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I. INTRODUCTION

Time series is a common data type that has 
been widely used in a variety of domains, 
such as scientific research and economic 
analysis. Many methods for mining time se-
ries databases to get useful information in an 
efficient manner have been proposed. Das et 
al. presented that how association rules can 
be learned from time series [1]. Catalano et 
al described an algorithm for discovering pat-
terns in time series [2]. Keogh and Pazzani 
considered the problem for scaling up time 
series classification algorithm [3]. Debrege-
as and Hebrail attempted to introduce a new 
technique for improving time series clustering 
algorithm to deal with massive datasets [4]. 
The similarity search, as a core subroutine, has 
been applied in most time series data mining 
algorithm. For example the clustering algo-
rithm needs to measure the similarity in time 
series to ensure whether they are the same 
class. The mining algorithm of association 
rules also need to translate the sub-sequences 
of time series into items according to the simi-
larity. Therefore the computational expense of 
similarity search will become the bottleneck 
of time series mining algorithms.

Most of similarity search methods are based 
on Euclidean Distance but it may be an ex-
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in large time series.
The rest of this paper is organized as fol-

lows. Section II outlines the related work 
about the modifications of DTW. Section III 
contains the measure of similarity. Section 
IV introduces the optimization of DTW. Sec-
tion V is the algorithm implementation of 
MRDTW. The experimental results are dis-
cussed in Section VI. We conclude the paper 
in Section VII.

II. RELATED WORK

Dynamic time warping (DTW) has been suc-
cessful in many areas. Typical applications 
include speech processing [6], gesture recog-
nition [7], astronomy [8], mining of historical 
manuscripts [9], and electronic patient records 
[10], etc.

Conventional DTW is considered incom-
petent and slow in time for large databases 
mining. The critical constraint is the computa-
tional burden that has been widely recognized 
by other researchers. For example, Chadwick 
et al. found that due to time constraints, DTW 
did not perform well for large time series [10]. 
Likewise, Bemdt and Clifford realized that the 
performance of DTW on very large databases 
may be a limitation [11], and [12] noted that it 
is not be sufficient for scaling DTW methods 
to truly massive databases.

However, huge potential for DTW has also 
been seen if some of the technical issues could 
be addressed. To reduce the computational 
complexity, many improvement algorithms 
have been proposed for DTW search in large 
databases. Existing methods can be catego-
rized into two types: approximate search and 
exact indexed search. Keogh et al. proposed 
a Piecewise Dynamic Time Warping (PDTW) 
which took advantage of the fact that most 
time series can be efficiently approximate 
by the Piecewise Aggregate Approximation 
(PAA) [13]. Salvador et al. proposed an ap-
proximation of DTW (FastDTW) [14] which 
uses a multilevel approach that recursively 
projects a solution from a coarse resolution. 
The proposed approach can also refines the 

tremely brittle distance measure. Euclidean Dis-
tance is very fragile to small temporal distor-
tions and, in some particular application, notch 
distance measure is required. This means that 
no adjustment is made for difference in scale. 
Dynamic Time Warping (DTW) improves those 
weaknesses by reaching optimal alignment be-
tween multiple time series, which are warped 
in a nonlinear fashion to match with each other. 
Therefore DTW can be used to measure the 
similarity in time series with patterns shifted in 
time or distorted in sharp.

Unfortunately, due to the quadratic O(N2) 
time and space complexity, it is hard for DTW 
to measure similarity in large time series with 
more than thousands of data points. On the 
other hand, the growing volume of datasets 
make the implementation of mining algorithm 
complicated in modern medical and indus-
trial database. For example, many research 
hospitals have EEG data with trillions of data 
points. The telemetry data of domestic flights 
collected by NASA Ames has tens of trillions 
of data points, and some power companies 
will record a trillion data points in every four 
months. An improved algorithm of the DTW 
is desirable to reduce both temporal and spa-
tial complexities and it is likely to produce the 
optimal warp path between large time series.

