
EFFICIENT STRING MATCHING IN THE PRESEN'CE OF ERRORS

Gad M. Landau

Department of Computer Science
School of Mathematical Sciences

Tel Aviv University
Tel Aviv 69978, Israel

ABSTRACT
Consider the string matching problem

where differences between characters of the
pattern and characters of the text are .allowed.
Each difference is due to either a mismatch
between a character of the text and a charac
ter of the pattern or a superfluous character in
the text or a superfluous character in the pat
tern. Given a text of length n, a pattern of
length m and an integer k, we present an algo
rithm for finding all occurrences of the pattern
ill the text, eacll with at Inost k differences.
The algorithm runs in 0 (m 2 + k 2n) time. Given
the same input we also present an algorithm
for fillding all occurrences of the pattern in tIle
text, each wH.h at most k mismatches
(superfluous characters in either the text or
the pattern are not allovrcd). This algorithm
runs in O(k (m logm + n)) time.

1. INTRODUCTION

In the known problem of pattern matching in
strings (e.g., as discussed in [KMP]) we are
interested in finding all occurrences of the pat
tern (of length m) in the text (of length n). In
the present paper we are interested in finding
all such occurrences with at most k
differences, where k is a non-negative integer.

This research was supported by NSF grant NSF-DCR
8318874 and NSF-DCR-8413359, ONR grant N0014-85-K
0046 and by the Applied Mathematical Sciences subpro
gram of the Office of Energy Research, U. S. Department
of Energy, under contract number DE-AC02 '76ER030Tl,

0272-5428/85/0000/0126$01.00 © 1985 IEEE
126

Uzi Vishkin

Department of Computer Science
Courant Institute of Mathematical Sciences

New-York University
and

Department of Computer Science
School of Mathematical Sciences,

Tel Aviv University
"Tel Aviv 69978, Israel

Example. Let the text be abcdefghi , the pat
tern b~dyegh and k =3. Let us see whether
there is an occurrence with ~ k differences
that starts at the second location of the text.
For this we propose the following correspon
dence between bcdefghi and bxdyegh. 1. b (of
the text) corresponds to b (of the pattern).2. c
to x. 3. d to d. 4. Nothing to y. 5. e to e. 6. f
to nothing. 7. g to g. 8. h to h. The correspon
dence can be illustrated as

b.xdye gh
bcd efghi

In only three places the correspondence is
between non-equal characters, implying that
there is an .occurrence of the pattern at the
second location of the text with 3 differences as
required.

We distinguish three types of differences. (a) A
character of the pattern corresponds to a
different character of the text. (Item 2 in the
Example). In this case we say that there is a
mismatch. between the two characters. (b) A
character of the pattern corresponds to "no
character" in the text. (Item 4). (c) A charac
ter of the text corresponds to "no character" in
the ·pattern. (Item 6).

We consider two problems. The above input
applies to both of them.
The string matching with k mismatches prob
lem. (In short, the k mismatches problem).
Find all occurrences of the pattern in the text
with at most 'k differences of type (a).
The main prbblem. The string matching with k
differences problem. (In short, the
k differences problem). Find all occurrences
of the pattern in the text with at most k
differences of type (a),(b) and (c).

:Both ~problems have a strong pragmatical
flavor. In practice, we often need to analyze
-situations where the data is not completely
reliabl-e. Specifically, consider a situation where
the strings which are the input for our problem
contain errors and we still need to find all pos
sible occurrences of the pattern in the text as
in reality. The errors may include a character
being replac-ed by another character, a charac
ter boeing omitted or a superfluous character
being inserted. Assuming some bound on the
nUIIlber of errors would clearly imply our prob
lems. Applications of our solution 'for the k
differences problem in Molecular Biology are
discussed in [LVN]. [SK] give a comprehensive
review of applications of the k' differences prob-
lem. I

For the k mismatches problem we give a
new algorithm which runs in time
O(k (mlogm + n)). For the k differences prob
lem we give a new algorithm which runs in time
O(m 2 + k 2n). Both algorithms are designed for
a randorn-access-rnachine (RAM) [AHU].
Both our algorithms consist of a pattern
analysis part to be followed by a text analysis.
For ,the k mismatches problem we ha've actu
ally achieved O(km logm) time for the pattern
analysis and O(kn) time for the text analysis.
For the k differences problem we have achieved
O(m 2) tiIIl;e for the pattern analysis and
O(k 2n) tIme for the.,text analysis.
Therefore, whenever" the time for the text
analysis dominates the computation time, the
running time of our algorithms are close to
optimal. There' are a few realistic possibilities
where this happens:
1. The same pattern has to be matched with
different texts or th.e pattern is known ~n

advance and we have plenty of time to analyze
it.
2.m is sufficiently small with respect to
n (1n = 0 (n/ logn) in the k mismatches algo
rithm and m = 0 (k ~n) in the k differences
algorithm).

Perhaps surprisingly we were able to ad9pt
the conservative and simple framework of
[KMP] tn both algorithms. That is, we first build
a table based on analysis of the pattern. Then,
we examine the text frOITI left to right checking
possible occurrences with respect to :one start
ing location (in the text) at each jteration.
Besides the tables built in the pattern analysis,
the input to each iteration consists of the
knowledge acquired in previous iterat!i.ons. The
rigrLtmost location in the text to which we
arrived in a previous iteration is of particular
sigrdficance. Each iteration consists <Df manipu
latiJlg this knowledge. And if necessary (till this

127

rightmost location we have not sufficient evi
deIlce Lo exclude Llle p08s1blllLy of occurreIlce),
we proceed to investigate the text to the right
of this rightmost location.
We use a further analogy to the [KMPJ algo
rithm for the known string matching problem
of [KMP] in order to explain our contribution in
the algorithm for the k differences problem.
Consider the following most trivial
strings equality problem: Given two strings,
find if they are identical. Observing -this prob
lem and its immediate solution was clearly a
step (even if it was very minor) in devising
string matching algorithms. Our presentation
is strongly motivated by tllis analogy. It l1as two
major steps.

