Information Processing Letters 110 (2010) 877-881

Information Processing Letters

Contents lists available at ScienceDirect)
Information
Processing Letters

www.elsevier.com/locate/ipl

Variants of constrained longest common subsequence

Paola Bonizzoni?, Gianluca Della Vedova®, Riccardo Dondi *, Yuri Pirola?

2 DISCo, Universita degli Studi di Milano-Bicocca, Milano, Italy
b Dipartimento di Statistica, Universita degli Studi di Milano-Bicocca, Milano, Italy
¢ Dipartimento di Scienze dei Linguaggi, della Comunicazione e degli Studi Culturali, Universita degli Studi di Bergamo, Bergamo, Italy

ARTICLE INFO

ABSTRACT

Article history:

Received 1 December 2009

Received in revised form 14 July 2010
Accepted 15 July 2010

Available online 17 July 2010
Communicated by]. Toran

Keywords:

Algorithms

Longest common subsequence
Constrained longest common subsequence
Fixed-parameter tractability

We consider a variant of the classical Longest Common Subsequence problem called
Doubly-Constrained Longest Common Subsequence (DC-LCS). Given two strings s; and sy
over an alphabet X, a set Cs of strings, and a function C, : ¥ — N, the DC-LCS problem
consists of finding the longest subsequence s of s; and s; such that s is a supersequence
of all the strings in Cs and such that the number of occurrences in s of each symbol
o € X is upper bounded by C,(0). The DC-LCS problem provides a clear mathematical
formulation of a sequence comparison problem in Computational Biology and generalizes
two other constrained variants of the LCS problem that have been introduced previously in
the literature: the Constrained LCS and the Repetition-Free LCS. We present two results for
the DC-LCS problem. First, we illustrate a fixed-parameter algorithm where the parameter
is the length of the solution which is also applicable to the more specialized problems.
Second, we prove a parameterized hardness result for the Constrained LCS problem when
the parameter is the number of the constraint strings (|Cs|) and the size of the alphabet X.
This hardness result also implies the parameterized hardness of the DC-LCS problem (with

the same parameters) and its NP-hardness when the size of the alphabet is constant.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The problem of computing the longest common subse-
quence (LCS) of two sequences is a fundamental problem
in stringology and in the whole field of algorithms [1],
as it couples a wide range of applications with a simple
mathematical formulation [2]. Applications of variants of
LCS range from Computational Biology to data compres-
sion, syntactic pattern recognition and file comparison (for
instance it is used in the Unix diff command) [2].

A few basic definitions are necessary. Given two se-
quences s and t over a finite alphabet X, s is a subsequence
of t if s can be obtained from t by removing some (pos-
sibly zero) characters. When s is a subsequence of t, then
t is a supersequence of s. Given two sequences s; and sy,

* Corresponding author.
E-mail addresses: bonizzoni@disco.unimib.it (P. Bonizzoni),
gianluca.dellavedova@unimib.it (G. Della Vedova), riccardo.dondi@unibg.it
(R. Dondi), pirola@disco.unimib.it (Y. Pirola).

0020-0190/$ - see front matter © 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.ipl.2010.07.015

the Longest Common Subsequence problem (LCS) asks for
a longest possible sequence s that is a subsequence of both
s1 and s3.

The problem of computing the longest common subse-
quence of two sequences has been deeply investigated, and
polynomial time algorithms are well-known for the prob-
lem [3-6]. It is possible to generalize the LCS problem to a
set of sequences: in such a case the goal is to compute a
sequence that is a subsequence of all input sequences. This
problem is NP-hard even on binary alphabet [7] and it is
not approximable within factor O (n'~¢), for any constant
& > 0, on arbitrary alphabet [8]. The LCS problem is fixed-
parameter tractable (using some naive algorithms) when
the parameters are the number of input strings and the
solution length for strings over a fixed alphabet or when
the parameters are the alphabet cardinality and the solu-
tion length. It does not admit a fixed-parameter algorithm
for the other choices of the parameters [9,10].