In this paper the MapReduce[5]-based 
dynamic time warping (MRDTW) parallel al-
gorithm is developed, which is able to search 
through an more accurate warp path between 
two large time series. The working principle 
of MRDTW algorithm is achieved by break-
ing the larger series into sub-sequence and 
comparing their similarities in the segmented 
time series. The comparison of sub-sequence 
is independent, which allows the MRDTW to 
use parallel scheme like MapReduce. Unlike 
the previous methods modified the DTW al-
gorithm, the main contribution of this paper is 
try to improve the performance of DTW using 
the parallel scheme when dealing with large 
time series. Experimental evaluation results 
illustrate our approach retains the searching 
accuracy as the DTW, and the efficiency of 
similarity measure has been greatly improved 

T h i s  p a p e r  p r e s -
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Time series similarity comparison is highly 
demanded in data-based research and applica-
tion. For example it is very important for aero-
space improving fault detection and prediction 
though data mining. A large time series can be 
decomposed into thousands of data points, and 
each of which represents a value at a certain 
time.

Definition 1. Time Series: A time series 
T=t1,t2...tm is a sequence of numbers m collect-
ed at regular intervals over a period of time, 
and m called the length of T.

Definition 2. Sub-sequence: Given a time 
series T of length m, a sub-sequence C of T is 
a sampling of length n (n≤m) of contiguous 
positions from T, that is, C=tp....tp+n−1, 1≤p≤ 
m−n+1.

Definition 3. Similarity of Time Series: 
Consider two time series S1 and S2, their simi-
larity function is Sim(S1,S2), given a threshold 
ε, if:

	    Sim(S1, S2) ≤ ε� (1)
is established, it is say that S1 and S2 are simi-
lar to the case of the ε boundary.

A time series can be converted into a dis-
crete representation by using the appropriate 
segmentation (e.g. a sliding window) and then 
clustering these sub-sequences using simi-
larity measure. Euclidean Distance, Pattern 
Distance, Slope Distance and Dynamic Time 
Warping (DTW) are classical methods for 
time series similarity measure. This paper will 
pay attention to DTW’s optimization in paral-
lelization.

3.2 Review of dynamic time warping

The concept of DTW was first introduced by 
Bemdt and Clifford for analyzing the small-
scale time series. In their works, DTW was 
examined from theoretical viewpoint and its 
time complexity was thought as a limitation. 
In the subsequent algorithm’s introduction, a 
review about the classical DTW algorithm will 
be presented.

Suppose that there are two time series Q 
and C, with the length of number n and m re-
spectively:

	       Q=q1,q2,...,qi,...,qn� (2)

projected solution to approximate linear time 
and space relationship. The above methods, 
including Iterative Deepening Dynamic Time 
Warping (IDDTW) [15], Segmented Dynamic 
Time Warping (SDTW) [16] belong to the first 
type. The main limitation of the approximate 
search is that it is not guaranteed to find the 
optimal solution [14]. Apart from approximate 
time series, guiding the search to access only 
parts of the database is another candidate and 
various index structures for DTW distance 
have been studied. Keogh et al. proposed 
the LB_PAA which shows that PAA can be 
adapted to allow indexing under DTW [17]. 
FTW (Fast search method for Dynamic Time 
Warping) indexing which is introduced by 
Sakurai et al. can efficiently filter a significant 
number of search candidates, and leads to a di-
rect reduction in the search cost [18]. A more 
recent approach, iSAX (indexable Symbolic 
Aggregate Approximation) gives a discrete 
representation to time series and changes time 
series into a sequence of symbols which can 
be indexed with a tree topology for simplicity 
[19]. However, one drawback of index-based 
techniques is that random access to the data-
base will cause huge amount of I/O cost. It 
means that indexing will be burdened with so 
large I/O overheads that it is not suitable for 
massive databases.

MapReduce, which was proposed by Goo-
gle, is a parallel programming model for pro-
cessing massive data sets with a distributed 
algorithm in a cluster [5]. More detail about 
MapReduce will be given in section V. Many 
applications benefits from MapReduce, such 
as Hadoop [20] which is a distributed system 
infrastructure, and MongoDB [21] which is a 
database based on the distributed file storage. 
Accordingly, incorporating MapReduce with 
DTW will present a novel way to improve the 
mining efficiency.