In the first step we define an auxiliary
problem which is analogous to the string equal
ity problem when the k differences problem is
considered (instead of the string matching
problem). The solution of the auxiliary problem
uses known techniques ([U]). Our contribution
is providing the second major step. That is, we
give an algorithm for the k differences problem
using the solution for the first' step. The auxili
ary problem of the first major step is less obvi
ous than the strings equality problem and pro
vides an essential part of our algorithm. How
ever, we feel that our contribution which is
analogous to the whole algorithm of [KMP] over
comes a more involved and general problem
than'in [KMP].

For the original string matching problem
and the k mismatches problem, the definition
of the problems imply immediately algorithms
which run in O(mn) time. [S] gave a simple
O(nm) time algorithm for the k differences
problem. In his survey on future directions for
research in string matching, Z. Galil [G84b]
discusses the k mismatches problem, which
seems substantially easier than our main prob
lem. He states that it is an open question
whether· the n.aive algorithm for the k
mismat:ches problem which takes O(mn) time
can be improved. Note that everl our algorithm
for the main problem is much faster than
O(nm). We already noted that the case k = a
(in both problems) is the extensively studied
string matching problem. There are a few not
able algorithms for the string matching
problem: linear time .serial algorithms - [EM],
[GS], [KMP], [KR] (a randomized algorithm) and
[V], parallel algorithms - [G84~] and [V]. Note
that none of the.se algorithms is suitable to
cope with our problems.

Postscript. After aU the results with
respect to the k, mismatches problem have
been achieved, A. Slisenko has brought to our
attention the paper [IJ in which another algo
rithm for the k mismatches problem has been
given. Ivanov claims that his algorithm runs in
time 0(1 (k)(n+m)), where 1 (k) is a fUIlction
of k. 1 (k) is described by a combination of two
intricat-e recursive inequalities. No additional
hints regarding the behavior of 1 (k) were
found in his paper. We were unable to solve
these inequalities. Ho,"{ever, vve managed to
show that 1 (k) is bounded from below by 2k for
every positive integer k. It might be that 1 (k)
grows even substantially faster than 2k . His
algorithm runs faster than ours only when k is
very small and m and n are almost of the same
order of magnitude. In all other cases, our ~lgo
rithm is faster. An even mare .important a.dvan
tage of our algorithm is that it is simple and
intuitive while Ivanov's algorithm is very com
plicated. (Its description needed over 40 jour
nal pages).
After all the results with respect to the k
differences problem have been achieved we
became aware of [U85]. It presents an interest
ing algorithm the k differences problem. The
algorithm runs in time O{m 1L1G + n} and
requires O«(IEI +m)G) space, where ILl is
the size of the alphabet and
G = min (3m , 2k IL I

k m k + 1). Preprocessing of
the pattern takes O(m IL IG) time. Then
analysis of the text takes 0 (n) time which is
pretty impressive. However, the author himself
seems to be aware that the space and prepro
cessing time requirements make the algorithm
impractical, in general. (For comparison, the
space requirement of our algorithm for the k
differences problem is O(m 2)J.

Section 2 gives an exceedingly simple algo
rithm for string matching with one mismatch.
Section 3 presents the algorithm for the k
mismatches problem (this section is a prelim
inary version -of [LV1]). In Section 4 the algo
rithm for the k differences problem is given
(this section is a prelimina~y version of [LV2J).

11. STRING MATCHING WITH 1 MISMATCI-I

Below, we describe a simple idea for finding
all occurrences of the pattern in the text with
at most on·e mismatch. [ML] showed how to
apply the [KMP] algorithm for the following
slightly modified string matching problem. Find
for each location of the text whether an
occurrence of the pattern starts at it. For each
location in which there is no occurrence of the
pattern find the leftmost character in which
there is a mismatch.

128

The algorithm has three steps.
1. Run 'this modified string matching algorithm
on the input text and pattern.
2. Inverse the input te.xt (if it was t 1' ... ' tn let it
be tn ,tn - 1, ... , t 1) and the input pattern and
run the same ~algorithm. Clearly, it will find for
each location of the text, in which there is no
occurrence of the pattern, the rightmost char
acter in which there is a mismatch.
3. For all ti + 1 such that the leftmost
mismatched character for the pattern starting
at t i + 1 (found in step 1), falls at the same place
as the rightmost mismatched character for the
reversed pattern starting at t i +m (found in
step 2), conclude that there is an occurrence of
the pattern starting at t i + 1 with at most one
mismatch.

Irrlportant remark. We lealVe it to the
interested reader to find how to generalize this
algorithm to for the string matching problem
with one difference or even for a wider
definition of this problem wPere one "succes
sive chunklof differences" is allowed. W~ slightly
elaborate on this in the final version of the
paper.

III. STRING MATCHING WITH k MISMATCHES

The algorithm has two parts:
(a) The pattern analysis. We build a table which
is based on analysis of the pattern.
(b) The text analysis. We show how to find
efficiently all the occurrences of the pattern in
the text with at most k mismatches, using the
result of the pattern analysis.
We first describe the text analysis and after
wards the pattern analysis is described.

Analysis of the text.
The input to the text analysis consists of the
following:

a) The patteI'll. All array A = ai, ... ,am.
b) The text. An array T = t l' . . . , tn·
c) The output of the pattern analysis. A two
dimensional array
PAT-MISMATCH[l, ... ,m -1; 1, ... ,2k+1].
Where, row i of the array (PAT-
MISMATCH(i,l) PAT-
MISMATCH(i,2k+ i)), contains the 2k + 1
first locations in which ·~+I' ... ,am has
different symbols than a l ,···, am-i
(PAT-MISMATCH(i,v) = f means that
~+f -# af and 1 is the mismatch number v
from left to right).
If there are only c < 2k +1 mismatches
between ai+l' ... ,am and ai, ... , am-i we
enter the default valu-e m + 1 from location
c +1 on. That is, PAT-MISMATCH(i,c +1) =
,... ,PAT-MISMATCH(i,2k-t-1) = m+1.

