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We consider a variant of the classical Longest Common Subsequence problem called
Doubly-Constrained Longest Common Subsequence (DC-LCS). Given two strings s1 and s2
over an alphabet Σ , a set Cs of strings, and a function Co : Σ → N , the DC-LCS problem
consists of finding the longest subsequence s of s1 and s2 such that s is a supersequence
of all the strings in Cs and such that the number of occurrences in s of each symbol
σ ∈ Σ is upper bounded by Co(σ ). The DC-LCS problem provides a clear mathematical
formulation of a sequence comparison problem in Computational Biology and generalizes
two other constrained variants of the LCS problem that have been introduced previously in
the literature: the Constrained LCS and the Repetition-Free LCS. We present two results for
the DC-LCS problem. First, we illustrate a fixed-parameter algorithm where the parameter
is the length of the solution which is also applicable to the more specialized problems.
Second, we prove a parameterized hardness result for the Constrained LCS problem when
the parameter is the number of the constraint strings (|Cs|) and the size of the alphabet Σ .
This hardness result also implies the parameterized hardness of the DC-LCS problem (with
the same parameters) and its NP-hardness when the size of the alphabet is constant.

© 2010 Elsevier B.V. All rights reserved.
1. Introduction

The problem of computing the longest common subse-
quence (LCS) of two sequences is a fundamental problem
in stringology and in the whole field of algorithms [1],
as it couples a wide range of applications with a simple
mathematical formulation [2]. Applications of variants of
LCS range from Computational Biology to data compres-
sion, syntactic pattern recognition and file comparison (for
instance it is used in the Unix diff command) [2].

A few basic definitions are necessary. Given two se-
quences s and t over a finite alphabet Σ , s is a subsequence
of t if s can be obtained from t by removing some (pos-
sibly zero) characters. When s is a subsequence of t , then
t is a supersequence of s. Given two sequences s1 and s2,
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the Longest Common Subsequence problem (LCS) asks for
a longest possible sequence s that is a subsequence of both
s1 and s2.

The problem of computing the longest common subse-
quence of two sequences has been deeply investigated, and
polynomial time algorithms are well-known for the prob-
lem [3–6]. It is possible to generalize the LCS problem to a
set of sequences: in such a case the goal is to compute a
sequence that is a subsequence of all input sequences. This
problem is NP-hard even on binary alphabet [7] and it is
not approximable within factor O (n1−ε), for any constant
ε > 0, on arbitrary alphabet [8]. The LCS problem is fixed-
parameter tractable (using some naïve algorithms) when
the parameters are the number of input strings and the
solution length for strings over a fixed alphabet or when
the parameters are the alphabet cardinality and the solu-
tion length. It does not admit a fixed-parameter algorithm
for the other choices of the parameters [9,10].

Computational Biology is a field where several variants
of the LCS problem have been introduced for various pur-
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poses. For instance, researchers have defined some simi-
larity measures between genome sequences based on con-
strained forms of the LCS problem. In particular, an LCS-
like problem has been studied to deal with two types of
symbols (mandatory and optional symbols) to model the
differences in the number of occurrences allowed for each
gene [11,12]. Another illustrative example is the definition
of repetition-free longest common subsequence [12] where,
given two sequences s1 and s2, a repetition-free common
subsequence is a subsequence of both s1, s2 that contains
at most one occurrence of each symbol. Such a model has
been proposed as a similarity measure that can be use-
ful in genome rearrangement analysis, in particular when
dealing with the exemplar model [13]. In such a frame-
work we want to compute an exemplar sequence, that is
a sequence which contains only one representative (called
the exemplar) for each family of duplicated genes inside
a genome. In biological terms, the exemplar gene may
correspond to the original copy of the gene, from which
all other copies originate [13]. Complexity results for the
repetition-free longest common subsequence have been re-
cently given in [14].

A different variant of LCS that has been introduced to
compare biological sequences is called constrained longest
common subsequence (C-LCS) [15]. This problem requires to
compute, given three sequences s1, s2, and sc , a longest
common subsequence s of s1 and s2 such that s is a su-
persequence of sc . Such a variant of LCS can be useful
when comparing two biological sequences (represented by
s1 and s2) having a known substructure in common (for-
malized by sc) which must be conserved by the solution
s [15]. The Constrained LCS problem can be solved by some
polynomial time algorithms [15–17], but it becomes NP-
hard when generalized to a set of input sequences or to a
set of constraint sequences [18].