III. THE MEASURE OF TIME SERIES 
SIMILARITY

3.1 The similarity of time series
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aligning two time series with the length of M 
and N respectively, DTW usually takes O(MN) 
time to compute a similarity. If the M and N 
are very large, (e.g., M, N>107) there will be 
considerable amount of computations. One 
solution is to split the large series into smaller 
units, which will reduce the time complexity 

to O( M
m

N
n ). The m and n can achieve more 

than one thousand in a huge, but distribute en-
vironment according to the number of nodes.

So the first step is to segment one of the 
time series C, and it is expected that the seg-
mentation will result in sub-sequences with 
the form of S1,S2,...,Sl. Each piece of sequences 
is located on different nodes in a d  istributed 
cluster. Tim  e series Q is not segmented in this 
paper, and is distributed on every node.

The Important Point Segmentation (IP) [22] 
method is considered here to split the time 
series, so the sub-sequences can remain most 
of the original time series modes, and each 
sub-sequence is relatively independent. Com-
paring the similarity between sub-sequences 
Si and Q with DTW method respectively, the 
final results will be integrated to reflect the 
similarity between C and Q.

4.2   Parallelization of DTW

The following is an example to illustrate this 
process of parallel comparison. Suppos  ing 
there are two time series:

C={71,73,75,80,80,80,78,76,75}

       C=c1,c2,...,cj,...,cm (3)
Firstly, an n-by-m distance sim  ilarity matrix 

is constructed, where the (i, j) element of the 
matrix contains the distance d(qi,cj) between 
the two points qi and cj(Here we use the Man-
hattan Distance, so d(qi,cj)=|qi-cj|). The matrix 
can be used to align the two sequences and 
each matrix element (i, j) corresponds to the 
alignment between the points qi and cj. The 
il  lustration is shown in Fig.1.

Defi nition 4.   Warping path: A warping path, 
W, is a continuous s  equence of dis  tance sim-
ilarity matrix elements that defines an align-
ment between Q and C. The kth element of W 
is defi ned as wk=(i,j)k, so: W=w1,w2,...,wk,...wK, 
and the K satisfi ed: max(m,n)≤ K≤ m+n−1.

A warping path must be met with several 
constrains: boundary conditions, continuity, 
and monotonicity. Obviously, there are a great 
number of potential warping paths that could 
meet the above conditions, however, the path 
which have the minimum warping cost is mea-
sured as:

DTW(Q,C)=min {(
√∑K

k=1
wk )/K}  (4)

K in (4) is used to reduce the effect which is 
produced by warping paths with the different 
lengths. Before searching the warping path, 
the cumulative distance γ(i,j) must be defi ned. 
γ(i,j) is defi ned using the distance d(i,j) which 
can be found in the current cell and the mini-
mum of the cumulative distances of the adja-
cent elements. Using dynamic programming to 
compare the γ(i,j) recursively, and the   warping 
path can be found more effi ciently.
γ(i,j)=d(qi,cj)+min{γ(i−1,j−1),γ(i−1,j),γ(i, j−1)
 (5)

IV. THE OPTIMIZATION OF DTW IN 
PARALLELIZATION

4.1 Segmentation of time series

Theoretically, the brute-force search method 
can be adopted to find the paths which meet 
the conditions, but complete exhaustion is 
often impractical in large time series data. For 

Fig.1  The example of warping path (C is a time series with length of m, and js is 
one element of C; Q is a time series with of n, and is is one element of Q.)
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Q={69,69,73,75,79,80,79,78,76}
According to the traditional DTW, the dis-

tance matrix is shown in Fig.2 (using Manhat-
tan Distance).

Using the formula (5) to compute the cu-
mulative distance γ(i,j) of matrix D, and the 
obtained warping path W is shown in Fig.3.

That is W={(1,1), (1,2), (2,3), (3,4), (4,5), 
(5,6), (6,7), (7,8), (8,9), (9,9)}.