The text is analyzed into the array
TEXT-MISMATCH[O, ... ,n-m ;l, ..."k + 1]. Follow
ing t.he text analysis, row i of the array (TEXT
MISMATCH(i, 1), ... , TEXT-MISMATCH(i,k+ 1)),
contains the k + 1 first mismatches between
the strings ti + 1J •• · J ti +m and a 1J ... Jam'
(TI!.7XT-MISMATCH(i,v) = f means that
t i+! =# at and this is mismatch number v from
left to right). If there are only c < k + 1
misrnatches between ti + 1, ... , ti +m and
al, ... , am then w-e enter the default value
m+ 1 from location c + 1 on. That is, TEXT
MI..'i.MATCH(i,c+ 1) ~ = TEXT
MI..'ilvIATCH(i,k+ 1) = m+1.
Rem,ark. This solves our problem since
TE~J(T-MISMATCH(i,k+ 1) = m + 1 means that
there is an occurrence of the pattern which
starts at t i + 1 with at most k mismatches.

We start with a very high-level specification
of tIle algorithm. It is explained by the verbal
and illustrative descriptions that follow.

TEXT-ANALYSIS
Init'i,alize: r :=O;j :=0;

TEXT-MISMATCH[O, ... ,n-m;
1, ... ,k+1] := m+1 ;

for i:= 0 to n-m do
begin

b:=O;
if i < j
then MERGE(i,r,j,b);
if b < k + 1
then r:= i ; EXTEND(i,j,b)

end

The for loop is responsible for "sliding" the
pattern to the right one place at a time. At
iteration i, we check if an occurrence of the
pattern starts at t i + l' Suppo~e that r is an
iteration prior to i, (0 ~ r < i), that maximizes
j = r + TEXT-MISMATCH(r,k+1). Namely, j is
the rightmost index of the text to which we
arrived at previous iterations of the loop. Each
iteration consists of calling procedure MERGE,
(if i < j), and possibly procedure EXTEND,
(Note, that at the beginning i = 0, j = 0, and
therefore MERGE is not invoked, at the first
iteration). MERGE finds mismatches between
t i + l' ... , t j and a 1, ... , aj -i and reports in b
the nU'ITlber of mismatches found. 1f b ~ k + 1
we proceed to the next iteration. Otherwise,
EXT'END scans the text from t j + 1 on till it either
finds k +1 mismatches or till it hits t i +m and
finds that there is an occurrence of the pattern
which starts at t i + 1 with at most k mismatches.
The situation is illustrated in Figure 1.

129

Let us explain the role that procedure
MERGE plays at iteration. i of the TEXT
ANALYSIS. In the previous paragraph we stated
that MERGE finds mismatches between
ti + 1, ... , t j and al, ... ,aj-i and reports in b
the number of mismatches found. That is,
MERGE computes TEXT-1vJISMATCH[i;l, ... ,b],
(b ~ k + 1). MERGE uses two kinds of data that
were computed in iterations prior to i of TEXT
ANALYSIS.

(a) The mismatches with respect to (ill
short, w.r. t.) r + 1 in the text. Obviously,
such mismatches vv-hich occur in locations
<i + 1 in the text are irrelevant for checking
whether there is an occurrence of the pat
tern that starts at t i + 1. Let q be the smal
lest integer satisfying TE~t-T-MIS.LflATCH[r,qJ

is ;greater than i - r. Thus, MERGE uses
TEXT-MISMATCH[r;q, ... ,k+ 1]. (Fig. l(b)).

(b) PAT-MISMATCH[i-r;l, ... ,s], where s is
the rightmost mismatch in
PAT-MISMATCH[i -r; l, ... ,2k + 1] such that
PA'T-MISMATCH(i-r,s) is less than
(j - i + 1). (Fig. 1(c)).

We apply a case analysis in order to under
-stand how to use these previously computed
data. We need the following two conditions for
the case analysis. Consider any location x of
the text, i+1~x~j. We define two conditions on
x.
Condition 1. x falls under a mismatch w.r.t. r.
That is, tx#ax - r and for some d, (q~d:=;k+1),

x-r= TEXT-MISMATCH(r,d). (This
correspond to a mismatch between two loca
tions one from the bottom line and the other
from the middle line in Fig. 1(d)).
Consider laying one copy of the pattern
starting at tr + 1 and another copy starting at
t i + 1. (Th·e upper and middle lines in Fig. l(d)).
Co'ndition 2. x falls under a, mismatch between
these two~ copies of the pattern. That is
a4:--"r # ax-i' Also, x - i =
PAT-MISMATCH(i-r,f) for some
f, (1 ~ f ~ s).
Location x may satisfy either both conditions
or anyone of them or none.

We are ready now to present the case
analysis for any location of the text
x, i + 1 ~ x ~ j, and how it affects the question:
t:x = ax-i ? (In words, does location x of the
t-ext matc11 location x -·i of tIle pattern?)
Case O. x does not satisfy Condition 1 and x
also does not satisfy Condition 2. Location x of
the text must match location x - i of the pat
t-ern (tx = ax-i) and we need not bother to

compare tx and ax-i' (A similar argument is
used in the .algorithm of [KMP]).
CC1Se 1. x satisfies one of the two conditions
and does not satisfy the other. Let us justify
why t x -:# ax-i in any of these two possibilities.
If Condition 1 holds and Condition 2 does not
hold then t x --t:-ax - r and a x - r = ax-i' Therefore,
i::x -:# ax -i' If Condition 1 does not hold and Con
dition 2 holds then t x = ax -r and ax -r -:# ax -i'

Therefore, t:x -:#ax-i'
So, we know that there must be a mismatch at
location x and again we dispense with compar
ing t x and ax-i' However, we do need to
increase the counter of mismatches b by one
and update TEXT-MISMATCH(i',b).
CCLSe 2. x satisfies both conditions. Here we
are unable to reason whether t x = ax -i or not.
So, we compare these two symbols. If they are
ditrerent we update band TEXT-MISMATCH(i,b)
as in Case 1.

Specifically, procedure MERGE operates as
if it merges the increasing sequence of ~k + 1
locations
r + TEXT-MISMATCH(r,q) r+ TEXT-
MISMATCH(r,k+ 1)
and the increasing sequence of ~2k + 1 locations
t\ + PAT-MISMATCH(i-r,l) i+ PAT-
MlS..MATCH(i-r, s)
into one increasing sequence. However, Instead
of explicitly merging the two sequences MERGE
checks whether each location satisfies Case 1
or Case 2 and treats the location according to
the case analysis given above.