In this paper we are interested to continue the in-
vestigation of the computational complexity of the above
two measures for comparing sequences, mainly when both
constraints characterizing them are required. Indeed, we
propose a new similarity measure for the comparison of
two biological sequences (genomes) which takes into ac-
count the exemplar model (as suggested in [12]) as well
as the consensus model commonly used in the comparison
of biological structures which is represented by a known
substructure common to the two input sequences (i.e., the
consensus is given by a constraint set of sequences, as pro-
posed in [15]). We formalize a new problem called Doubly-
Constrained Longest Common Subsequence (DC-LCS) problem,
which extends both the Repetition-Free Longest Common
Subsequence problem and the Constrained Longest Com-
mon Subsequence problem. Hence, given two input se-
quences s1, s2, the DC-LCS problem asks for the longest
common subsequence s of s1 and s2 that satisfies two con-
straints: (i) the number of occurrences of each symbol σ is
upper bounded by a quantity Co(σ ), and (ii) s is a super-
sequence of every string of a specified constraint set Cs .

First, we design a fixed-parameter algorithm [9] when
the parameter is the length of the solution. Clearly such an
algorithm also applies to the more specialized problems.
Then we give a parameterized hardness result for the Con-
strained Longest Common Subsequence problem, when the
number of constraint sequences and the size of the alpha-
bet are considered as parameters. The reduction used to
prove this hardness result implies an identical result for
DC-LCS and also shows that DC-LCS is NP-hard over an al-
phabet of 3 symbols.

2. Basic definitions

Let s1, s2 be two strings over an alphabet Σ . Given
a string s, we denote by s[i] the symbol at position i in
string s, and by s[i . . . j], the substring of s starting at po-
sition i and ending at position j. Given a string s over an
alphabet Σ and a symbol σ (not necessarily in Σ ), we de-
note by occ(σ , s) the number of occurrences of symbol σ
in s. A string constraint Cs consists of a set of strings, while
an occurrence constraint Co is a function Co : Σ → N, as-
signing an upper bound on the number of occurrences of
each symbol in Σ . First, consider some variants of the LCS
problem.

Problem 1 (Constrained Longest Common Subsequence (C-
LCS)).
Input: two strings s1 and s2, a string constraint Cs .
Output: a longest common subsequence s of s1 and s2, so
that each string in Cs is a subsequence of s.

The problem admits a polynomial time algorithm when
Cs consists of a single string [15–17], while it is NP-hard
when Cs consists of an arbitrary number of strings [18]. In
the latter case, notice that C-LCS cannot be approximated,
since a feasible solution for the C-LCS problem must be a
supersequence of all the strings in the constraint Cs and
moreover, deciding the existence of a feasible solution is
an NP-complete problem [18].

Problem 2 (Repetition-Free Longest Common Subsequence
(RF-LCS)).
Input: two strings s1 and s2.
Output: a longest common subsequence s of s1 and s2,
so that s contains at most one occurrence of each symbol
σ ∈ Σ .

The problem is APX-hard even when each symbol oc-
curs at most twice in each of the input strings s1 and
s2 [12]. A positive note is that allowing at most k occur-
rences of each symbol in each string s1 and s2 results in a
1
k -approximation algorithm [12].

We introduce an even more general version of both
the C-LCS and RF-LCS problem, called Doubly-Constrained
Longest Common Subsequence (DC-LCS) problem.

Problem 3 (Doubly-Constrained Longest Common Subsequence
(DC-LCS)).
Input: two strings s1 and s2, a string constraint Cs , and an
occurrence constraint Co : Σ → N.
Output: a longest common subsequence s of s1 and s2, so
that each string in Cs is a subsequence of s and s contains
at most Co(σ ) occurrences of each symbol σ ∈ Σ .

It is easy to see that the C-LCS problem is the restric-
tion of the DC-LCS problem when Co(σ ) = |s1| + |s2| for
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each σ ∈ Σ . At the same time, the RF-LCS problem is
the restriction of the DC-LCS problem when Cs = ∅ and
Co(σ ) = 1 for each σ ∈ Σ . Therefore the DC-LCS problem
cannot be approximated within any ratio, since it inherits
all hardness properties of C-LCS and RF-LCS.