Before the parallelization of DTW, the time 
series C is sorted into three sub-sequences, S1 
={71,73,75}, S2 ={80,80,80}, S3 ={78,76,75}. 
The S1 represents the mode of rising, S2 is 
invariant and S3 is the mode of falling, that 
is, each sub-sequence is part of its original 
sequence. There are three nodes in a cluster, 
Node1, Node2, Node3, and S1, S2, S3 are lo-
cated on the three nodes respectively, and Q is 
located on every node. The process of paral-
lelization is to compare the similarity between 
S1 and Q, S2 and Q, S3 and Q concurrently. The 
results of parallel DTW are shown in Fig.4.

On Node1, because the first point of warp-
ing path is fixed according to the boundary 
conditions, that is (1,1), obviously the path 
marked the red numbers is the shortest, that is 
W1={(1,1),(1,2),(2,3),(3,4)}. On Node3, S3 is 
the last sub-sequence, according to the defi-
nition of DTW, the last point of warping path 
is (n, m), so the path is also easy to be con-
firmed. In this case, the W3={(7,8),(8,9),(9,9)}. 
On Node2, the choice of the path is rela-
tively complex, because the first and the 
last point are all uncertain. We have listed 
all possible paths of Node2 as in Fig.4, that 
is: {(4,7),(5,8),(6,9)}, {(4,6),(5,7),(6,8)}, 
{(4,5),(5,6), (6,7)}, {(4,4),(5,5),(6,6)}, 
{(4,3),(5,4),(6,5)}, {(4,2), (5,3),(6,4)}, 
{(4,1),(5,2),(6,3)}, {(4,1),(5,1),(6,2)}, 
{(4,1),(5,1),(6,1)}.

4.3 Pruning of warping paths

As illustrated in the above section, there are 
several possible paths in the middle Node, and 
the selection of optimal path will be generated 
through pruning the possible warping paths.

Definition 5. Flexibility: We define the 
flexibility F of warping path like this:

Fig.4  The result of parallel DTW (The paths with black arrow indicate all the pos-
sible paths of sub-sequence, and the paths with red mark are the optimal path of 
sub-sequence)

Fig.3  The warping path of C and Q (The numbers in the blue region indicate the 
cumulative distance, and the numbers with red mark represent the optimal path.)

Fig.2  The distance matrix of C and Q (The numbers in the blue region indicate the 
Manhattan Distance between ci and qi.)
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ries [18]:
1)  Constrains – Limiting the number of cells 

that are evaluated in the cost matr    ix.
2)  Data Abstraction – Performing DTW on a 

reduced repr  esentation of th  e data.
3)  Indexing – Use lower bounding functions 

to reduce the running time of DTW during 
time series classifi cation or clustering.
This paper focuses on th  e first categories, 

and uses the method called Slope Constraint 
to restrict the number of warping paths.

D e f i n i t i o   n  7 .  S l o p e  C o n s t r a i n t : 
( jsb
− jsa

)/(isb
−isa

) ≤ p  and (isb
−isa

)/( jsb
− jsa

) ≤ q

, where q ≥ 0 is the number of steps in t  he 
x-direction and p ≥ 0 is the number of steps 
in the y-direction. After q steps in x one must 
step in y and vice versa. Because of the differ-
ent values of p and q, the calculation formula 
of γ(i, j) also needs t  o be changed.

This constraint can be used to reduce the 
warping paths that are nearly horizontal or 
vertical. The illustration is shown in Fig.5.

This constraint also prevents very short 
parts of the sequences from matching with 
very long ones, which is undesirable and 
needs to be discard    ed. As shown in Fig.6, the 
point p refers to the points s1, s2, s3, s4, s5, s6 of 
another sequences.

There are some other constraint methods to 
boost searching speed of DTW in cluster, e.g., 
Global Constraints, Local Constraints, Step 
Size Condition are not considered in this paper 
but will be analyzed for optimizing our algo-
rithm in further work.

 F = (
K∑

k=1

|ik − jk|)/K  (6)

In the process of searching warping paths, a 
threshold ε needs to be determined. The condi-
tion F ≥ ε, suggests that the model of two time 
series is so different that it can’t be dynamical-
ly warping matched. In this paper, we set the 
ε=K.