Procedure MERGE (i,r ,j ,b)

Input: 1) .TEXT'-'MISMATCH[r;q, ,k+1]
2) PAT-MISMATCH[i-r; 1, ,s]

Initialize: d:= q ; /:= 1
(* The variable d will be used in the form
TEXT-MISMATCH(r,d). Initially it is q and
then it is increased by one at a time. The vari-
able I will be used in the form
PAT-MISMATCH(i-r ,/). Initially it is 1 and
then it is increased by one at a time. *)
while not [Case a or Case b or Case c] do
(* We stop iterating the while loop, and return
control to TEXT-ANALYSIS, in any of the follow
ing cases:
Case a. b =k + 1. This means that we have
already found k + 1 mismatches with respect to
i.
Case b. d = k +2. When d was assigned with k + 1
then in the middle line we were exactly over
locationj of the bottom line. A careful observa
tion at the way in which d is updated in pro
cedure MERGE reveals that the fact that d was
increased to k+2 implies that in the middle
line we must have also passed location j of the
bottom line, and, therefore it is time to return
control to TEXT-ANALYSIS and contin.ue the
search for mismatches by orocedure EXTEND

130

Case c. li+PAT-MISMATCH(i-r,/) > j and
TEXT-MISMATCH(r,d) = m+1]. The first con
junct means that in the upper line of Fig l(d)
we have already passed location j of the bot
tom line. The second conjunct means that
there were an occurrence of the pattern at tr + 1
with d -1 mismatches and in the middle line of
Fig. l(d) we have also already passed the loca
tion j of the bottom line. *)

begin
if i + PAT-MIS'MATCH(i - r ,/) >
r + TEXT-MISMATCH(r,d)
(* Case 1: Condition 1 is satisfied*)
then

b:= b + 1 ;
TEXT-MISMATCH(i,b):=
TEXT-MISMATCH(r,d) - (i - r) ;

d:= d + 1 ;
else

if i + PAT-MISMATCH(i - r ,/) <
'r + TEXT-MISMATCH(r,d)
(* Case 1: Condition 2 is satisfied *)
then

b:= b + 1 ;
TEXT-MISMATCH(i,b):=
PAT-MISMATCH(i - r,/);
1:= I + 1 ;

else
(*i + PAT-MISMATCH(i-r,!)
= r + TEX-T-MISMATCH(r,d) #)
(*Case2 *)
if apAT-MISMATCH(i-r,!) #
ti+PAT-MISMATCH(i-r,!)
then

b:=b+1;
TEXT-MIS.MATCH(i,b):=
PAT-MISMATCH(i - r ,f);

/:= / + 1 ; d:= d + 1
end

Correctness of procedure MERGE. Consider
iteration i.
Claim. If there are ~ k + 1 mismatches in loca
tions ~j then MERGE finds the first k + 1 of
them. If there are <k + 1 mismatches in loca
tions ~j then MERGE finds all of them.
Proof 01 claim. Condition 1 holds for ~k + 1
locaLioIls, w'hich are >i arld ~j. Let y be the
number of locations in this range for which
Condition 2 holds. We do not know anything
about y. Suppose PAT-MISMATCH(i-r, 1)
,... ,PAT-MISMATCH(i-r,y) had-had included all
mismatches between two copies of the pattern
which are i -r apart. Then, by our case
analysis, MERGE could have found all
mismatches in the range between i+ 1 and j.
But PAT-MISMATCH[i-r;1, ... ,2k+1] contains
no more than 2k + 1 mismatches. We have to
show that we never need more than thi~ for the
Claim to hold.

If PAT-MISMATCH(i-r,2k+1)~j--i then we
have all mismatches between the two patterns
for wpich Condition 2 holds for locations ~j in
the text and the claim follows. T:qe remaining
case is when PAT-MISMATCH(i~r,2k + l)<j-i

Tllis gives 2k +1 locations, which are >i and
<j, for which Condition 2 holds. Recall that
Condition 1 hold for ~k locations in this range.
Therefore, there are ~k + 1 locations, which are
>i and <j, for which Condition 2 holds and COl)
dition 1 does not hold. All these locations
satisfy Case 1. Therefore, they suffice to estab
lish that there is no occurrence with ~k

miSlnatches starting at t i + 1 and the claim fol
lows.

Procedure EXTEND finds mismatches
between t j + 1 ' ... , t i +m and aj - i + 1 ' ... , am'
by comparing proper pairs of symbols from the
pattern ana the text in the naive way. EXTEND
stops once it finds the k + 1-st mismatch. If
there i's an occurrence of the pattern with at
most k mismatches which starts at t i + 1 then
EXTEND stops at t i +m after it finishes verifying
this fact.

Procedure EXTEND (i,j ,b)
while (b. -< k + 1) and (j -i < m) do

begin
j := j + 1
if t j =#:- aj-i
then

b :=b + 1 ;
TEXT-MISMATCH[i,b]:= j -i ;

end

Complexity. The running time of
TE)(~T-ANALYSIS is O(nk) . Fqr each iteration
i (0 ~ i ~n -m) the operations in TEXT
ANALYSIS excluding MERGE and EXTEND take
0(1) time. MERGE treats entries of the form
PAT-MISMATCH[j -r; l, ... ,2k +1] (whose
nUITlber is 2k + 1) and entries of the form
TE)(~T-MISMATCH[r:l, ... ,k + 1] (whose number
is k + 1). Each of the operations of MERGE can
be charged to one of these 3k+2 entries in such
a way that each entry is being charged by 0(1)
operations. Therefore, MERGE requires O(k)
time. The total number of operations per
formed by EXTEND throughout all the iterations
is O(n) since it scans each symbol of the text
at most once. So, we get in total
O(n(l + k +1)) = O(nk).

Analysis of the pattern.
In this section we describe the pattern analysis,
in which PAT-MISMATCH[l, ... ,m -1; l, ... ,2k + 1]
is computed.

