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We consider a variant of the classical Longest Common Subsequence problem called
Doubly-Constrained Longest Common Subsequence (DC-LCS). Given two strings s; and sy
over an alphabet X, a set Cs of strings, and a function C, : ¥ — N, the DC-LCS problem
consists of finding the longest subsequence s of s; and s; such that s is a supersequence
of all the strings in Cs and such that the number of occurrences in s of each symbol
o € X is upper bounded by C,(0). The DC-LCS problem provides a clear mathematical
formulation of a sequence comparison problem in Computational Biology and generalizes
two other constrained variants of the LCS problem that have been introduced previously in
the literature: the Constrained LCS and the Repetition-Free LCS. We present two results for
the DC-LCS problem. First, we illustrate a fixed-parameter algorithm where the parameter
is the length of the solution which is also applicable to the more specialized problems.
Second, we prove a parameterized hardness result for the Constrained LCS problem when
the parameter is the number of the constraint strings (|Cs|) and the size of the alphabet X.
This hardness result also implies the parameterized hardness of the DC-LCS problem (with

the same parameters) and its NP-hardness when the size of the alphabet is constant.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The problem of computing the longest common subse-
quence (LCS) of two sequences is a fundamental problem
in stringology and in the whole field of algorithms [1],
as it couples a wide range of applications with a simple
mathematical formulation [2]. Applications of variants of
LCS range from Computational Biology to data compres-
sion, syntactic pattern recognition and file comparison (for
instance it is used in the Unix diff command) [2].

A few basic definitions are necessary. Given two se-
quences s and t over a finite alphabet X, s is a subsequence
of t if s can be obtained from t by removing some (pos-
sibly zero) characters. When s is a subsequence of t, then
t is a supersequence of s. Given two sequences s; and sy,
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the Longest Common Subsequence problem (LCS) asks for
a longest possible sequence s that is a subsequence of both
s1 and s3.

The problem of computing the longest common subse-
quence of two sequences has been deeply investigated, and
polynomial time algorithms are well-known for the prob-
lem [3-6]. It is possible to generalize the LCS problem to a
set of sequences: in such a case the goal is to compute a
sequence that is a subsequence of all input sequences. This
problem is NP-hard even on binary alphabet [7] and it is
not approximable within factor O (n'~¢), for any constant
& > 0, on arbitrary alphabet [8]. The LCS problem is fixed-
parameter tractable (using some naive algorithms) when
the parameters are the number of input strings and the
solution length for strings over a fixed alphabet or when
the parameters are the alphabet cardinality and the solu-
tion length. It does not admit a fixed-parameter algorithm
for the other choices of the parameters [9,10].

Computational Biology is a field where several variants
of the LCS problem have been introduced for various pur-
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poses. For instance, researchers have defined some simi-
larity measures between genome sequences based on con-
strained forms of the LCS problem. In particular, an LCS-
like problem has been studied to deal with two types of
symbols (mandatory and optional symbols) to model the
differences in the number of occurrences allowed for each
gene [11,12]. Another illustrative example is the definition
of repetition-free longest common subsequence [12] where,
given two sequences s; and s, a repetition-free common
subsequence is a subsequence of both sq, sy that contains
at most one occurrence of each symbol. Such a model has
been proposed as a similarity measure that can be use-
ful in genome rearrangement analysis, in particular when
dealing with the exemplar model [13]. In such a frame-
work we want to compute an exemplar sequence, that is
a sequence which contains only one representative (called
the exemplar) for each family of duplicated genes inside
a genome. In biological terms, the exemplar gene may
correspond to the original copy of the gene, from which
all other copies originate [13]. Complexity results for the
repetition-free longest common subsequence have been re-
cently given in [14].

A different variant of LCS that has been introduced to
compare biological sequences is called constrained longest
common subsequence (C-LCS) [15]. This problem requires to
compute, given three sequences si, s, and s¢, a longest
common subsequence s of s; and s, such that s is a su-
persequence of s.. Such a variant of LCS can be useful
when comparing two biological sequences (represented by
s1 and s3) having a known substructure in common (for-
malized by s.) which must be conserved by the solution
s [15]. The Constrained LCS problem can be solved by some
polynomial time algorithms [15-17], but it becomes NP-
hard when generalized to a set of input sequences or to a
set of constraint sequences [18].