3. A fixed-parameter algorithm for DC-LCS

Initially we present a fixed-parameter algorithm for the
DC-LCS problem when |Cs| � 1 (hence the result also holds
for the RF-LCS problem), where the parameter k is the size
of a solution of DC-LCS. Later on, we will extend the algo-
rithm to a generic set Cs .

The algorithm is based on the color coding tech-
nique [19]. We recall the basic definition of a perfect
family of hash functions [20]. Given a set S , a family F
of hash functions from S to {1,2, . . . ,k} is called perfect
if, for any S ′ ⊆ S of size k, there exists an injective hash
function f ∈ F from S ′ to the set of labels {1,2, . . . ,k}.

Since |Cs| � 1, we denote by sc the only sequence
in Cs and let k be the size of a solution for DC-LCS.
Suppose w.l.o.g. that Co(σ ) is not bigger than the value
min{occ(σ , s1),occ(σ , s2)}. Indeed, a solution s of DC-LCS

is a subsequence of both s1 and s2, hence occ(σ , s) is up-
per bounded by min{occ(σ , s1),occ(σ , s2)}.

Given Co and the sequences s1 and s2, we construct
a set Σ̃ that contains the pairs (σ , i) for each σ ∈ Σ and
i ∈ {1, . . . , Co(σ )}. For example, if s1 = aaaa bbbbb cccc dddd,
s2 = ddddd ccc bbbb aaaa, and Co(a) = Co(b) = 4, Co(c) =
Co(d) = 3, then the set Σ̃ is equal to {(a,1), (a,2), (a,3),

(a,4), (b,1), (b,2), (b,3), (b,4), (c,1), (c,2), (c,3), (d,1),

(d,2), (d,3)}.
Consider now a perfect family F of hash functions from

Σ̃ to the set of labels {1,2, . . . ,k}. Given a function f ∈ F ,
for each σ ∈ Σ let L f (σ ) be the set of labels associated
by f with the pairs (σ , i) ∈ Σ̃ , for some i. Let s be a
generic sequence over alphabet Σ and let L be a sub-
set of {1, . . . ,k}. Then s is an L-colorful sequence w.r.t.
a hash function f ∈ F iff we can assign to each position i,
1 � i � |s|, a distinct label li ∈ L, such that li ∈ L f (s[i]), and
each label l ∈ L is assigned to some position of s. We claim
that an L-colorful sequence s w.r.t. a hash function f ∈ F
contains at most Co(σ ) occurrences of each symbol σ ∈ Σ .
In fact, the cardinality of the set L f (σ ) is upper-bounded
by Co(σ ), hence there can be at most Co(σ ) occurrences
of σ in s with distinct labels. Given three sequences s1, s2,
and sc , we say that an L-colorful sequence s w.r.t. a hash
function f is an L-colorful solution (w.r.t. f ) if and only if s
is a common subsequence of s1 and s2 that is also a super-
sequence of sc . In other words, an L-colorful solution is a
sequence s which is both an L-colorful sequence and a so-
lution of the C-LCS problem. By the definition of L-colorful
solution and the claim stated above, any L-colorful solu-
tion s is a feasible solution of the DC-LCS problem.

The basic idea of our algorithm is to verify if there ex-
ists an L-colorful solution, for some set L ⊆ {1,2, . . . ,k}.
This task is fulfilled via dynamic programming. Since F is
a perfect family of hash functions, and each symbol σ does
not occur more than Co(σ ) times in s, for each feasible so-
lution s of length k, there exists a hash function f ∈ F such
that s is {1, . . . ,k}-colorful w.r.t. f . By computing the re-
currence for all hash functions in F , we are certain to find
a solution of length k, if such a solution exists.

Given a hash function f , we define V [i, j,h, L] which
takes value 1 if and only if there exists an L-colorful com-
mon subsequence s of s1[1 . . . i] and s2[1 . . . j], such that s
is a supersequence of sc[1 . . .h] (notice that s has length
equal to |L| or, equivalently, s uses all labels in L). The-
orem 3.1 states that V [i, j,h, L] can be computed by the
following dynamic programming recurrence which is an
extension of the standard equation for the Longest Com-
mon Subsequence (LCS) problem [1].

