
Information Processing Letters 106 (2008) 13–18

www.elsevier.com/locate/ipl

New efficient algorithms for the LCS and constrained
LCS problems ✩

Costas S. Iliopoulos 1, M. Sohel Rahman ∗,2,3

Algorithm Design Group, Department of Computer Science, King’s College London, Strand, London WC2R 2LS, England, UK

Received 16 May 2007; received in revised form 18 September 2007; accepted 18 September 2007

Available online 21 September 2007

Communicated by L.A. Hemaspaandra

Abstract

In this paper, we study the classic and well-studied longest common subsequence (LCS) problem and a recent variant of it,
namely the constrained LCS (CLCS) problem. In the CLCS problem, the computed LCS must also be a supersequence of a third
given string. In this paper, we first present an efficient algorithm for the traditional LCS problem that runs in O(R log logn + n)

time, where R is the total number of ordered pairs of positions at which the two strings match and n is the length of the two given
strings. Then, using this algorithm, we devise an algorithm for the CLCS problem having time complexity O(pR log logn + n) in
the worst case, where p is the length of the third string.
© 2007 Elsevier B.V. All rights reserved.

Keywords: Algorithms; Combinatorial problems; Longest common subsequence
✩ A preliminary version appeared in [C.S. Iliopoulos, M.S. Rahman,
New effcient algorithms for LCS and constrained LCS problem, in:
H. Broersma, S.S. Dantchev, M. Johnson, S. Szeider (Eds.), Algo-
rithms and Complexity in Durham 2007—Proceedings of the Third
ACiD Workshop, 17–19 September 2007, Durham, UK, ACiD, Texts
in Algorithmics, vol. 9, King’s College, London, ISBN 978-1-904987-
55-0, 2007, pp. 83–94.].

* Corresponding author.
E-mail addresses: csi@dcs.kcl.ac.uk (C.S. Iliopoulos),

sohel@dcs.kcl.ac.uk (M.S. Rahman).
URL: http://www.dcs.kcl.ac.uk/adg.

1 Supported by EPSRC and Royal Society grants.
2 Supported by the Commonwealth Scholarship Commission in

the UK under the Commonwealth Scholarship and Fellowship Plan
(CSFP).

3 On Leave from Department of CSE, BUET, Dhaka-1000, Bangla-
desh.
0020-0190/$ – see front matter © 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.ipl.2007.09.008
1. Introduction

The longest common subsequence (LCS) problem is
one of the classical and well-studied problems in com-
puter science having extensive applications in diverse
areas. In this paper, we study the traditional LCS prob-
lem along with an interesting and newer variant of it,
namely the Constrained LCS problem (CLCS). In the
CLCS problem, the computed LCS must also be a su-
persequence of a third string (given). This problem finds
its motivation from bioinformatics: in the computation
of the homology of two biological sequences it is impor-
tant to take into account a common specific or putative
structure [17].

The longest common subsequence problem for k

strings (k > 2) was first shown to be NP-hard [11] and
later proved to be hard to be approximated [9]. The
restricted but probably the more studied problem that

14 C.S. Iliopoulos, M.S. Rahman / Information Processing Letters 106 (2008) 13–18
deals with two strings has been studied extensively. The
classic dynamic programming solution to LCS problem,
invented by Wagner and Fischer [18], has O(n2) worst
case running time, where n is the length of the two
strings. Masek and Paterson [12] improved this algo-
rithm using the “Four-Russians” technique [1] to reduce
the worst case running time to O(n2/ logn).4 Since then
not much improvement in terms of n can be found in
the literature. However, several algorithms exist with
complexities depending on other parameters. For ex-
ample, Myers in [13] and Nakatsu et al. in [14] pre-
sented an O(nD) algorithm, where the parameter D is
the simple Levenshtein distance between the two given
strings [10]. Another interesting and perhaps more rel-
evant parameter for this problem is R, where R is the
total number of ordered pairs of positions at which the
two strings match. Hunt and Szymanski [8] presented an
algorithm running in O((R + n) logn) time. They also
cited applications where R ∼ n and thereby claimed
that for these applications the algorithm would run in
O(n logn) time. Very recently, Rahman and Iliopou-
los presented an improved LCS algorithm running in
O(R log logn+n) time [16]. For a comprehensive com-
parison of the well-known algorithms for LCS problem
and study of their behaviour in various application en-
vironments the readers are referred to [4].