In this paper we are interested to continue the in-
vestigation of the computational complexity of the above
two measures for comparing sequences, mainly when both
constraints characterizing them are required. Indeed, we
propose a new similarity measure for the comparison of
two biological sequences (genomes) which takes into ac-
count the exemplar model (as suggested in [12]) as well
as the consensus model commonly used in the comparison
of biological structures which is represented by a known
substructure common to the two input sequences (i.e., the
consensus is given by a constraint set of sequences, as pro-
posed in [15]). We formalize a new problem called Doubly-
Constrained Longest Common Subsequence (DC-LCS) problem,
which extends both the Repetition-Free Longest Common
Subsequence problem and the Constrained Longest Com-
mon Subsequence problem. Hence, given two input se-
quences S1, Sz, the DC-LCS problem asks for the longest
common subsequence s of s; and s, that satisfies two con-
straints: (i) the number of occurrences of each symbol o is
upper bounded by a quantity Co(c), and (ii) s is a super-
sequence of every string of a specified constraint set Cs.

First, we design a fixed-parameter algorithm [9] when
the parameter is the length of the solution. Clearly such an
algorithm also applies to the more specialized problems.
Then we give a parameterized hardness result for the Con-
strained Longest Common Subsequence problem, when the

number of constraint sequences and the size of the alpha-
bet are considered as parameters. The reduction used to
prove this hardness result implies an identical result for
DC-LCS and also shows that DC-LCS is NP-hard over an al-
phabet of 3 symbols.

2. Basic definitions

Let sq, s be two strings over an alphabet X. Given
a string s, we denote by s[i] the symbol at position i in
string s, and by s[i... j], the substring of s starting at po-
sition i and ending at position j. Given a string s over an
alphabet X' and a symbol o (not necessarily in X'), we de-
note by occ(o, s) the number of occurrences of symbol o
in s. A string constraint Cs consists of a set of strings, while
an occurrence constraint C, is a function C, : ¥ — N, as-
signing an upper bound on the number of occurrences of
each symbol in X. First, consider some variants of the LCS
problem.

Problem 1 (Constrained Longest Common Subsequence (C-
LCS)).

Input: two strings s; and s;, a string constraint Cs.
Output: a longest common subsequence s of s; and s3, so
that each string in C; is a subsequence of s.

The problem admits a polynomial time algorithm when
Cs consists of a single string [15-17], while it is NP-hard
when C; consists of an arbitrary number of strings [18]. In
the latter case, notice that C-LCS cannot be approximated,
since a feasible solution for the C-LCS problem must be a
supersequence of all the strings in the constraint Cs and
moreover, deciding the existence of a feasible solution is
an NP-complete problem [18].

Problem 2 (Repetition-Free Longest Common Subsequence
(RF-LCS)).

Input: two strings s; and s.

Output: a longest common subsequence s of s; and sj,
so that s contains at most one occurrence of each symbol
ogeX.

The problem is APX-hard even when each symbol oc-
curs at most twice in each of the input strings s; and
so [12]. A positive note is that allowing at most k occur-
rences of each symbol in each string s; and s, results in a
%-approximation algorithm [12].

We introduce an even more general version of both
the C-LCS and RF-LCS problem, called Doubly-Constrained
Longest Common Subsequence (DC-LCS) problem.

Problem 3 (Doubly-Constrained Longest Common Subsequence
(DC-LCS)).

Input: two strings s1 and s, a string constraint Cs, and an
occurrence constraint C, : X — N.

Output: a longest common subsequence s of sy and s, so
that each string in Cs is a subsequence of s and s contains
at most C, (o) occurrences of each symbol o € X.