Computational Biology is a field where several variants
of the LCS problem have been introduced for various pur-

http://dx.doi.org/10.1016/j.ipl.2010.07.015
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:bonizzoni@disco.unimib.it
mailto:gianluca.dellavedova@unimib.it
mailto:riccardo.dondi@unibg.it
mailto:pirola@disco.unimib.it
http://dx.doi.org/10.1016/j.ipl.2010.07.015

878 P. Bonizzoni et al. / Information Processing Letters 110 (2010) 877-881

poses. For instance, researchers have defined some simi-
larity measures between genome sequences based on con-
strained forms of the LCS problem. In particular, an LCS-
like problem has been studied to deal with two types of
symbols (mandatory and optional symbols) to model the
differences in the number of occurrences allowed for each
gene [11,12]. Another illustrative example is the definition
of repetition-free longest common subsequence [12] where,
given two sequences s; and s, a repetition-free common
subsequence is a subsequence of both sq, sy that contains
at most one occurrence of each symbol. Such a model has
been proposed as a similarity measure that can be use-
ful in genome rearrangement analysis, in particular when
dealing with the exemplar model [13]. In such a frame-
work we want to compute an exemplar sequence, that is
a sequence which contains only one representative (called
the exemplar) for each family of duplicated genes inside
a genome. In biological terms, the exemplar gene may
correspond to the original copy of the gene, from which
all other copies originate [13]. Complexity results for the
repetition-free longest common subsequence have been re-
cently given in [14].

A different variant of LCS that has been introduced to
compare biological sequences is called constrained longest
common subsequence (C-LCS) [15]. This problem requires to
compute, given three sequences si, s, and s¢, a longest
common subsequence s of s; and s, such that s is a su-
persequence of s.. Such a variant of LCS can be useful
when comparing two biological sequences (represented by
s1 and s3) having a known substructure in common (for-
malized by s.) which must be conserved by the solution
s [15]. The Constrained LCS problem can be solved by some
polynomial time algorithms [15-17], but it becomes NP-
hard when generalized to a set of input sequences or to a
set of constraint sequences [18].

In this paper we are interested to continue the in-
vestigation of the computational complexity of the above
two measures for comparing sequences, mainly when both
constraints characterizing them are required. Indeed, we
propose a new similarity measure for the comparison of
two biological sequences (genomes) which takes into ac-
count the exemplar model (as suggested in [12]) as well
as the consensus model commonly used in the comparison
of biological structures which is represented by a known
substructure common to the two input sequences (i.e., the
consensus is given by a constraint set of sequences, as pro-
posed in [15]). We formalize a new problem called Doubly-
Constrained Longest Common Subsequence (DC-LCS) problem,
which extends both the Repetition-Free Longest Common
Subsequence problem and the Constrained Longest Com-
mon Subsequence problem. Hence, given two input se-
quences S1, Sz, the DC-LCS problem asks for the longest
common subsequence s of s; and s, that satisfies two con-
straints: (i) the number of occurrences of each symbol o is
upper bounded by a quantity Co(c), and (ii) s is a super-
sequence of every string of a specified constraint set Cs.

First, we design a fixed-parameter algorithm [9] when
the parameter is the length of the solution. Clearly such an
algorithm also applies to the more specialized problems.
Then we give a parameterized hardness result for the Con-
strained Longest Common Subsequence problem, when the

number of constraint sequences and the size of the alpha-
bet are considered as parameters. The reduction used to
prove this hardness result implies an identical result for
DC-LCS and also shows that DC-LCS is NP-hard over an al-
phabet of 3 symbols.

2. Basic definitions

Let sq, s be two strings over an alphabet X. Given
a string s, we denote by s[i] the symbol at position i in
string s, and by s[i... j], the substring of s starting at po-
sition i and ending at position j. Given a string s over an
alphabet X' and a symbol o (not necessarily in X'), we de-
note by occ(o, s) the number of occurrences of symbol o
in s. A string constraint Cs consists of a set of strings, while
an occurrence constraint C, is a function C, : ¥ — N, as-
signing an upper bound on the number of occurrences of
each symbol in X. First, consider some variants of the LCS
problem.

Problem 1 (Constrained Longest Common Subsequence (C-
LCS)).

Input: two strings s; and s;, a string constraint Cs.
Output: a longest common subsequence s of s; and s3, so
that each string in C; is a subsequence of s.

The problem admits a polynomial time algorithm when
Cs consists of a single string [15-17], while it is NP-hard
when C; consists of an arbitrary number of strings [18]. In
the latter case, notice that C-LCS cannot be approximated,
since a feasible solution for the C-LCS problem must be a
supersequence of all the strings in the constraint Cs and
moreover, deciding the existence of a feasible solution is
an NP-complete problem [18].

Problem 2 (Repetition-Free Longest Common Subsequence
(RF-LCS)).

Input: two strings s; and s.

Output: a longest common subsequence s of s; and sj,
so that s contains at most one occurrence of each symbol
ogeX.