The CLCS problem, on the other hand, was intro-
duced quite recently by Tsai in [17], where an algorithm
was presented solving the problem in O(pn4) time,
where p is the length of the third string which applies
the constraint. Later, Chin et al. [6] and independently,
Arslan and Eğecioğlu [2,3] presented improved algo-
rithms with O(pn2) time and space complexity.

In this paper, similar to the work of [8], we devise ef-
ficient algorithms for LCS and CLCS problems having
running time dependent on the parameter R. The main
goal of this paper is to present an efficient algorithm to
solve Problem CLCS. To do that, we first devise an ef-
ficient algorithm for the traditional LCS problem that
runs in O(R log logn + n) time. Then, using this algo-
rithm, we devise an algorithm for the CLCS problem
running in O(pR log logn + n) time in the worst case.
It is clear that, in the worst case, we have R = O(n2).
Therefore, in the worst case, due to the log logn term,
our algorithm will behave slightly worse than the ex-
isting algorithms. In particular, in the extreme cases,
the running time of our LCS and CLCS algorithms
could be O(n2 log logn) and O(pn2 log logn) respec-

4 Employing different techniques, the same worst case bound was
achieved in [7]. In particular, for most texts, the achieved time com-
plexity in [7] is O(hn2/ logn), where h � 1 is the entropy of the text.
tively. However, it is clear that, if R < n2/ log logn,
our CLCS algorithm will outperform the (best) O(pn2)

time algorithm in the literature. For the same upper
bound of R, our LCS algorithm would beat the classic
O(n2) algorithm. Our LCS algorithm also outperforms
the celebrated O((R+ n) logn) algorithm of Hunt and
Szymanski [8]. Furthermore, it is worth-mentioning that
there are large number of applications for which we
have R ∼ n. Typical of such applications include finding
the longest ascending subsequence of a permutation of
integers from 1 to n, finding a maximum cardinality lin-
early ordered subset of some finite collection of vectors
in 2-space etc. (for more details see [8] and references
therein). Hence, in these situations, our algorithms will
exhibit significant speed-up over the existing ones.

The rest of the paper is organized as follows. In Sec-
tion 2, we present the preliminary concepts. Section 3 is
devoted to a new O(R log logn + n) time algorithm for
the LCS problem. In Section 4, using the algorithm of
Section 3, we devise a new efficient algorithm to solve
the CLCS problem, which runs in O(pR log logn + n)

time. Finally, we briefly conclude in Section 5.

2. Preliminaries

Suppose we are given two strings X[1 . . . n] =
X[1] X[2] . . .X[n] and Y [1 . . . n] = Y [1] Y [2] . . . Y [n].
A subsequence S[1 . . . r] = [1] S[2] . . . S[r] of X is ob-
tained by deleting n − r symbols from X. A common
subsequence of two strings X and Y , denoted CS(X,Y),
is a subsequence common to both X and Y . The longest
common subsequence of X and Y , denoted LCS(X,Y),
is a common subsequence of maximum length. We de-
note the length of LCS(X,Y) by L(X,Y).

Problem “LCS”. Given 2 strings X and Y , we want to
find out an LCS(X,Y).

Given two strings X[1 . . . n] and Y [1 . . . n] and a
third string Z[1 . . . p], a CS(X,Y) is said to be con-
strained by Z if, and only if, Z is a subsequence of
that CS(X,Y). We use CSZ(X,Y) to denote a com-
mon subsequence of X and Y constrained by Z. Then,
the longest common subsequence of X and Y , con-
strained by Z, is a CSZ(X,Y) of maximum length
and is denoted by LCSZ(X,Y). We denote the length
of LCSZ(X,Y) by LZ(X,Y). It is easy to note that
LZ(X,Y) � L(X,Y).