Definition 6. Continuity: The elements in 
warping path are continuous, and the align-
ment path does not jump in the time index, 
satisfying  : is−is−1≤1 and js−js−1≤1.

According to defi nition 5, the paths {(4,7), 
(5,8), (6,9)}, {(4,1), (5,2), (6,3)}, {(4,1), (5,1), 
(6,2)}, {(4,1), (5,1), (6,1)} are considered too 
much different, and therefore they are discard-
ed. For the remaining five paths, according 
to the descending of their distance value the 
paths are listed as: {(4,6), (5,7), (6,8)}, {(4,5), 
(5,6), (6,7)}, {(4,4), (5,5),(6,6)}, {(4,3), (5,4), 
(6,5)}, {(4,2), (5,3), (6,4)}. There are small 
differences in the distance of the above five 
path, but considering the continuity, the first 
point of path following W1 would be (4,4) or 
(4,5), and the last point of path previous W3 
would be (6,7) or (6,8). From the remaining 
five paths, it can be seen that only the path 
{(4,5), (5,6), (6,7)} satisfi es the continuity, so 
W2={(4,5), (5,6), (6,7)} is the optimal path. 
Combining the paths W1, W2, W3, gives the 
final warping path W={(1,1), (1,2), (2,3), 
(3,4), (4,5), (5,6), (6,7), (7,8), (8,9), (9,9)}. It 
is apparent that the result is the same with the 
traditional DTW method.

4.4 Speeding up DTW in Cluster

Although using the Flexibility and Continuity, 
we can prune many possible warping paths 
to reduce the calculations. Most of the time, 
it is impractical to use the Continuity when a 
sub-sequence is also the middle sub-sequence 
and a large number of interm  ediate results is 
unavoidable. Not only will calculation time 
increase greatly, but also the intermediate re-
sults will be transmitted in the cluster and the 
effi ciency will be reduced. The feature of the 
cluster causes the need to accelerate the DTW, 
and the methods may be fall into three catego-

Fig.5  The example of slope constraint (The time series do not appear in the fi g-
ure.)
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DTW is based on Map-Reduce which is an 
effective and useful framework for processing 
massive data. MapReduce is a p  arallel pro-
gramming framework that allows developers 
to write programs and process massive data. 
The framework is divided into two parts:
  Map, a function that transforms the input 

data into a set of key/value pairs and per-
forms filtering and sorting. All the opera-
tions will be executed individually in dif-
ferent nodes. For DTW algorithm, the map 
function is designed to find the possible 
warping paths between sub-sequence and 
another time series, and then prune these 
paths according to some limits.

  Reduce, a function that merges together 
the results from the Map and integrates 
the results into a single value. For DTW 
algorithm, the reduce function is to merge 
the possible warping paths into an optimal 
path, and the process is shown in Fig.8.
The MapReduce framework can coordinate 

and manager the d  istributed nodes effi ciently, 
running the subtasks in parallel and manag-
ing all communication data transferred in the 
cluster. More detailed introductions about 
Map-Reduce are explained in [5]. To initialize 
MRDTW, one of the time series has to be split 
into multiple sub-sequences which will be 
compared with another time series in parallel. 
It is better to segment longer time series into 
pieces. The whole process of implementation 
is shown in Fig.9.

In terms of implementing of the proposed 
parallel DTW, the Map function is expounded 
as follows: Comparing the similarity of the 
sub-sequence and the sequence in parallel on 
each distributed node, and obtaining the pos-
sible warping paths respectively. The paths 
of the first and the last sub-sequence can be 
determined immediately, the others can be 
pruned by the setting of flexibility and the 
Slope Constraint. The specifi c algorithm is as 
follows:

V. ALGORITHM IMPLEMENTATION OF 
MRDTW    

The algorithm implementation of parallel 

Fig.6  Short parts match to long

Fig.7  The process of Map for DTW (Before Map, S is split into three subsequences, 
and in the fi gure, only the Map of s1 is illustrated.)

possible path pruned path

S1

Q

Map1

Map2

Fig.8  The process of Reduce for DTW (Only the Reduce between s1 and s2 is illus-
trated in the example.)
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VI. EXPERIMENTAL RESULTS

The goal of this experiment is to demonstrate 
the efficiency and accuracy of the MRDTW 
algorithm on very large time series data sets 
compared with other algorithms.

