% -2.94% 1.96% -1.63% 1.96%
ECGFiveDays 0.00% -1.63% 1.74% 0.00% 5.92% 0.46% -0.46%
ElectricDevices 0.00% 0.00% 0.00% 1.01% 0.37% 0.00% 0.00%

FaceFour 0.00% 0.00% 2.27% 0.00% 6.82% -9.09% 1.14%
GunPoint 0.00% 0.00% 0.67% 0.00% 2.00% 0.00% 0.00%

ItalyPowerDemand 0.00% 3.89% -3.89% 0.10% 0.68% 2.92% 3.21%
Lighting7 0.00% -2.74% 2.74% 9.59% -4.11% 2.74% 1.37%

MedicalImages 0.00% 3.03% 33.16% 23.29% -0.79% 0.00% 3.16%
MoteStrain 0.00% -0.08% 0.48% -3.83% 1.12% 0.00% 0.56%

SonyAIBORobotSurface 0.00% 0.17% 0.00% 0.00% -0.50% 0.00% 0.00%
Symbols 2.41% -2.21% -4.32% 1.31% -2.71% 0.70% -8.74%

SyntheticControl -1.67% 0.67% 0.33% 0.33% -2.00% 0.00% 3.33%
Trace 0.00% 0.00% 0.00% -2.00% 0.00% 2.00% 0.00%

TwoLeadECG 0.00% 0.00% -0.44% 0.70% -3.16% -1.76% 0.26%
DP Little -1.54% 1.54% 2.25% 2.37% -2.49% 0.59% 1.42%

DP Middle 1.07% -1.89% -1.07% -0.83% 1.42% 0.83% -0.12%
DP Thumb 4.26% 0.36% -0.95% -1.42% 0.83% 0.59% 0.95%
MP Little 1.18% 0.12% 1.89% 0.59% 0.36% -1.54% -1.78%

MP Middle 1.42% 1.30% -0.12% 0.47% 0.36% 3.43% -0.12%
PP Little 8.17% 0.83% 0.95% 0.59% 0.95% -2.84% -1.66%

PP Middle 1.30% 1.18% 1.42% 1.42% 3.79% -0.24% -2.37%
PP Thumb 1.18% 0.71% 1.30% 0.36% -0.36% -3.43% 0.36%

Average Improvement 0.35% -0.44% 1.10% 1.16% 1.36% 0.20% 0.25%
Data Sets Improved 9 11 15 15 16 12 13

5.6 Exploratory Data Analysis
The results we have reported show that using shapelets

as a filter can provide some very promising classification
results. However, one of the strengths of using shapelets as a
classification tool is that they allow a level of interpretation
that other classification approaches simply do not. The
original work on shapelets in [19] demonstrated this, with a
number of examples where they show the decision trees that
they train on datasets and the associated shapelets.

One of the key motivations behind our work using shapelets
for TSC is to produce accurate and reliable classification de-
cisions that are interpretable. To demonstrate that our filter
retains this desirable trait of the original shapelet implemen-
tation, we briefly analyse one of our previous experiments
using the GunPoint data set. The GunPoint data contains
time series of an actor carrying out the motion of drawing a
gun, and the classification problem is to determine whether
or not they were holding a prop or just miming the action
(the Gun/NoGun problem). In [19], they identified that the
most important shapelet for classification was when the actor
lowered their arm; if they had no gun, a phenomenon called
overshoot occurred and caused a dip in the data. This is
summarised in Figure 4, originally presented in [19].

Figure 4: An illustration of the Gun/NoGun problem
taken from [19]. The shapelet that they extract is
highlighted at the end of the series.

Best

2nd Best

3rd Best

4th Best

5th Best

Best

2nd Best

3rd Best

4th Best

5th Best

Ye et al.

Shapelet

Figure 5: An illustration of the five best shapelets
extracted by our filter. The graph to the right shows
how closely matched they are when place on top of
one another.

The shapelet decision tree trained by [19] contains a single
shapelet corresponding to the arm being lowered back into
position at the end of the series. To demonstrate that our
filter agrees with this and extracts the important information
from the data, we filtered the GunPoint data set using the
length parameters specified in the original paper to allow for
a fair comparison between the two methods. The top five
shapelets that we extracted are presented in Figure 5, along
with the shapelet reported by [19].

The graphs in Figure 5 show that each of the top five
shapelets from our filter were very closely matched with
the shapelet from [19], reinforcing the notion that our filter
produces interpretable results. Furthermore, if we extract
the top ten shapelets from the filter we can gain even further
insight. Figure 6 shows that the top ten shapelets form two
distinct clusters. Interestingly, the shapelets to the left of the
figure correspond to the moments where the arm is lifted and
are instances where there is a gun. These shapelets could
correspond to the subtle extra movements required to lift the
prop, aiding classification by providing more information.