Problem “CLCS”. Given 2 strings X and Y and an-
other string Z, we want to find an LCSZ(X,Y).

C.S. Iliopoulos, M.S. Rahman / Information Processing Letters 106 (2008) 13–18 15
Fig. 1. LCS(X,Y) and LCSZ(X,Y) of Example 1.
Example 1. Suppose X = T CCACA, Y = ACCAAG

and Z = AC. As is evident from Fig. 1, S1 = CCAA is
an LCS(X,Y). However, S1 is not an LCSZ(X,Y) be-
cause Z is not a subsequence of S1. On the other hand,
S2 = ACA is an LCSZ(X,Y). Note that, in this case
rZ(X,Y) < r(X,Y).

In this paper, we use the following notions. We say a
pair (i, j),1 � i, j � n, defines a match, if X[i] = Y [j].
The set of all matches, M , is defined as follows:

M = {
(i, j) | X[i] = Y [j],1 � i, j � n

}

We define |M| = R. In what follows, we assume that
|X| = |Y | = n. But our results can be easily extended
when |X| �= |Y |.
3. A new algorithm for Problem LCS

In this section, we present a new efficient algo-
rithm to solve Problem LCS combining an interest-
ing data structure of [5] with the techniques of [15].
The resulting algorithm will be applied to get an ef-
ficient algorithm for Problem CLCS in Section 4. We
follow the simple dynamic programming formulation
of [15] and improve its running time of O(n2 + R) to
O(R log logn + n). The dynamic programming formu-
lation from [15] is as follows:

T [i, j] =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Undefined if (i, j) /∈ M,

1 if (i = 1 or j = 1)

and (i, j) ∈ M,

1 + max
1��i<i
1��j <j

(�i ,�j)∈M

{T [�i, �j]} if (i, j �= 1)

and (i, j) ∈ M.

(1)

Here, we have used the tabular notion T [i, j] to denote
L(X[1 . . . i], Y [1 . . . j]). In our new Algorithm, referred
to as AlgLCSNew henceforth, we use a preprocessing
step (Algorithm 1 in [15]), requiring O(R log logn+n)

time,5 to calculate the set M in the ‘prescribed’ row by
row order. Then the algorithm processes each (i, j) ∈ M

in that order using Eq. (1). The efficient implementation
of Eq. (1) utilizes the following facts from [15].

5 In [15], the running time of this preprocessing step is reported as
O(R log logn) under the implicit assumption that R � n.
Fact 1. (See [15].) Suppose (i, j) ∈ M . Then for all
(i′, j), i′ > i (resp. (i, j ′), j ′ > j) we must have
T [i′, j] � T [i, j] (resp. T [i, j ′] � T [i, j]).

Fact 2. (See [15].) The calculation of a T [i, j], (i, j) ∈
M, 1 � i, j � n is independent of any T [i, q], (i, q) ∈
M, 1 � q � n.

Along with the above two facts, we use the ‘Bound-
edHeap’ data structure of [5], that supports the follow-
ing operations:

Insert(H,Pos,Value,Data): Insert into the Bounded-
Heap H the position Pos with value Value and as-
sociated information Data.

IncreaseValue(H,Pos,Value,Data): If H does not al-
ready contain the position Pos, perform Insert(H,

Pos,Value,Data). Otherwise, set this position’s
value to max{Value,Value′}, where Value′ is its pre-
vious value. Also, update Data accordingly.

BoundedMax(H,Pos): Return the item (with addi-
tional data) that has maximum value among all
items in H with position smaller than Pos. If H
does not contain any items with position smaller
than Pos, return 0.

The following theorem from [5] presents the time com-
plexity of the BoundedHeap data structure.

Theorem 1. (See [5].) BoundedHeap data structure can
support each of the above operations in O(log logn)

amortized time, where keys are drawn from the set
{1, . . . , n}. The data structure requires O(n) space.