6.1 Effi  ciency of MRDTW

The data that is chosen to measure the effi-
ciency of MRDTW is the parametric data from 
the satellite collected at a rate of 2Hz within 
one day. The characteristics of the data are:
1)  Large – The size of the original data is 

more than 4G for one day.
2)  Multi-parameter – The number of parame-

ters is more than two thousand.
With respect to the length of the input time 

series, the efficiency of the MRDTW algo-
rithm will be measured using time unit (sec-
ond). The compared methods are the standard 
DTW algorithm and Euclidean distance. The 
MRDTW algorithm will be tested with the 
node parameter which set as 5 and 10. The 
lengths of the time series varied from 100 to 
168578.

In this experiment the MRDTW algorithm 
was drastically faster than the standard DTW 
and Euclidean when the time series become 
larger than 10000. MRDTW is 270 or 430 
times faster than standard DTW (using node 

MRDTW Map()
 Input: Ci, Q (i is the number of segment)
  Output: Wi[r] (r is the number of possible 

paths)
 BEGIN
  r=1; (initialize the number of paths)
  if (i==1)
    Wi[r] = getTheFirstW(); return;
  if (i==k)
    Wi[r] = getTheLastW(); return;
  for j=1 to m do { (m is the length of Q)
   Wi[r] = getTheMidW();
   if (countFlexibility(Wi[r])<ε))
    { r++; }
  }
 END

The implementation of Reduce function: 
According to the principle of continuity, 
merging the end-to-end warping paths, which 
satisfi ed is−is−1≤1 and js−js−1≤1. Calculating the 
total length of warping path, the path with the 
minimum length is the optimal solution. The 
specifi c algorithm is as follows:
MRDTW Reduce()
Input: Wi[r] (i is the number of segment)
Output: W
BEGIN
  for i=1 to k do { (k is the total number of 

segment)
  if (i==1) {
   (mi,ni)=getLastCoordinateOfW(Wi[1]);
   for l=1 to length(W2[r]) do {
    (mi+1−mi+1)=getFirstCoordinateOfW(W2[l]);
   if ((mi+1−mi) ≤ 1 and (ni+1−ni) ≤ 1)
    W=mergeW(W1[1], W2[l]);
   }
  }
  for s=1 to length(Wi[r]) do {
   (mi,ni)=getLastCoordinateOfW(Wi[s]);
   for l=1 to length(Wi+1[r]) do {
    (mi+1−mi+1)=getFirstCoordinateOfW(Wi+1[l]);
   if ((mi+1−mi) ≤ 1 and (ni+1−ni) ≤ 1)
    W=mergeW(Wi[s], Wi+1[l]);
   }
  }
 }
END

Fig.9  The process of MapReduce for DTW (Obviously, there are more possible 
paths in the process, and for conveniently description, we only show two possible 
paths in every sub-sequence.)
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less than 1000.   The MRDTW is very suitable 
to deal with large time series and with the 
rapid increase in the length of time series, the 
growth of execution time is very gentle. Also 
with the increase of nodes, the efficiency of 
the MRDTW algorithm can be further raised.

It is important to note that Fig.10 is scaled 
normally, but for convenience of illustration 
the y-axis of Fig.11 has   log-log scaling.

6.2 Experiment for long time series

From the above experiment, it is confirmed 
that MRDTW is not suitable for short time 
series. So the datasets have been changed, 
and only long time series have been selected. 
Some examples for the dataset are shown in 
Fig.12, and all data series are Z-normalized. 
Random Walk dataset [24]: To provide the 
scalability of the experiment, a large num-
ber of series are generated by the equation: 
ti+1=ti+random(N(0,1)), where random(N(0,1)) 
is a random value drawn from a normal dis-
tribution. The length of each series is about 
100,000.