It is easy to see that the C-LCS problem is the restric-
tion of the DC-LCS problem when C,(0) = |s1| + |s2| for
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each o € ¥. At the same time, the RF-LCS problem is
the restriction of the DC-LCS problem when C; = @ and
Co(0) =1 for each o € X. Therefore the DC-LCS problem
cannot be approximated within any ratio, since it inherits
all hardness properties of C-LCS and RF-LCS.

3. Afixed-parameter algorithm for DC-LCS

Initially we present a fixed-parameter algorithm for the
DC-LCS problem when |Cs| < 1 (hence the result also holds
for the RF-LCS problem), where the parameter k is the size
of a solution of DC-LCS. Later on, we will extend the algo-
rithm to a generic set Cs.

The algorithm is based on the color coding tech-
nique [19]. We recall the basic definition of a perfect
family of hash functions [20]. Given a set S, a family F
of hash functions from S to {1,2,...,k} is called perfect
if, for any S’ C S of size k, there exists an injective hash
function f € F from S’ to the set of labels {1,2,...,k}.

Since |Cs] < 1, we denote by s. the only sequence
in Cs and let k be the size of a solution for DC-LCS.
Suppose w.l.o.g. that C,(0) is not bigger than the value
min{occ(o, s1), occ(o, s2)}. Indeed, a solution s of DC-LCS
is a subsequence of both s; and s;, hence occ(o, s) is up-
per bounded by min{occ(o, s1), occ(o, $2)}.

Given C, and the sequences s; and s, we construct
a set ¥ that contains the pairs (o,i) for each o € X and
ie{l,...,Co(0)}. For example, if s; = aaaa bbbbb cccc dddd,
sy = ddddd cccbbbbaaaa, and C,(a) = Co(b) =4, Co(c) =
Co(d) = 3, then the set ¥ is equal to {(a, 1), (a,2), (a,3),
(a,4), (b, 1), (b,2), (b,3), (b,4), (c, 1), (c,2),(c,3), d, 1),
(d,2), d,3)}

Consider now a perfect family F of hash functions from
5 to the set of labels {1,2,...,k}. Given a function f € F,
for each 0 € X' let Lg(o) be the set of labels associated
by f with the pairs (0,i) € X, for some i. Let s be a
generic sequence over alphabet X and let L be a sub-
set of {1,...,k}. Then s is an L-colorful sequence w.r.t.
a hash function f € F iff we can assign to each position i,
1 <i<|s|, a distinct label I; € L, such that I; € L¢(s[i]), and
each label [ € L is assigned to some position of s. We claim
that an L-colorful sequence s w.r.t. a hash function f € F
contains at most C, (o) occurrences of each symbol o € X.
In fact, the cardinality of the set Lf(o) is upper-bounded
by Co(0), hence there can be at most Co(0) occurrences
of o in s with distinct labels. Given three sequences s1, Sz,
and sc, we say that an L-colorful sequence s w.r.t. a hash
function f is an L-colorful solution (w.r.t. f) if and only if s
is a common subsequence of s; and s; that is also a super-
sequence of s¢. In other words, an L-colorful solution is a
sequence s which is both an L-colorful sequence and a so-
lution of the C-LCS problem. By the definition of L-colorful
solution and the claim stated above, any L-colorful solu-
tion s is a feasible solution of the DC-LCS problem.

The basic idea of our algorithm is to verify if there ex-
ists an L-colorful solution, for some set L C {1,2,...,k}.
This task is fulfilled via dynamic programming. Since F is
a perfect family of hash functions, and each symbol o does
not occur more than C,(o) times in s, for each feasible so-
lution s of length k, there exists a hash function f € F such
that s is {1,..., k}-colorful w.r.t. f. By computing the re-

currence for all hash functions in F, we are certain to find
a solution of length k, if such a solution exists.

Given a hash function f, we define VT[i, j, h, L] which
takes value 1 if and only if there exists an L-colorful com-
mon subsequence s of s1[1...i] and s3[1...j], such that s
is a supersequence of sc[1...h] (notice that s has length
equal to |L| or, equivalently, s uses all labels in L). The-
orem 3.1 states that V[i, j, h, L] can be computed by the
following dynamic programming recurrence which is an
extension of the standard equation for the Longest Com-
mon Subsequence (LCS) problem [1].