Let [l, ... ,m-1] be the set of m-1 rows of
PitT-MISMATCH. Assume, w.l.g., that m is

131

some power of 2. The algorithm uses a partition
of this set into log2m sets as follows:
[1], [2,3], [4,5,6,7], [8... 15], ... ,[m / 2, ... ,m -1].

The --pattern analysis has log m stages:
Stage l, 1 ~ l ~log m. Compute PAT
MISMATCH for the rows of set l. (Where, set
l , 1~l ~log m, is [2l - 1, ... ,2l - 1].)

We describe in more detail the last stage
(stage log m) and discuss, briefly later how to
extend the same technique for the earlier
stages. Essentially, we apply the text analysis
algorithm of the previous section. In order to
keep this presentation short, we overview the
similarities to the text analysis and elaborate
only on the differences.
The input to stage log m of the pattern analysis
COIlsists of the following:

a) The arrayal, ... ,am /2' which plays the
role of the pattern (in the text analysis).

b) The array am /2 + 1, ... ,am' which plays
the role of the text.

c) The two dimensional array
PAT-MISMATCH[l, ... ,m /2 - 1; l, ... ,4k + 1],
which is the output of the previous
log m -1 stages of the pattern analysis.

The output of stage log m is
PAT-MISMATCH[m/ 2, ... ,m -1; l, ... ,2k + 1].
Below, we give a very high~level specification of
stage log m of the pattern analysis.

Initialize: r:=m/2 ; j:=m/2;
PAT-MISMATCH[m/ 2, ... ,m -1;
1, ... ,2k + 1] := m + 1 ;

jori:=m/2tom-l do
begin

b:=O;
if i < j
then MERGE(i,r ,j ,b);
if b <2k + 1
then r:= i; EXTEND(i,j,b)

end

One important difference with respect to the
text analysis needs to be emphasized:

In TEXT-ANALYSIS we were after the k + 1
first mismatches for each location of the text,
while here we want to find the 2k + 1 first
mismatches. The correctness proof of iteration
i of procedure MERGE, in the previous section,
needed the first 2k + 1 locations for which Con
dition 2 holds in order to find t11ese first k + 1
mismatches. A careful check of the proof will
show that the first 4k + 1 locations were Condi
tion 2 does not hold would have sufficed for
finding the first k + 1 mismatches, as required
here. This explains item c) in the input for

stage logm.

Next, we describe briefly stage l,
(1 .~ l < log 'Tn), by eIIlpllasiziIlg tile differeIlces
with respect to stage log m which was
described above.
The input to stage l of the pal\ern ana1ysls con
sists of the following:

a) The arrayal' ... , am _ 2l-1, which plays
the role of the pattern (in the text
analysis).
b) The array a2l - 1 +1' ... ,am' which plays
the role of the text.
c) The two dimensional array

~ PAT-MISMATCH[l, ... ,2l - 1 - 1;1, ... ,
min(21og m -l4k + l,m - 2 l - 1)], which is the
output of the previous l-l stages of the
pattern analysis.

The output of iteration i at stage l
(2 l - 1~ i ~ 2l - 1) is PAT-MISMATCH[i; 1, ... ,
min(21ogm -l2k+1,m - i)J
We note three differences in this stage, with
respect to stage log m:

a? At stage l the for loop is fo.r i:=2l - 1 to
2 -1. At each iteration i, we look for the
mismatches between ai+l"'" am and
al, ... ,am-i' (2 l - 1~ i ~ 2l -1). '

b) Iteration i of stage l looks for
(min(2k2logm-l + 1 , m - i)) mismatches.
c) The output of stages l, ... ,l-l must give
the first (min(4k 210g m -l + 1 , m - 2l - 1))

mismatches.
Complexity. For each iteration i at stage l

(2l-1~ i ~ 2l - 1), (1 ~ l -5:logm) the opera
tions in the "main program" excluding' MERGE
and EXTEND take 0(1) time. As in the previous
section MERGE requires O("number of
mismatches we look for If) time. Here it means
O(2k 210g m -l) time. The total _number of
operations performed by EXTEND throughout
all iterations of stage l is O(m). Stage l has
2l - 1 iterations, therefore it takes
Oem + 2l(2k2logm-l)) = O(km) time. We have
log m stages. So, the running time of the pat-

lofltm
tern analysis is 0 (~ km) = O(kmlogm).,

l=l

N. STRING MATCHING WITH k DIFFER
ENCES.

The algorithm has two parts:
(a) The pattern analysis. We build a table which
is based on analysis of the pattern.
(b) The text analysis. We show how to find
efficiently all the occurrences of the pattern in
the text with at most k differences, using the
result of the pattern analysis.

132

Analysis of the text.
The input to the text analysis consists of the
following:

a) The pattern. An array A = a l' ... , am'
b) The text. An array t =t 1, ... , tn'
c) The output of the pattern analysis: A two
dimensional array
MAX-LENGTH[O, ... ,m -l;O, ... ,m -1].
MAX-LENGTH(i,j)=f means that
ai+l ' ... , ai+/ = aj+l"'" aj+/' and
~+/+1 -F aj+/+l' In word~, consider laying
the suffix of the pattern s:tarting at ~+1

over the suffix of the pattern starting at
aj+1' MAX-LENGTH(i,j) is the longest
match of prefixes between these two
suffixes.

Output of the text analysis: All occurrences
with -5: k differences of the pattern in the text.
The description of the text analysis uses a
known solution to an auxiliary problem. The
relation between the auxiliary problem and the
text analysis is discussed briefly in the intro
duction. Since we wanted this presentation to
be self contained we describe this solution.

The auxiliary problem:
Input. Two strings: A = a 1 ' ... , am and
B = b 1 ' ... , bm +Jc . We want to find whether
an occurrence of A with at most k differences
starts at b l' We first show an O(m 2) time algo
rithm for the auxiliary problem. Later we show
how to derive from it an O(km) time algorithm. '

O(m 2) time algorithm for the auxiliary
problem. .We use a matrix D[O, ... ,m;O, ... ,m+k]'
where .Di,l IS the number of differences between
a 1 ' . . . , ai and b 1 ' . . . , b l .