296

Figure 6: The 10 best shapelets for the Gun/NoGun
problem as extracted by our filter. The shapelets
form two distinct clusters, the first where the arm
is raised and the second when the arm is lowered.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we have proposed a shapelet transform for

TSC that extracts the k best shapelets from a dataset in a
single pass. We implement this using a novel caching algo-
rithm to store shapelets, and apply a simple, parameter-free
cross-validation approach for extracting the most significant
shapelets. We transform a total of 26 data sets with our
filter and demonstrate that a C4.5 decision tree classifier
trained with transformed data is competitive with an im-
plementation of the original shapelet decision tree of [19].
We show that our filtered data can be applied to further,
non-tree based classifiers to achieve improved classification
performance, whilst still maintaining the interpretability of
shapelets. We provide two implementations of the filter us-
ing different quality measures for discriminating between
shapelets; we use information gain as proposed by [19] in
the first, and introduce the application of the F-statistic
as an evaluation method for shapelets in the second. We
show that classifiers trained using features derived from an
F-statistic filter are competitive with classifiers trained with
the information gain approach, whilst being easier to apply
to multi-class classification problems. Finally, we provide
exploratory data analysis of the shapelets extracted by our
filter on the Gun/NoGun problem and compare them with
the output of [20]. We show that the shapelets we find are
consistent with the discriminatory shapelet in the original
work, and show that our approach can lead to further insight
into the problem by looking at a number of the top shapelets.

Future direction of our work could involve investigating
how we handle extracted shapelets. We have shown that
using a number of shapelets to transform data can lead
to strong classification results, but it is obvious that some
shapelets produced across a data set may be very similar.
An interesting extension of our work would be to perform
a cluster analysis on the shapelets produced by our filter,
and then train classifiers using data transformed by single
shapelets of distinct clusters, rather than the top k shapelets.

7. REFERENCES
[1] A. Bagnall, L. Davis, J. Hills, and J. Lines.

Transformation based ensembles for time series
classification. In Proc. 12th SDM, 2012.

[2] K. Buza. Fusion Methods for Time-Series Classification.
PhD thesis, University of Hildesheim, Germany, 2011.

[3] L. Davis, B. Theobald, J. Lines, A. Toms, and
A. Bagnall. On the segmentation and classification of

hand outlines (under review). International Journal of
Neural System, 2012.

[4] L. Davis, B. J. Theobald, A. Toms, and A. Bagnall. On
the extraction and classification of hand outlines. In
Proc. of the 12th IDEAL, 2011.

[5] J. Demšar. Statistical comparisons of classifiers over
multiple data sets. JMLR, 7:1–30, 2006.

[6] H. Deng, G. Runger, E. Tuv, and M. Vladimir. A time
series forest for classification and feature extraction.
Technical report, Arizona State University, 2011.

[7] H. Ding, G. Trajcevski, P. Scheuermann, X. Wang, and
E. Keogh. Querying and mining of time series data:
Experimental comparison of representations and
distance measures. In Proc. 34th VLDB, 2008.

[8] B. Hartmann and N. Link. Gesture recognition with
inertial sensors and optimized DTW prototypes. In
Proc. IEEE International Conference on Systems Man
and Cybernetics (SMC), 2010.

[9] Image Processing and Informatics Lab, University of
Southern California. The digital hand atlas database
system. http://www.ipilab.org/BAAweb/.

[10] Y. Jeong, M. Jeong, and O. Omitaomu. Weighted
dynamic time warping for time series classification.
Pattern Recognition, 44:2231–2240, 2010.

[11] E. Keogh and S. Kasetty. On the need for time series
data mining benchmarks: A survey and empirical
demonstration. Data Mining and Knowledge Discovery,
7(4):349–371, 2003.

[12] F. Mörchen, I. Mierswa, and A. Ultsch. Understandable
models of music collections based on exhaustive feature
generation with temporal statistics. In 12th
International Conference on Knowledge Discovery in
Data and Data Mining (ACM SIGKDD 2006), pages
882–891, 2006.

[13] A. Mueen, E. Keogh, and N. Young. Logical-shapelets:
An expressive primitive for time series classification. In
Proc. 17th ACM SIGKDD, 2011.

[14] A. Mueen, E. Keogh, Q. Zhu, S. Cash, and
M. Westover. Exact discovery of time series motifs. In
Proc. 9th SDM, 2009.

[15] paper authors. Accompanying information for this paper.
https://sites.google.com/site/shapelettransform/.

[16] J. Rodriguez and C. Alonso. Support vector machines
of interval-based features for time series classification.
Knowledge-Based Systems, 18, 2005.

[17] H. Thodberg, S. Kreiborg, A. Juul, and K. Pedersen.
The bonexpert method for automated determination of
skeletal maturity. IEEE Trans. Med. Imaging,
28(1):52–66, 2009.

[18] Z. Xing, J. Pei, P. Yu, and K. Wang. Extracting
interpretable features for early classification on time
series. In Proc. 11th SDM, 2011.

[19] L. Ye and E. Keogh. Time series shapelets: A new
primitive for data mining. In Proc. 15th ACM
SIGKDD, 2009.

[20] L. Ye and E. Keogh. Time series shapelets: a novel
technique that allows accurate, interpretable and fast
classification. Data Min. Knowl. Discov.,
22(1-2):149–182, 2011.

297