VIii—1,j,h,L]
VI[i,j—1,h,L]
VIi—1,j—1,h, L\ {A}]
if s1[i] = s»[j] and
reLlnLg(sifil)
VIi—1,j—1,h—1,L\ {A}]
if s1[i] = s2[j]1 = sc[h] and
reLnLgsili

VIi, j, h, L] = max (1)

The boundary conditions are VIO, j,h,L] = 0 and
V[i,0,h,L] = 0 if L#@, while VI[i, j0,0] =1 and
Vi, j, h,»] =0 when h > 0. Moreover, as a consequence of
the recurrence’s definition, V[i, j,h,L] =0 for all h > |L|.
A feasible solution of length k is {1, ..., k}-colorful w.r.t. f
if and only if V[|s1],|s2l,Iscl, {1,...,k}] = 1. In this case,
a standard backtracking search can reconstruct the actual
solution.

Theorem 3.1. Assume that f € F is a hash function and let s be
a L-colorful solution w.r.t. f. Then Eq. (1) is correct.

Proof. We will prove the theorem by induction, that is we
will prove the correctness of the value of V[ig, jg, ha, La]
by assuming that of V[iy, jp, hp, Lp] when iy <ig, jp <ig,
hy < hg, Lp € Lg, and at least one inequality is strict.

Let s be an optimal Lg;-colorful solution for the se-
quences s1[1,...,1q], s2[1,..., jal, sc[1,...,hq], and let B
be the last symbol of s, that is s =t8, where t is the prefix
of s consisting of all but the last character.

Assume that s1[ig] # s2[jq]. Then, just as for the recur-
rences of the standard LCS problem [1], the theorem holds.
Assume that sq[ig] = s2[jqs] = o and let « # S. Then, by in-
duction hypothesis, s is an optimal Lg-colorful solution for
the sequences si[1,...,iq — 1], s2[1,..., jal, Scl1, ..., hql
and the theorem holds.

Therefore we can assume now that o = . Since s is
Lq-colorful, we can assign a distinct label I; in L, to each
position i of s, such that I; € L¢(s[i]). Let | be the label
assigned to the last position of s. By inductive hypothesis
there exists an L \ {l}-colorful solution t of sq[1,...,iq —
11, s2[1, ..., ja — 1], scl1, ..., jql (if t is a supersequence
of s¢[1,...,jq]) or of s1[1,...,ig — 1], s2[1,...,ja — 1],
sc[1,..., jo — 1], hence completing the proof. O

Given a solution s of DC-LCS of size k, let fs be the set
of pairs (o, j), with o a symbol of s and 1 < j < occ(g,s).
Assume that f is a hash function that maps the set X to
the set of labels {1,...k}, but is not injective. Then there



880 P. Bonizzoni et al. / Information Processing Letters 110 (2010) 877-881

is a label z € {1,...,k} that is not assigned to any pair
(0, j). Hence the conditions of the last two cases of our
recurrence equation will never hold for A =z, which im-
plies that Vi, j,h,{1,...,k}] =0 for all values of i, j, h,
hence establishing the correctness of our algorithm.

It is immediate to notice that the total number of en-
tries of the matrix V[-,-,-, -] is |s1]|s2||sc|2¥. Furthermore
notice that computing each entry requires at most O (k)
time, as case 1 and case 2 of the recurrence require con-
stant time, while case 3 and case 4 require at most O (k)
time, since |L| <k. There exists a perfect family of hash
functions of size 0(log|X])2°® that can be computed in
0(1Z|1og|Z)2°® time [19]. Eq. (1) is applied for each
hash function of the perfect family, hence, since |X| <
Is1], the algorithm has an overall O(|sq|log|si|)2°® +
0(s1Is2115c12°® log | ) time complexity.