The algorithm AlgLCSNew proceeds as follows. Re-
call that we perform a row by row operation. We always
deal with two BoundedHeap data structures simultane-
ously. While considering row i, we already have the
BoundedHeap data structure Hi−1 at our hand; now we
construct the BoundedHeap data structure Hi . At first
Hi is initialized to Hi−1. Assume that we are consid-
ering the match (i, j) ∈ Mi, 1 � j � n, where Mi =
{(i, j) | (i, j) ∈ M, 1 � j � n}. We calculate T [i, j] as
follows:

16 C.S. Iliopoulos, M.S. Rahman / Information Processing Letters 106 (2008) 13–18
T [i, j].Value = BoundedMax(Hi−1, j).Value + 1. (2)

T [i, j].Prev = BoundedMax(Hi−1, j).data.3 (3)

Then we perform the following operation:

IncreaseValue
(
Hi , j,T [i, j].Value, (i, j)

)
. (4)

The correctness of the above procedure follows from
Facts 1 and 2. Due to Fact 1, as soon as we compute the
T -value of a new match in a column j , we can forget
about the previous matches of that column. So, as soon
as we compute T [i, j] in row i, we insert it in Hi to up-
date it for the next row, i.e. row i+1. And, due to Fact 2,
we can use Hi−1 for the computation of the T -values of
the matches in row i and do the update in Hi (initialized
at first to Hi−1) to make Hi ready for row i + 1.

Next, we analyze the running time of AlgLCSNew.
The preprocessing requires O(R log logn + n) time to
get the set M in the required order [15]. Then, we
calculate each (i, j) ∈ M using Eqs. (2) to (4). Note
carefully that, we need to use each of the two oper-
ations, BoundedMax() and IncreaseValue(), once for
each of the matches in M . Therefore, according to The-
orem 1, in total, the running time is O(R log logn + n).
The space requirement is as follows. The preprocess-
ing step requires θ(max{R, n}) space [15]. And, in the
main algorithm, we only need to keep track of two
BoundedHeap data structures at a time, requiring O(n)

space (Theorem 1). So, in total the space requirement is
θ(max{R, n}).

Theorem 2. Problem LCS can be solved in O(R×
log logn + n) time requiring θ(max{R, n}) space.

Algorithm 1 formally presents the algorithm. Since
we are not calculating all the entries of the table, we, off
course, need to use variables to keep track of the actual
LCS. We remark that, AlgLCSNew uses the same basic
strategy used in [16], and has the same worst case run-
ning time achieved there. However, AlgLCSNew turns
out to be conceptually simpler and easier to use in solv-
ing the CLCS problem, which is handled in the next
section.

4. CLCS algorithm

In this section, we present a new efficient algorithm
for Problem CLCS. We use the dynamic programming
formulation for CLCS presented in [2,3]. Extending our
tabular notion from Eq. (1), we use T [i, j, k],1 � i, j �

3 Note that, we use the ‘data’ field to keep the ‘address’ of the
match.
1: Construct the set M using Algorithm 1 of [15].
Let Mi = {(i, j) | (i, j) ∈ M,1 � j � n}.

2: globalLCS.Instance = ε

3: globalLCS.Value = ε

4: H0 = ε

5: for i = 1 to n do
6: Hi = Hi−1
7: for each (i, j) ∈ Mi do
8: maxresult = BoundedMax(Hi−1, j)

9: T [i, j].Value = maxresult.Value + 1
10: T [i, j].Prev = maxresult.Instance
11: if globalLCS.Value < T [i, j].Value then
12: globalLCS.Value = T [i, j].Value
13: globalLCS.Instance = (i, j)

14: end if
15: IncreaseValue(Hi , j,T [i, j].Value, (i, j)).
16: end for
17: Delete Hi−1.
18: end for
19: return globalLCS

Algorithm 1. AlgLCSNew.

n,0 � k � p to denote LZ[1...k](X[1 . . . i], Y [1 . . . j]).4
We have the following formulation for Problem CLCS
from [2,3].