The problem is APX-hard even when each symbol oc-
curs at most twice in each of the input strings s; and
so [12]. A positive note is that allowing at most k occur-
rences of each symbol in each string s; and s, results in a
%-approximation algorithm [12].

We introduce an even more general version of both
the C-LCS and RF-LCS problem, called Doubly-Constrained
Longest Common Subsequence (DC-LCS) problem.

Problem 3 (Doubly-Constrained Longest Common Subsequence
(DC-LCS)).

Input: two strings s1 and s, a string constraint Cs, and an
occurrence constraint C, : X — N.

Output: a longest common subsequence s of sy and s, so
that each string in Cs is a subsequence of s and s contains
at most C, (o) occurrences of each symbol o € X.

It is easy to see that the C-LCS problem is the restric-
tion of the DC-LCS problem when C,(0) = |s1| + |s2| for

P. Bonizzoni et al. / Information Processing Letters 110 (2010) 877-881 879

each o € ¥. At the same time, the RF-LCS problem is
the restriction of the DC-LCS problem when C; = @ and
Co(0) =1 for each o € X. Therefore the DC-LCS problem
cannot be approximated within any ratio, since it inherits
all hardness properties of C-LCS and RF-LCS.

3. Afixed-parameter algorithm for DC-LCS

Initially we present a fixed-parameter algorithm for the
DC-LCS problem when |Cs| < 1 (hence the result also holds
for the RF-LCS problem), where the parameter k is the size
of a solution of DC-LCS. Later on, we will extend the algo-
rithm to a generic set Cs.

The algorithm is based on the color coding tech-
nique [19]. We recall the basic definition of a perfect
family of hash functions [20]. Given a set S, a family F
of hash functions from S to {1,2,...,k} is called perfect
if, for any S’ C S of size k, there exists an injective hash
function f € F from S’ to the set of labels {1,2,...,k}.

Since |Cs] < 1, we denote by s. the only sequence
in Cs and let k be the size of a solution for DC-LCS.
Suppose w.l.o.g. that C,(0) is not bigger than the value
min{occ(o, s1), occ(o, s2)}. Indeed, a solution s of DC-LCS
is a subsequence of both s; and s;, hence occ(o, s) is up-
per bounded by min{occ(o, s1), occ(o, $2)}.

Given C, and the sequences s; and s, we construct
a set ¥ that contains the pairs (o,i) for each o € X and
ie{l,...,Co(0)}. For example, if s; = aaaa bbbbb cccc dddd,
sy = ddddd cccbbbbaaaa, and C,(a) = Co(b) =4, Co(c) =
Co(d) = 3, then the set ¥ is equal to {(a, 1), (a,2), (a,3),
(a,4), (b, 1), (b,2), (b,3), (b,4), (c, 1), (c,2),(c,3), d, 1),
(d,2), d,3)}

Consider now a perfect family F of hash functions from
5 to the set of labels {1,2,...,k}. Given a function f € F,
for each 0 € X' let Lg(o) be the set of labels associated
by f with the pairs (0,i) € X, for some i. Let s be a
generic sequence over alphabet X and let L be a sub-
set of {1,...,k}. Then s is an L-colorful sequence w.r.t.
a hash function f € F iff we can assign to each position i,
1 <i<|s|, a distinct label I; € L, such that I; € L¢(s[i]), and
each label [€ L is assigned to some position of s. We claim
that an L-colorful sequence s w.r.t. a hash function f € F
contains at most C, (o) occurrences of each symbol o € X.
In fact, the cardinality of the set Lf(o) is upper-bounded
by Co(0), hence there can be at most Co(0) occurrences
of o in s with distinct labels. Given three sequences s1, Sz,
and sc, we say that an L-colorful sequence s w.r.t. a hash
function f is an L-colorful solution (w.r.t. f) if and only if s
is a common subsequence of s; and s; that is also a super-
sequence of s¢. In other words, an L-colorful solution is a
sequence s which is both an L-colorful sequence and a so-
lution of the C-LCS problem. By the definition of L-colorful
solution and the claim stated above, any L-colorful solu-
tion s is a feasible solution of the DC-LCS problem.

The basic idea of our algorithm is to verify if there ex-
ists an L-colorful solution, for some set L C {1,2,...,k}.
This task is fulfilled via dynamic programming. Since F is
a perfect family of hash functions, and each symbol o does
not occur more than C,(o) times in s, for each feasible so-
lution s of length k, there exists a hash function f € F such
that s is {1,..., k}-colorful w.r.t. f. By computing the re-

currence for all hash functions in F, we are certain to find
a solution of length k, if such a solution exists.