The algorithm actually computes a longest superse-
quence of s, which is a feasible solution of the problem.
Assume now that Cs is a generic string set, and let x be an
optimal solution of size k of a generic instance of the DC-
LCS problem. It is immediate to notice that there exists a
minimal common supersequence x; of Cs which is a sub-
sequence of x. Clearly |x;]| < |x| = k. By minimality, each
symbol of x; appears in some sequence in Cs;. Moreover
the alphabet X7 of symbols appearing in at least one se-
quence of Cs contains at most k symbols, since otherwise
all supersequences of Cs; would be longer than k. Con-
sequently there are at most k¥ supersequences no longer
than k that are taken from the alphabet X'. Our algorithm
for a generic C; enumerates all such supersequences s,
and applies the algorithm for |Cs| =1 on the new set of
constraint sequences made only of s¢, returning the longest
feasible solution computed.

The overall time complexity is clearly k¥T(k, |s1], |s2]),
where T(k, Is1]. [s2]) = (s1]log[s1)2°® + O (Is1][szlsc| x
200 Jog| 5.

4. W[1]-hardness of C-LCS

In this section we prove that determining if there ex-
ists a feasible solution of C-LCS, is not only NP-complete,
but also W[1]-hard when the parameter is the number of
strings in Cs and the alphabet X' (see [9] for a description
of the consequences of W[1]-hardness).

We reduce the Shortest Common Supersequence (SCS)
problem parameterized by the number of input strings
and the size of alphabet X, which is known to be W[1]-
hard [10]. Let R = {r1,...,rx} be a set of sequences over
the alphabet X, hence R is a generic instance of the SCS
problem. In what follows we denote by [ the size of a so-
lution of R.

The input of the C-LCS problem consists of two se-
quences s1, Sz, and a string constraint Cs. Let # be a de-
limiter symbol not in X. Pose C; = {#/} UR. Let w be a
sequence over X such that w contains exactly one occur-
rence of each symbol in X, and let rev(w) be the reversal
of w. Finally, let s; = (w#)! and s = (rev(w)#)". In the fol-
lowing we call each occurrence of w or of rev(w) a block.

Let t be any supersequence of #! that is also a common
subsequence of s; and s;. Since in each of those sequences
there are | #s, then also t must contain ! #s, which in turn

implies that by construction of s; and s;, at most one sym-
bol of each block can be in t. Therefore, t contains at most
2l symbols. At the same time, let p be a generic sequence
over alphabet X U {#} no longer than 2I, ending with a
# and such that no two symbols from X appear consec-
utively in p. Since each symbol of X' occurs exactly once
in w, it is clear that p is a common subsequence of sq
and s;. Consequently, the set of all supersequences of #
that are also common subsequences of s; and s, is equal
to the set of sequences q that are no longer than 2/ and
such that (i) q contains exactly [ #s, (ii) ¢ ends with a #,
and (iii) taking two consecutive symbols from g, exactly
one of these symbols is equal to #.

An immediate consequence is that there exists a fea-
sible solution of length 2I of the instance of C-LCS con-
sisting of the set C; and the two sequences s; and s;
if and only if there exists a supersequence of length | of
the set R of sequences. Indeed, assume that g =yy2---y;
is a supersequence of length [ of the set R of sequences.
Then p = y #y,#---y;# is a supersequence of g, hence
also of each sequence in C;. Furthermore, by construc-
tion p is a subsequence of s; and s;. Assume now that
p = y1#y#. .- y/# is a solution of the instance of C-LCS
made of the set C; and the two sequences s; and s,. Hence
p is a supersequence of each sequence in the set R. The
sequences in R are over alphabet X (hence they do not
contain #), therefore q = y1y2---y; is a supersequence of
length I of the set R of sequences.

The reduction described is an FPT-reduction [9]. Finally,
notice that the W[1]-hardness of C-LCS with parameters
|Cs] and | X| implies the W[1]-hardness of DC-LCS with pa-
rameters |Cs| and |X|, since C-LCS is a restriction of the
DC-LCS problem.

Moreover, notice that the same reduction can be ap-
plied starting from the SCS problem over the binary al-
phabet, which is NP-hard [21], implying that the DC-LCS
problem is NP-hard over a fixed ternary alphabet.
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