The efficiency and accuracy will be com-
pared between MRDTW, SDTW [16] and 
FastDTW [14] which are all optimized meth-
ods for DTW. The MRDTW used a distributed 
parallel mechanism to optimize the similarity 
comparison. Unlike MRDTW, SDTW used 
linear piecewise to represent original firstly, 
and then computed the similarity between 
compressed series. FastDTW used a multilevel 
approach that recursively projects a solution 
from a coarse resolution. The experimental 
results are shown in Fig.13.

It is can be seen from Fig.13 that when ra-
dius is 0 the FastDTW get the quick response 
time, and with the radius increased, the re-
sponse time become longer. For SDTW, the 
larger the compression ratio is, the faster ex-
ecution time will be got. But as the compres-
sion ratio grows, the accuracy of SDTW will 
be declined rapidly because of its approximate 
to original series. When the number of nodes 
is set at 5, MRDTW is not superior to other 
algorithms. But when the number achieve to 
10, it is obviously that with the length of time 

values of 5 and 10 respectively) when the 
length of time series achieved 168,578. A sam-
ple of the experiment results can be seen in 
Table I.

In table I, DTW and Euclidean have sim-
ilar execution times for the 100 points time 
series and Euclidean is more quickly for its 
simple calculation. Due to the allocation of 
Map tasks need to consume a certain time in 
cluster, MRDTW is more slow than DTW and 
Euclidean when the length of time series is 

Table I  A comparison of different methods in effi ciency

Algorithm
Length of Time Series

100 1,000 10,000 100,000

DTW 0.02s 1.12s 50.12s 3852.73s

Euclidean 0.01s 0.57s 23.89s 247.58s

MRDTW (node=5) 2.59s 3.21s 4.49s 14.25s

MRDTW(node=10) 2.68s 3.11s 3.73s 8.78s
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Fig.10  The effi ciency of four methods on small time series

Fig.11  The effi ciency of four methods on large time series (The y-axis has log-log 
scaling.)
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series become longer, the execution effi ciency 
is the best between the three methods.

6.3 Accuracy of MRDTW

The a  ccuracy of the improved DTW algorithm 
can be measured by evaluating how much the 
improved algorithm’s warping path distance 
differs from the standard DTW’s warping path 
distance. For example, the error of an appro  xi-
mate DTW algorithm can be calculated by the 
following equation [18]:

Error of warp path =
approxDist−s tan dDist

s tan dDist
 (6)

In this experiment the different numbers 
of nodes are set, and through comparing the 
classifi cation results to evaluate the accuracy 
of MRDTW algorithm. In this experiment, 
the Electrocardiogram (ECG) [25] dataset is 
considered. The dataset is about electrocar-
diogram data recorded from human subjects 
which contains 250 samples per second. The 
length of each series is about 20,000.

From the Fig.15, it can be seen that the 
accuracy of MRDTW is determined by the 
number (n) of nodes. With the n increased, 
the accuracy of classification results will be 
declined. The reason is that the Reduce oper-
ations will become complex when the n is be-
come larger. Choosing bad path in the process 
of Reduce will lead to wrong classification 
results. Still, the results of the experiment are 
also can be acceptable. Take SDTW to com-
pare, when its effi ciency equal to the MRDTW 
with n=16, the accuracy of SDTW will drop 
to 50%. From the results of the experiment, 
it can be concluded that the number of nodes 
is the bottleneck to enhance the accuracy of 
MRDTW. The solution to this problem is to 
improve the Reduce algorithm to find the 
optimal path from a great many intermediate 
results.

VII. CONCLUSIONS

In this paper we introduced the MRDTW al-
gorithm, a linear approximation of dynamic 
time warping (DTW). Unlike the previous 

Fig.12  Example series for Random Walk datasets (In order to illustrate conve-
niently, only parts of the length were plotted)

Fig.13  The experimental results of long time series (Radius is used to increase the 
chances of fi nding the optimal solution. CR is the abbreviation of compression ra-
tio, and n is the number of nodes)

Fig.14  Example series for ECG datasets (In order to illustrate conveniently, only 
parts of the length were plotted)
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