Given a hash function f, we define VT[i, j, h, L] which
takes value 1 if and only if there exists an L-colorful com-
mon subsequence s of s1[1...i] and s3[1...j], such that s
is a supersequence of sc[1...h] (notice that s has length
equal to |L| or, equivalently, s uses all labels in L). The-
orem 3.1 states that V[i, j, h, L] can be computed by the
following dynamic programming recurrence which is an
extension of the standard equation for the Longest Com-
mon Subsequence (LCS) problem [1].

VIii—1,j,h,L]
VI[i,j—1,h,L]
VIi—1,j—1,h, L\ {A}]
if s1[i] = s»[j] and
reLlnLg(sifil)
VIi—1,j—1,h—1,L\ {A}]
if s1[i] = s2[j]1 = sc[h] and
reLnLgsili

VIi, j, h, L] = max (1)

The boundary conditions are VIO, j,h,L] = 0 and
V[i,0,h,L] = 0 if L#@, while VI[i, j0,0] =1 and
Vi, j, h,»] =0 when h > 0. Moreover, as a consequence of
the recurrence’s definition, V[i, j,h,L] =0 for all h > |L|.
A feasible solution of length k is {1, ..., k}-colorful w.r.t. f
if and only if V[|s1],|s2l,Iscl, {1,...,k}] = 1. In this case,
a standard backtracking search can reconstruct the actual
solution.

Theorem 3.1. Assume that f € F is a hash function and let s be
a L-colorful solution w.r.t. f. Then Eq. (1) is correct.

Proof. We will prove the theorem by induction, that is we
will prove the correctness of the value of V[ig, jg, ha, La]
by assuming that of V[iy, jp, hp, Lp] when iy <ig, jp <ig,
hy < hg, Lp € Lg, and at least one inequality is strict.

Let s be an optimal Lg;-colorful solution for the se-
quences s1[1,...,1q], s2[1,..., jal, sc[1,...,hq], and let B
be the last symbol of s, that is s =t8, where t is the prefix
of s consisting of all but the last character.

Assume that s1[ig] # s2[jq]. Then, just as for the recur-
rences of the standard LCS problem [1], the theorem holds.
Assume that sq[ig] = s2[jqs] = o and let « # S. Then, by in-
duction hypothesis, s is an optimal Lg-colorful solution for
the sequences si[1,...,iq — 1], s2[1,..., jal, Scl1, ..., hql
and the theorem holds.

Therefore we can assume now that o = . Since s is
Lq-colorful, we can assign a distinct label I; in L, to each
position i of s, such that I; € L¢(s[i]). Let | be the label
assigned to the last position of s. By inductive hypothesis
there exists an L \ {l}-colorful solution t of sq[1,...,iq —
11, s2[1, ..., ja — 1], scl1, ..., jql (if t is a supersequence
of s¢[1,...,jq]) or of s1[1,...,ig — 1], s2[1,...,ja — 1],
sc[1,..., jo — 1], hence completing the proof. O

Given a solution s of DC-LCS of size k, let fs be the set
of pairs (o, j), with o a symbol of s and 1 < j < occ(g,s).
Assume that f is a hash function that maps the set X to
the set of labels {1,...k}, but is not injective. Then there

880 P. Bonizzoni et al. / Information Processing Letters 110 (2010) 877-881

is a label z € {1,...,k} that is not assigned to any pair
(0, j). Hence the conditions of the last two cases of our
recurrence equation will never hold for A =z, which im-
plies that Vi, j,h,{1,...,k}] =0 for all values of i, j, h,
hence establishing the correctness of our algorithm.

It is immediate to notice that the total number of en-
tries of the matrix V[-,-,-, -] is |s1]|s2||sc|2¥. Furthermore
notice that computing each entry requires at most O (k)
time, as case 1 and case 2 of the recurrence require con-
stant time, while case 3 and case 4 require at most O (k)
time, since |L| <k. There exists a perfect family of hash
functions of size 0(log|X])2°® that can be computed in
0(1Z|1og|Z)2°® time [19]. Eq. (1) is applied for each
hash function of the perfect family, hence, since |X| <
Is1], the algorithm has an overall O(|sq|log|si|)2°® +
0(s1Is2115c12°® log |) time complexity.