T [i, j, k] = max
{
T ′[i, j, k],T ′′[i, j, k],
T [i, j − 1, k],T [i − 1, j, k]} (5)

where

T ′[i, j, k]

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 + T [i − 1, j − 1, k − 1]
if (k = 1 or (k > 1 and

T [i − 1, j − 1, k − 1] > 0))

and X[i] = Y [j] = Z[k],
0 otherwise

(6)

and

T ′′[i, j, k]

=

⎧⎪⎪⎨
⎪⎪⎩

1 + T [i − 1, j − 1, k]
if (k = 0 or T [i − 1, j − 1, k] > 0)

and X[i] = Y [j],
0 otherwise.

(7)

The following boundary conditions are assumed in
Eqs. (5) to (7):

T [i,0, k] = T [0, j, k] = 0, 0 � i, j � n, 0 � k � p.

It is straightforward to give a O(pn2) algorithm realiz-
ing the dynamic programming formulation presented in

4 Recall that, p = |Z|.

C.S. Iliopoulos, M.S. Rahman / Information Processing Letters 106 (2008) 13–18 17
1: Construct the set M using Algorithm 1 of [15].
Let Mi = (i, j) ∈ M,1 � j � n.

2: globalCLCS.Instance = ε

3: globalCLCS.Value = ε

4: H−1
0 = ε

5: H0
0 = ε

6: for i = 1 to n do
7: for k = 0 to p do
8: Hk

i
= Hk

i−1
9: for each (i, j) ∈ Mi do

10: max1 = BoundedMax(Hk−1
i−1 , j)

11: max2 = BoundedMax(Hk
i−1, j)

/*First, we consider Eqs. (10) and (11)/*
12: Val2.Value = 0
13: Val2.Instance = ε

14: if ((k = 0) or (max2.Value > 0)) then
15: Val2 = max2
16: end if

/*Now, we consider Eqs. (8) and (9)/*
17: Val1.Value = 0
18: Val1.Instance = ε

19: if (X[i] = Z[k])/*This means X[i] = Y [j] = Z[k]/* then
20: if (k = 1) or ((k > 1) and (max1.Value > 0)) then
21: Val1 = max1
22: end if
23: end if

/*Finally, we consider Eq. (5)/*
24: maxresult = max{Val1,Val2}
25: Tk[i, j].Value = maxresult.Value + 1
26: Tk[i, j].Prev = maxresult.Instance
27: if globalLCS.Value < Tk[i, j].Value then
28: globalLCS.Value = Tk[i, j].Value
29: globalLCS.Instance = (i, j, k)

30: end if
31: IncreaseValue(Hk

i
, j,T [i, j].Value, (i, j, k)).

33: end for
33: Delete Hk−1

i−1 .
34: end for
35: end for
36: return globalLCS

Algorithm 2. AlgLCSNew.

Eqs. (5) to (7). Our goal is to present a new efficient al-
gorithm using the parameter R. In line of Eq. (1), we
can reformulate Eqs. (6) and (7) as follows:

V1 = max
1��i<i
1��j <j

(�i ,�j)∈M

{
T [�i, �j , k − 1]} (8)

T ′[i, j, k] =

⎧⎪⎪⎨
⎪⎪⎩

1 + V1 if (k = 1 or

(k > 1 and V1 > 0))

and X[i] = Y [j] = Z[k],
0 otherwise,

(9)

V2 = max
1��i<i
1��j <j

(� ,�)∈M

{
T [�i, �j , k]}, (10)
i j
T ′′[i, j, k] =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 if (i = 1 or j = 1)

and (i, j) ∈ M,

1 + V2 if (k = 0 or V2 > 0)

and (i, j) ∈ M,

0 otherwise.