It should be obvious that if Dm,l ~ k, for at
least one l, m -k ~ l -5: m +k, then the answer
to the auxiliary problem is yes.

The following algorithm computes the
matrix D[o '.,... ,m ,O,oo.,m +Jc]
Initialization Do 0 := 0.

! 0 rall l, 1 -5: l-5: m +k , DOL: = l.
Jor all i, 1 ~ i ~ m D· 0 : = i

for i:= 1 to m do ' 1.,' ,.

for l:= 1 to m+k do
Di,l: = min (Di-l,l + 1., Di l-l + 1, Di - 1l - 1 if
ai = bl or Di - 1l - 1+ 1 otlierwise). '
(Di,l is the minimum of three numbers.
These numbers are obtained from the
prede.cessors of Di,l on its column, row
and dIagonal, respectively).

This algorithm clearly runs in O(m 2) time.

O(km) time algorithm for the auxiliary
problem. (Due to [UJ). Diagonal d of the
matrix consists of all Di,l's such that l-,,: = d.
L~mma 1 [U]. For every i,l, Di,l - Di -l,l-l is
eIther zero or onc.

Complexity. The algorithm computes Ld ,e
for 2k + 1 diagonals. For each diagonal variable
row can get at most m different values. There
fore, the computation takes O(km) time.

Overview of the text analysis. Let us go
back to the text analvsis. The text analysis
consists of n -m +k iterations. At iteration i we
check if an occurrence with ~ k differences of
the pattern starts at t i + l' Let t

J
. be the right

most symbol in the text that ,rVas reached at an
iteration prior to i. Assume, V'l.l.g., that we
reaclled t j for the first time at iteration lro,
o~ r < i.
Example 1. Let t 17' ... ,t 30 be
abaaacddaedeab, and let a 1, ... ,a I 3 be
aaaaeddedebab (here r = 16 , J' =30). k = 4. The
corresponden·ce

a aaaedd cdcbab
abaaacddaede ab

gives k differences. It can be easily checked
that a correspondence with less differences is
impossible.

The definition of the text analysis (given later)
-implies that there are at most k + 1 differences
between t r + 1, ... ,tj and some prefix of the pat
tern. Hence, there are also at most k + 1
differences between sorne suffix of this prefix of
the pattern and t i + 1, ... ,tj . We call this suffix of
prefix of the pattern the S'ubpattern. In the
example let i be 20 and the subpattern will be
a 4 , ... , a 13' This rneans that for some
correspondence between symbols of
t i + 1, ... ,tj and the subpattern there are at
least j -i-k symbols of t i + 1, ... ,tj that have a
match in the subpattern. It is easy to see that
all t.he symboIs of the text. t.hat have successive
matches' in this correspondence form at 'most
k+1 (successive) substrings in t i + 1, ... ,tj . For
each such substring we know its corresponding
substring in the pattern. Suppose a substring of
the text tp + 11 ... I tp +f matches a substring of
the pattern ac + 1, ... , ac +! and
tp +!+1 #- ac +!+1 1 we denote this by the
·triple (p,e ,f). There are at most k symbols in
ti + 1, ... ,tj which do not have matching sym
bols in the subpattern. We denote each such
symbol th + 1 by the triple (h,O,O). We denote the
sequence of this triples by Si.j.

Lemma 1 implies that vv-c can store the infor
mation of the matrix in a more compact way.
For a number of differences e and a diagonal d,
let Lde denote the largest row i such thr,:it
Di)l = ~ and D i) is on diagonal d. Note, that
this implies that there are e differences
between a 1,·.· ,aL and b 1,··· ,bL +d' andd,e d,e

aLci,e + 1 #- bLd,e +d+ l'

G~orolLary. For our auxiliary problem we need
only values of Ld)e, 'rVhere e and d satisfy e s k
and Id I ~ e .
Proof. e ~ k is obvious. The initial values of the
matrix and Lemma 1 imply that all the Di,lon a
diagonal d are ~ Id I and therefore given a
nUDlber of differences e we need only values of
Ld,e where Id I ~ e.
The answer to the auxiliary problem is yes if
one of the Ld,e' (I d I ~ e ~'k), equals m.
Given d and e we compute Ld e using its
definition. That is , Ld e is the larg~st row such
that Di,l = e, and Di,l I is on the diagonal d. In
the above O(m 2) time algorithm the assign
ment of e into Di,l was done using one (or
more) of the following data:
(a) D i - 1,l-1 (the predecessor of Di,lon the
diagonal d) is e -1 and ai #- bl ·

(b) D i,l - 1 (the predecessor of Di,l nn row i
which is also on the diagonal "below" d) is e -1.
(c) D i -l,l (the predecessor of Di,lon column l
which is also on the diagonal "above" d) is e -1.
(d) Di -l,l-l is also [e and ai = bl ·

This implies that we can start from Di,l aIld fol
lo",ry its predecessors on diagonal d by possibil
ity (d) till the first time one (or more) of possi
bilities (a) (b) and (c) occur.
The O(km) time algorithm for the auxiliary
problenl is given below. The reader is illvited to
cOI1vince oneself that the initialization step
(Instruction 1) is done in a \vay vlJhich enables
the computation of the Ld)e's in the subsequent
instructions. Instructions 2-6 "inverse" this
description, in order to compute Ld,e's
(\d I ~ e ~ k). L d,e-l' Ld-1,e-l1 and Ld+l,e-l are
used to initialize the variable row (Instruction
3): wh.ich is then increased by one at a time till
it :hits the correct value of Ld,e (Instruction 4).

The O(kn) time algorithm for the auxiliary
problem

[1 J In,itia,lization,
for d:=-(k+ 1) to (k+ 1) do

Ld,l d 1-2:= -00;
if d < °

then Ld,ldl-(= Id I -1
else Ld-Lld\-l:= -1 ;

133

[2J for e:= 0 to k do
for d:=-e to e do

[3J row := max [(Ld ~-1+1), (Ld-l,e-l),
(Ld + 1 e -1 + 1)J.

[4J while arow + 1 = brow+l+d do
row :=row + 1.

Ld e:= row.
if Ld,e = 1n

then print *YES* and stop.