V [i, j,h, L] = max

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

V [i − 1, j,h, L]
V [i, j − 1,h, L]
V [i − 1, j − 1,h, L \ {λ}]

if s1[i] = s2[ j] and

λ ∈ L ∩ L f (s1[i])
V [i − 1, j − 1,h − 1, L \ {λ}]

if s1[i] = s2[ j] = sc[h] and

λ ∈ L ∩ L f (s1[i])

(1)

The boundary conditions are V [0, j,h, L] = 0 and
V [i,0,h, L] = 0 if L 	= ∅, while V [i, j,0,∅] = 1 and
V [i, j,h,∅] = 0 when h > 0. Moreover, as a consequence of
the recurrence’s definition, V [i, j,h, L] = 0 for all h > |L|.
A feasible solution of length k is {1, . . . ,k}-colorful w.r.t. f
if and only if V [|s1|, |s2|, |sc|, {1, . . . ,k}] = 1. In this case,
a standard backtracking search can reconstruct the actual
solution.

Theorem 3.1. Assume that f ∈ F is a hash function and let s be
a L-colorful solution w.r.t. f . Then Eq. (1) is correct.

Proof. We will prove the theorem by induction, that is we
will prove the correctness of the value of V [ia, ja,ha, La]
by assuming that of V [ib, jb,hb, Lb] when ib � ia , jb � ia ,
hb � ha , Lb ⊆ La , and at least one inequality is strict.

Let s be an optimal La-colorful solution for the se-
quences s1[1, . . . , ia], s2[1, . . . , ja], sc[1, . . . ,ha], and let β

be the last symbol of s, that is s = tβ , where t is the prefix
of s consisting of all but the last character.

Assume that s1[ia] 	= s2[ ja]. Then, just as for the recur-
rences of the standard LCS problem [1], the theorem holds.
Assume that s1[ia] = s2[ ja] = α and let α 	= β . Then, by in-
duction hypothesis, s is an optimal La-colorful solution for
the sequences s1[1, . . . , ia − 1], s2[1, . . . , ja], sc[1, . . . ,ha]
and the theorem holds.

Therefore we can assume now that α = β . Since s is
La-colorful, we can assign a distinct label li in La to each
position i of s, such that li ∈ L f (s[i]). Let l be the label
assigned to the last position of s. By inductive hypothesis
there exists an L \ {l}-colorful solution t of s1[1, . . . , ia −
1], s2[1, . . . , ja − 1], sc[1, . . . , ja] (if t is a supersequence
of sc[1, . . . , ja]) or of s1[1, . . . , ia − 1], s2[1, . . . , ja − 1],
sc[1, . . . , ja − 1], hence completing the proof. �

Given a solution s of DC-LCS of size k, let Σ̃s be the set
of pairs (σ , j), with σ a symbol of s and 1 � j � occ(σ , s).
Assume that f is a hash function that maps the set Σ̃s to
the set of labels {1, . . .k}, but is not injective. Then there
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is a label z ∈ {1, . . . ,k} that is not assigned to any pair
(σ , j). Hence the conditions of the last two cases of our
recurrence equation will never hold for λ = z, which im-
plies that V [i, j,h, {1, . . . ,k}] = 0 for all values of i, j, h,
hence establishing the correctness of our algorithm.

It is immediate to notice that the total number of en-
tries of the matrix V [·, ·, ·, ·] is |s1||s2||sc|2k . Furthermore
notice that computing each entry requires at most O (k)

time, as case 1 and case 2 of the recurrence require con-
stant time, while case 3 and case 4 require at most O (k)

time, since |L| � k. There exists a perfect family of hash
functions of size O (log |Σ̃ |)2O (k) that can be computed in
O (|Σ̃ | log |Σ̃ |)2O (k) time [19]. Eq. (1) is applied for each
hash function of the perfect family, hence, since |Σ̃ | �
|s1|, the algorithm has an overall O (|s1| log |s1|)2O (k) +
O (|s1||s2||sc|2O (k) log |Σ̃ |) time complexity.