(11)

Now, our goal is to implement the Eqs. (5), (8)–(11)
efficiently with the help of AlgLCSNew. In the tabular
notion we used, T [i, j, k] can be thought of as a three
dimensional matrix having dimensions n,n and p + 1.
However, it would be useful, in our algorithm, to visu-
alize it as p + 1 2-dimensional matrices, instead of one
3-dimensional matrix. We slightly change the notation
to highlight this view and use Tk,0 � k � p to denote
the kth two dimensional matrix. Note that, with this
new notation we have T [i, j, k] = Tk[i, j], 1 � i, j �
n, 0 � k � p. It is easy to realize that, Fact 1 still holds
for each of the matrices Tk, 1 � k � p. And we have
the following facts, extended from Fact 2, realizing the
dependency between the matrices in the CLCS compu-
tation in light of Eqs. (8) to (11).

Fact 3. The calculation of the matrix Tk, 0 � k � p, is
independent of any matrix T� such that � < k − 1.

Fact 4. The calculation of a Tk[i, j], (i, j) ∈ M, 1 �
i, j � n, 1 � k � p is independent of any Tk[i, q1] and
Tk−1[i, q2] such that (i, q1), (i, q2) ∈ M,1 � q1, q2 � n.

The algorithm, referred to as AlgCLCSNew hence-
forth, proceeds as follows. We consider all the matches
of row i for all p + 1 matrices and employ a slightly
extended version of AlgLCSNew (Algorithm 1). We
consider row i + 1 only when the calculation of row
i is completed for all Tk,0 � k � p. Extending the
idea of AlgLCSNew, in AlgCLCSNew, we always deal
with 3 BoundedHeap data structures Hk

i ,Hk
i−1 and

Hk−1
i−1 :

– Hk
i−1 is required due to Eqs. (10) and (11).

– Hk−1
i−1 is required due to Eqs. (8) and (9).

– We update Hk
i , which is initialized to Hk

i−1 when
we start row i. Hk

i is later used when we consider
the matches of row i + 1 of the two matrices Tk and
Tk+1.

Due to Fact 4, while computing a Tk[i, j], (i, j) ∈
M, 1 � i, j � n, 1 � k � p, we can employ the same
technique with Hk

i , Hk
i−1 and Hk−1

i−1 used in AlgLC-
SNew (with Hi and Hi−1 to compute T [i, j], (i, j) ∈
M,1 � j � n). On the other hand, courtesy to Fact 3, to

18 C.S. Iliopoulos, M.S. Rahman / Information Processing Letters 106 (2008) 13–18
realize Eqs. (8)–(11), we need only keep track of Hk−1
i−1

and Hk
i−1. The steps are formally stated in Algorithm 2.

In light of the analysis of AlgLCSNew, it is quite easy
to see that the running time is O(pR log logn + n).
The space complexity, like AlgLCSNew, is dominated
by the preprocessing step of [15], because in the main
algorithm, we only need to keep track of the 3 Bound-
edHeap data structures and the third string Z, requiring
in total O(n) space.

Theorem 3. Problem CLCS can be solved in O(pR×
log logn + n) time requiring θ(max{R, n}) space.

5. Conclusion

In this paper, we have studied the classic and well-
studied longest common subsequence (LCS) problem
and a recent variant of it, namely the constrained LCS
(CLCS) problem. In particular, we have presented an ef-
ficient algorithm for the traditional LCS problem that
runs in O(R log logn + n) time. Then, using this al-
gorithm, we have devised an algorithm for the CLCS
problem having time complexity O(pR log logn + n)

in the worst case. It is clear that, in the worst case,
we have R = O(n2). Therefore, in the extreme cases,
the running time for our LCS and CLCS algorithms
could be O(n2 log logn) and O(pn2 log logn) respec-
tively. However, it is clear that, if R< n2/ log logn, our
CLCS algorithm will outperform the best O(pn2) time
algorithm in the literature. For the same upper bound
of R, our LCS algorithm would beat the classic O(n2)

algorithm. Our LCS algorithm also outperforms the cel-
ebrated O((R+n) logn) algorithm of [8]. Finally, there
are large number of applications for which we have
R ∼ n. In these cases, we achieve a very good run-
ning time of O(pn log logn) for the CLCS problem and
O(n log logn) for the traditional LCS problem. It would
be interesting to see whether our techniques can be used
to other variants of LCS problem to devise similar effi-
cient algorithms.