The algorithm actually computes a longest superse-
quence of s, which is a feasible solution of the problem.
Assume now that Cs is a generic string set, and let x be an
optimal solution of size k of a generic instance of the DC-
LCS problem. It is immediate to notice that there exists a
minimal common supersequence x; of Cs which is a sub-
sequence of x. Clearly |x;]| < |x| = k. By minimality, each
symbol of x; appears in some sequence in Cs;. Moreover
the alphabet X7 of symbols appearing in at least one se-
quence of Cs contains at most k symbols, since otherwise
all supersequences of Cs; would be longer than k. Con-
sequently there are at most k¥ supersequences no longer
than k that are taken from the alphabet X'. Our algorithm
for a generic C; enumerates all such supersequences s,
and applies the algorithm for |Cs| =1 on the new set of
constraint sequences made only of s¢, returning the longest
feasible solution computed.

The overall time complexity is clearly k¥T(k, |s1], |s2]),
where T(k, Is1]. [s2]) = (s1]log[s1)2°® + O (Is1][szlsc| x
200 Jog| 5.

4. W[1]-hardness of C-LCS

In this section we prove that determining if there ex-
ists a feasible solution of C-LCS, is not only NP-complete,
but also W[1]-hard when the parameter is the number of
strings in Cs and the alphabet X' (see [9] for a description
of the consequences of W[1]-hardness).

We reduce the Shortest Common Supersequence (SCS)
problem parameterized by the number of input strings
and the size of alphabet X, which is known to be W[1]-
hard [10]. Let R = {r1,...,rx} be a set of sequences over
the alphabet X, hence R is a generic instance of the SCS
problem. In what follows we denote by [the size of a so-
lution of R.

The input of the C-LCS problem consists of two se-
quences s1, Sz, and a string constraint Cs. Let # be a de-
limiter symbol not in X. Pose C; = {#/} UR. Let w be a
sequence over X such that w contains exactly one occur-
rence of each symbol in X, and let rev(w) be the reversal
of w. Finally, let s; = (w#)! and s = (rev(w)#)". In the fol-
lowing we call each occurrence of w or of rev(w) a block.

Let t be any supersequence of #! that is also a common
subsequence of s; and s;. Since in each of those sequences
there are | #s, then also t must contain ! #s, which in turn

implies that by construction of s; and s;, at most one sym-
bol of each block can be in t. Therefore, t contains at most
2l symbols. At the same time, let p be a generic sequence
over alphabet X U {#} no longer than 2I, ending with a
and such that no two symbols from X appear consec-
utively in p. Since each symbol of X' occurs exactly once
in w, it is clear that p is a common subsequence of sq
and s;. Consequently, the set of all supersequences of #
that are also common subsequences of s; and s, is equal
to the set of sequences q that are no longer than 2/ and
such that (i) q contains exactly [#s, (ii) ¢ ends with a #,
and (iii) taking two consecutive symbols from g, exactly
one of these symbols is equal to #.

An immediate consequence is that there exists a fea-
sible solution of length 2I of the instance of C-LCS con-
sisting of the set C; and the two sequences s; and s;
if and only if there exists a supersequence of length | of
the set R of sequences. Indeed, assume that g =yy2---y;
is a supersequence of length [of the set R of sequences.
Then p = y #y,#---y;# is a supersequence of g, hence
also of each sequence in C;. Furthermore, by construc-
tion p is a subsequence of s; and s;. Assume now that
p = y1#y#. .- y/# is a solution of the instance of C-LCS
made of the set C; and the two sequences s; and s,. Hence
p is a supersequence of each sequence in the set R. The
sequences in R are over alphabet X (hence they do not
contain #), therefore q = y1y2---y; is a supersequence of
length I of the set R of sequences.

The reduction described is an FPT-reduction [9]. Finally,
notice that the W[1]-hardness of C-LCS with parameters
|Cs] and | X| implies the W[1]-hardness of DC-LCS with pa-
rameters |Cs| and |X|, since C-LCS is a restriction of the
DC-LCS problem.

Moreover, notice that the same reduction can be ap-
plied starting from the SCS problem over the binary al-
phabet, which is NP-hard [21], implying that the DC-LCS
problem is NP-hard over a fixed ternary alphabet.

Acknowledgements

We would like to thank the anonymous reviewers
whose suggestions have greatly contributed to improving
the presentation of the paper. P.B., G.D.V. and Y.P. have
been partially supported by FAR grants “Metodi algoritmici
innovativi per confrontare strutture combinatorie in biolo-
gia computazionale”, and “Metodi algoritmici per I'analisi
di strutture combinatorie in bioinformatica”. R.D. has been
partially supported by FAR 2009 grant “Algoritmi per il
trattamento di sequenze”.