The algorithm actually computes a longest superse-
quence of sc which is a feasible solution of the problem.
Assume now that Cs is a generic string set, and let x be an
optimal solution of size k of a generic instance of the DC-

LCS problem. It is immediate to notice that there exists a
minimal common supersequence x1 of Cs which is a sub-
sequence of x. Clearly |x1| � |x| = k. By minimality, each
symbol of x1 appears in some sequence in Cs . Moreover
the alphabet Σ1 of symbols appearing in at least one se-
quence of Cs contains at most k symbols, since otherwise
all supersequences of Cs would be longer than k. Con-
sequently there are at most kk supersequences no longer
than k that are taken from the alphabet Σ1. Our algorithm
for a generic Cs enumerates all such supersequences sc ,
and applies the algorithm for |Cs| = 1 on the new set of
constraint sequences made only of sc , returning the longest
feasible solution computed.

The overall time complexity is clearly kk T (k, |s1|, |s2|),
where T (k, |s1|, |s2|) = (|s1| log |s1|)2O (k) + O (|s1||s2||sc|×
2O (k) log |Σ̃ |).

4. W[1]-hardness of C-LCS

In this section we prove that determining if there ex-
ists a feasible solution of C-LCS, is not only NP-complete,
but also W[1]-hard when the parameter is the number of
strings in Cs and the alphabet Σ (see [9] for a description
of the consequences of W[1]-hardness).

We reduce the Shortest Common Supersequence (SCS)
problem parameterized by the number of input strings
and the size of alphabet Σ , which is known to be W[1]-
hard [10]. Let R = {r1, . . . , rk} be a set of sequences over
the alphabet Σ , hence R is a generic instance of the SCS

problem. In what follows we denote by l the size of a so-
lution of R .

The input of the C-LCS problem consists of two se-
quences s1, s2, and a string constraint Cs . Let # be a de-
limiter symbol not in Σ . Pose Cs = {#l} ∪ R . Let w be a
sequence over Σ such that w contains exactly one occur-
rence of each symbol in Σ , and let rev(w) be the reversal
of w . Finally, let s1 = (w#)l and s2 = (rev(w)#)l . In the fol-
lowing we call each occurrence of w or of rev(w) a block.

Let t be any supersequence of #l that is also a common
subsequence of s1 and s2. Since in each of those sequences
there are l #s, then also t must contain l #s, which in turn
implies that by construction of s1 and s2, at most one sym-
bol of each block can be in t . Therefore, t contains at most
2l symbols. At the same time, let p be a generic sequence
over alphabet Σ ∪ {#} no longer than 2l, ending with a
# and such that no two symbols from Σ appear consec-
utively in p. Since each symbol of Σ occurs exactly once
in w , it is clear that p is a common subsequence of s1
and s2. Consequently, the set of all supersequences of #l

that are also common subsequences of s1 and s2 is equal
to the set of sequences q that are no longer than 2l and
such that (i) q contains exactly l #s, (ii) q ends with a #,
and (iii) taking two consecutive symbols from q, exactly
one of these symbols is equal to #.

An immediate consequence is that there exists a fea-
sible solution of length 2l of the instance of C-LCS con-
sisting of the set Cs and the two sequences s1 and s2
if and only if there exists a supersequence of length l of
the set R of sequences. Indeed, assume that q = y1 y2 · · · yl
is a supersequence of length l of the set R of sequences.
Then p = y1#y2# · · · yl# is a supersequence of q, hence
also of each sequence in Cs . Furthermore, by construc-
tion p is a subsequence of s1 and s2. Assume now that
p = y1#y2# · · · yl# is a solution of the instance of C-LCS

made of the set Cs and the two sequences s1 and s2. Hence
p is a supersequence of each sequence in the set R . The
sequences in R are over alphabet Σ (hence they do not
contain #), therefore q = y1 y2 · · · yl is a supersequence of
length l of the set R of sequences.

The reduction described is an FPT-reduction [9]. Finally,
notice that the W[1]-hardness of C-LCS with parameters
|Cs| and |Σ | implies the W[1]-hardness of DC-LCS with pa-
rameters |Cs| and |Σ |, since C-LCS is a restriction of the
DC-LCS problem.

Moreover, notice that the same reduction can be ap-
plied starting from the SCS problem over the binary al-
phabet, which is NP-hard [21], implying that the DC-LCS

problem is NP-hard over a fixed ternary alphabet.
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