Acknowledgements

The authors would like to express their gratitude to
the anonymous reviewers and the editor for their helpful
suggestions.
References

[1] V. Arlazarov, E. Dinic, M. Kronrod, I. Faradzev, On economic
construction of the transitive closure of a directed graph, Soviet
Physics—Doklady 11 (1975) 1209–1210. English translation.

[2] A.N. Arslan, Ö. Eğecioğlu, Algorithms for the constrained
longest common subsequence problems, in: M. Simánek,
J. Holub (Eds.), The Prague Stringology Conference, Depart-
ment of Computer Science and Engineering, Faculty of Electrical
Engineering, Czech Technical University, 2004, pp. 24–32.

[3] A.N. Arslan, Ö. Eğecioğlu, Algorithms for the constrained
longest common subsequence problems, International Journal of
Foundations Computer Science 16 (6) (2005) 1099–1109.

[4] L. Bergroth, H. Hakonen, T. Raita, A survey of longest common
subsequence algorithms, in: String Processing and Information
Retrieval (SPIRE), IEEE Computer Society, 2000, pp. 39–48.

[5] G.S. Brodal, K. Kaligosi, I. Katriel, M. Kutz, Faster algorithms
for computing longest common increasing subsequences, in:
M. Lewenstein, G. Valiente (Eds.), Annual Symposium on Com-
binatorial Pattern Matching (CPM), in: Lecture Notes in Com-
puter Science, vol. 4009, Springer, 2006, pp. 330–341.

[6] F.Y.L. Chin, A.D. Santis, A.L. Ferrara, N.L. Ho, S.K. Kim,
A simple algorithm for the constrained sequence problems, In-
formation Processing Letters 90 (4) (2004) 175–179.

[7] M. Crochemore, G.M. Landau, M. Ziv-Ukelson, A sub-quadratic
sequence alignment algorithm for unrestricted cost matrices, in:
Annual ACM–SIAM Symposium on Discrete Algorithms, 2002,
pp. 679–688.

[8] J.W. Hunt, T.G. Szymanski, A fast algorithm for computing
longest subsequences, Communications of the ACM 20 (5)
(1977) 350–353.

[9] T. Jiang, M. Li, On the approximation of shortest common su-
persequences and longest common subsequences, SIAM Journal
on Computing 24 (5) (1995) 1122–1139.

[10] V. Levenshtein, Binary codes capable of correcting spurious in-
sertions and deletions of ones, Problems in Information Trans-
mission 1 (1965) 8–17.

[11] D. Maier The complexity of some problems on subsequences and
supersequences, Journal of the ACM 25 (2) (1978) 322–336.

[12] W.J. Masek, M. Paterson, A faster algorithm computing string
edit distances, Journal of Computer and System Sciences 20 (1)
(1980) 18–31.

[13] E.W. Myers, An O(ND) difference algorithm and its variations,
Algorithmica 1 (2) (1986) 251–266.

[14] N. Nakatsu, Y. Kambayashi, S. Yajima, A longest common sub-
sequence algorithm suitable for similar text strings, Acta Infor-
matica 18 (1982) 171–179.

[15] M.S. Rahman, C.S. Iliopoulos, Algorithms for computing vari-
ants of the longest common subsequence problem, in: T. Asano
(Ed.), ISAAC, in: Lecture Notes in Computer Science, vol. 4288,
Springer, 2006, pp. 399–408.

[16] M.S. Rahman, C.S. Iliopoulos, A new efficient algorithm for
computing the longest common subsequence, in: M.-Y. Kao,
X.-Y. Li (Eds.), AAIM, in: Lecture Notes in Computer Science,
vol. 4508, Springer, 2007, pp. 82–90.

[17] Y.-T. Tsai, The constrained longest common subsequence prob-
lem, Information Processing Letters 88 (4) (2003) 173–176.

[18] R.A. Wagner, M.J. Fischer, The string-to-string correction prob-
lem, Journal of the ACM 21 (1) (1974) 168–173.