References

[1] TH. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein, Introduction to Algo-
rithms, 2nd edition, MIT Press, 2001.

[2] L. Bergroth, H. Hakonen, T. Raita, A survey of longest common sub-
sequence algorithms, in: Proc. 7th International Symp. on String Pro-
cessing and Information Retrieval (SPIRE), IEEE Computer Society, Los
Alamitos, CA, USA, 2000, pp. 39-48.

[3] M.S. Paterson, V. Dancik, Longest common subsequences, in: Proc.
19th Symp. on Mathematical Foundations of Computer Science
(MEFCS), 1994, pp. 127-142.

[4] A. Apostolico, Improving the worst-case performance of the Hunt-
Szymanski strategy for the longest common subsequence of two
strings, Information Processing Letters 23 (1986) 63-69.

P. Bonizzoni et al. / Information Processing Letters 110 (2010) 877-881 881

[5] A. Apostolico, C. Guerra, The longest common subsequence problem
revisited, Algorithmica 18 (1) (1987) 1-11.

[6] A. Apostolico, S. Browne, C. Guerra, Fast linear-space computations of
longest common subsequences, Theoretical Computer Science 92 (1)
(1992) 3-17.

[7] D. Maier, The complexity of some problems on subsequences and
supersequences, Journal of the ACM 25 (1978) 322-336.

[8] T. Jiang, M. Li, On the approximation of shortest common superse-
quences and longest common subsequences, SIAM Journal on Com-
puting 24 (5) (1995) 1122-1139.

[9] R. Downey, M. Fellows, Parameterized Complexity, Springer-Verlag,
1999.

[10] K. Pietrzak, On the parameterized complexity of the fixed alphabet
shortest common supersequence and longest common subsequence
problems, Journal of Computer and System Sciences 67 (4) (2003)
757-771.

[11] P. Bonizzoni, G. Della Vedova, R. Dondi, G. Fertin, R. Rizzi, S.
Vialette, Exemplar longest common subsequence, IEEE/ACM Trans.
on Computational Biology and Bioinformatics 4 (4) (2007) 535-
543.

[12] S.S. Adi, M.D.V. Braga, C.G. Fernandes, C.E. Ferreira, FV. Martinez,
M.-F. Sagot, M.A. Stefanes, C. Tjandraatmadja, Y. Wakabayashi,
Repetition-free longest common subsequence, Electronic Notes in
Discrete Mathematics 30 (2008) 243-248.

[13] D. Sankoff, Genome rearrangement with gene families, Bioinformat-
ics 15 (11) (1999) 909-917.

[14] C.G. Fernandes, C. Ferreira, C. Tjandraatmadja, Y. Wakabayashi, A
polyhedral investigation of the LCS problem and a repetition-free
variant, in: Proc. 8th Latin American Theoretical Informatics Sympo-
sium (LATIN), in: LNCS, vol. 4957, Springer, 2008, pp. 329-338.

[15] Y.-T. Tsai, The constrained longest common subsequence problem,
Information Processing Letters 88 (4) (2003) 173-176.

[16] AN. Arslan, O. Egecioglu, Dictionary look-up within small edit
distance, International Journal on Foundations of Computer Sci-
ence 15 (1) (2004) 57-71.

[17] EY.L. Chin, A. De Santis, A.L. Ferrara, N.L. Ho, S.K. Kim, A simple algo-
rithm for the constrained sequence problems, Information Processing
Letters 90 (4) (2004) 175-179.

[18] Z. Gotthilf, D. Hermelin, M. Lewenstein, L.C.S. Constrained, Hardness
and approximation, in: Proc. 19th Symp. on Combinatorial Pattern
Matching (CPM), in: LNCS, vol. 5029, Springer, 2008, pp. 255-262.

[19] N. Alon, R. Yuster, U. Zwick, Color-coding, Journal of the ACM 42 (4)
(1995) 844-856.

[20] J.P. Schmidt, A. Siegel, The spatial complexity of oblivious k-probe
hash functions, SIAM Journal on Computing 19 (5) (1990) 775-786.

[21] K-J. Rdihd, E. Ukkonen, The shortest common supersequence prob-
lem over binary alphabet is NP-complete, Theoretical Computer
Science 16 (1981) 187-198.

	Variants of constrained longest common subsequence
	Introduction
	Basic deﬁnitions
	A ﬁxed-parameter algorithm for DC-LCS
	W[1]-hardness of C-LCS
	Acknowledgements
	References