In example 1 5 20,30 is (20,3,1): (21,0,0), (22,5,2),
(24,0,0), (25,7,3), (28,11,2).

Recall that at iteration i we want to find if
a'1' ... , am occurs at t i + 1, ~This seen1S
similar to the auxiliary problem. However, here
we have more information: the sequence S'i,j

and MAY-LENGTH. Iteratiorl i uses this infor
mation.

Iteration i.

Iteration i consists of the O(km) time algo
rithrn of the auxiliary problerrl with the follow:
ing modification in Instruction 4. Instruction 4
increases the variable row by one at a time.
The sequence 5 i ,j and At/AX" -LE.LVGTH enables
to increase row by much larger jumps as long
as we do not require information about symbols
of the text, which are beyond t j . Once row
,takes us beyond t j (i.e" i + 'row + 1 + d > j),
Si,j and MAX-LENGTH do not help us any
more and we apply (the old) Instruction 4 as in
the computation of the auxiliary problem.
1Ve finish lhis overview of jLeraLion 'i by showing
how to apply the sequence Si,j and
M~¥-LEjVGTH to obtain these jumps. The
while loop of Instruction 4 looks for the longest
match between prefixes of some suffix of the
text ti+row+d+l"" ,where i+1 ~ i+row+d ~j

and some suffix of the pattern arow + 1'''' . We
explain how to find the maxim'um w such that
arow + 1' ... , ~row+w equals
ti+row+d+l' ., ti+row+d+w' Suppose that
according to Si,j the substring
ti+row+d+l' ., ti+row+d+! matches
ac + 1' ... , ac +! for some index c of the pattern
and c +f is the maximal index of the pattern
for which this match holds. We can. find those c
and f using the fact that for each th + 1
(i ~ h < j) there exists a triple (p l,c 1,f 1) in
Si,j such that p 1 ~ h ~ P 1 + 'f l' ((P 1,c 1,/ 1)

covers th + 1). For the 'computation of w we
need to break into the following cases:
Case (a). f ~ 1. MAX-LENGTH(c ,row) gives
the maximal number g such that
ac +l, ... ,ac +g equals ,arow +l"'" arow +g '
Case (a) has two subc~ses.

Case (a 1). / ~ g. It is easy to see that here
ti+row+d+l' ... , ti+row+d+min(! ,g) =
arow + 1' ... , arow+min(! ,g) and
ti+row+d+min(! ,g)+l ~ arow+min(! ,g)+l' There-
fore, we assign w:= min (/ ,g).
Case (a2). f =g. This implies
ti+row+d+l' .. , ,ti+row+d+! = arow + 1" .
arow +! but does not reveal whether
ti+row+d+.f+l equals ~ow+!+1 or not. There
fore, we assign row:= row+f and apply again
the present case analysis accumulating this

134

Irjump" over f symbols into w.
Case (b). / = O. Case (b) has two subcases.
Case (b 1). ti+row+d+1 ~ arow +l' Hence, we
assign w:-= O.
Case (b 2). ti+row+d+l = arow + 1' Therefore, we
assign row: = row + 1, and we apply again the
present case analysis accumulating this propa
gation of 1 into w .

The text analysis algorithm
.J :=0;
for i:= 0 to n-m+k do
begin

[1] Proper initialization (as in the O(km)
a.lgorithm for the auxiliary problem)
[2J lore:=Otokdo

lo'r d:=-e to e do
[3] row := 7nax[(Ld,e-1+1),

(L~-l e~1)' (Ld+ 1 e-1+ 1)].
[4.newJ while i +ro'w +d + 1 :S j do

[4.new.1] take from Sij the tri-
ple that "covers" ti +t'o'W+d+l'
Derive from this triple the
indiees c ,f such that
ti+row+d+v ... ,ti+row+d+!
= ac + l' . . . , ac +!

(ti +row +~+! + 1 T- ac +! +'1)
[4.new.2J If f ~ 1
then (* case a *)

[4.new.3] if f T-
MAX

r

- LE'jVGTH (c ,row)
then. (* case a 1 *)

row := row + TIl-ill (f ,
MAY" -LENGTH(c ,row))
go to 5

else (* case .a2 *)
TOW:= T01V + f

else (* case b *)
[4.new.4] if ti+row+d+l T-
Urow+~
then \ * case b1 *)

go to 5
else (* case b2 *)

row:= row+1
ad
[4.o1d] while arow +1=ti +row + 1+d do

row :=row + 1.
[5] ~d e:= 7"OW.

[6] If Ld;e = m
then print *YES· and go to 7

ad
[7] If new ~ymbols of the text were reached
{j was increased) then starting from the
Ld k which implies the nevv j
(j !=Ld,k +d + i) we reconstruct the new
Si,:i'

e'nd

Implementation remarks.
Instruction 4.new.1: When we compute Lo,o we
start searching for the indices (f ,c) at the first
triple of Si.,j' We know which triple was
checked, when any Ld,e gets its value. So, when
computirlg a new Ld,e we know what were the
last triples we checked in the computation of

each one of Ld-l,e -l,Ld ,e -l,Ld + I.e -1' At Instruc
tion 3 row got its initial value from the max-
imum of Ld-l,e-l,Ld,e-l+1,Ld+l,e-l+1. The last
triple that was checked in t.he computation of
the one which giyes this rnaximum is the first to
be checked in the computation of Ld,e'
Instruction 7: At the end of each iteration i if
_at least one new sYTI1bol of the text was reached
we have to create a new sequence of triples
instead of Sr,j' If tJ is the rightmost symbol of
the text which was reached in such an iteration
then denote the new sequence S. -:'. In order to

't,J
cornpute Si,l we hold an. sequen.ce (of triples)
for eac'h Ld,e during its computation at itera
tion i. This sequence "realizes" Ld,e' That is, it
gives a correspondence between a l' ... , aLd.e

and ~i+l"'" ti+Ld.e+d' with exactly e

differences.
At the beginning of each iteration i each Ld,e
has an empty such sequence. We use again the
fact that initially (at Instruction 3) row is the
maximum among L d - 1,e-l' Ld,e-l+1, and
Ld + 1,e -1+1 and finally (at Instruction 5) is Ld,e'
Assume that we know the sequences of the
predecessors l of Ld,e (Namely, the sequences of
L d -- 1,e-l, Ld ,e-l and Ld +1,e-1)' We get the
sequence of Ld,eby adding triples to the end' of
the sequence of the predecessor which gives
the maximum in initializing row. Let r 1 be the
initial value of row. If r 1 got its value from
Ld -- 1,e-l (or L d ,e-l) then we add to its sequence
the triple (i+rl+d-1, 0,0). (Meaning that for
ti +

T1
+d , there is no corresponding symbol in the

pattern). Following Instruction 5, if Ld,e > rl'
we next add the triple (i+rl+d,r1,Ld,e-rl) to
the sequence of Ld,e' This is done regardless
of whether the source of r 1 was Ld - 1,e -1 or
L d ,e-l or Ld+1,e-l' (This triple describes tIle
match between substrings of the pattern and
the text which was found during the computa':"
tion of Ld,e given Ld-l,e-l' Ld,e-I and Ld+l,e-l)'
At the end of iteration i vile check -w-hich of the
sequences of the 2k + 1 Ld,k reached the right
most symbol of the text. If the index of this
synJ.bol is greater than j (Ld,e+d+i > j), then
we take its sequence to be the new Si.J".

Complexity. The old Instruction 4 (-w'here
roto is increased by one at a time without using
S'i,J' and MA)(-LEJVGTH) is employed each time
we move to a new symbol of the text. We main
tain 0 (k) diagonals at any time during the text
analysis and may need to compare the new
syrClbol for each of them. Hence, the old
Instruction 4 requires a total of O(kn) time
throughout the text analysis. In order to evalu
ate the number of steps which are required by
t.he new Instruction 4 at iteration i, we use

135

again the fact thatO(k) diagonals are com
puted. The sequence Si,j has at most 2k + 1 tri
ples. We can charge each operation performed
on anyone of the diagonals to either a
difference being discovered (there are :5 k such
differences), or to a triple of S1i ,j being exam
ined (there are ~ 2k + 1 triples). This amdunts
to O(k) operation per diagonal at each itera
tion i. Therefore, the total running time of the
text analysis is 0 (k 2·n).

Analysis of the pattern

The pattern i.s an array A = a l' ... ,am'
The output of the pattern analysis i;s the t.'''10
dimensional array
MAX-LENGTH[O, ... ,m -l;O, ... ,m -1] -w-here
MA.)(-LENGTH(i,j) = f means that
ai+l, ... , ai+! = aj+l' ... , aj+! and
ai +! + 1 #- ai +f + 1.
The array lvJAX-LENGTH is syn.1.rnelric. That is,
MAY-LE1\fGTH(i,j)= lvlA"¥.- -LEIVGTH(j,i). We
will apply a slight modification of the string
matching algorithm of [KMP] due to [ML] which
rUI1S in 0(1",.1 +11,) tin1e. Givel1 a patterI1 of lengt11
'fn arld d texL of leIlgLh 11 Ll.ll:::> l11uulucctLlOIl UIH]:::>
for each entry of text one of two' things.
1. An occurrence of the patterII starts at this
entry.
2. The first mism'atch (from the left). That is, it
finds the first character of the text ,vhich
differs from a character of the pattern.

We compute each row l of MA.£~~-LEl\fGTH

separately. Take al+l, ... ,am to be the pat
tern and a 1, ... , am to be the text. We com
pute fvJAX--LEJ.VGTH[l;l, ... ,m,-l] simply by
applying this modification. The computation of
each row takes O(m) time. Since, there arem
rows the total runing time of the pattern
analysis is 0(m 2).

ACKNOW~LEDGMENT. [I] is written in Russian, a
language which is unknown to us. Slisenko's
kind help in identifying and deciphering the
main points in this paper is gratefully ack
nowledged.

REFERENCES
[AI-IU] A.V. Aha, J.E. I-fopcroft and J.D. Ull-

man, The Design and Analysis of Com
puter Algorithms, Addison-Wesley, Read
ing, MA, 1974.

[B11] R.S. Boyer and J.S. 110ore, "~11. fast
string searching' algorithm", Comm.
ACM 20 (1977), 762-772.

Figure 1

011
Ui.i.~

follovv--

Figllre 1(b)

filT-.L~fIS;lL:1TCH[i-r; l~ .. ·.~s] gives
(:=; 2k + 1), the ll.l.isrnatc:hes betvv-eell the
ing st.rings:

Figure 1(c)

MERGE uses the. information in Fig. 1(b) and
1(c) to compute T..6'.L't'J'-MJ :SA1A 'J'C'H [i; 1,,, .,k + 1].
If MERGE is unable to complete this job then
EXTEND completes it.

F'igure 1(d)

Figure 1(a)

TE)(T-MISMATCH[r;q ,,,.,k + 1] gives all the
mismatc}!es between the following strings:

[V] U. Vishkin, "Optimal parallel pattern
matching in strings", Proc. 12th ICALP,
Lecture Notes in Computer Science 194,
Springer-Verlag, 1985, 497-508. Also,
Information and Control, to appear.

[WF] R.. Wagnerand M. Fisher "The string-to
string correction problem", J. ACM 21
(1974),168-178.

iteration i
TEXT-ANALYSIS checks whether there are > k
mismatches between the following strings:

j MERGE t EXTEND j
t TEXT-ANAL,YSIS t

~a'j-i+J=r;]
r~---:---~·,
I 1 •••• i -r + 1 • • • aj -r I
L "__ - ~,.----,--
1r+l :

.J- .k:' .:. ~"""""----II....-_..L..-_~ __-L.-_..L-.._--1 •

[~~r=~~J ai-r+d • .. . Iaj-r I
--.,t;+~ ~~ - ~-J:::===:::,====:I====J------ ----_ _ ti + 1 • .• • t j_J__ _ _ _ ,. ,. _

rG84al z. Galil, "Optimal parallel algorithms
for string matching", Proc. 16th ACM
Symposium on Theory of Computing,
1984, 240-248.

[G84b] Z. GaUl, "Open Problems in Stringol
ogy", preprint, 1984.

[GS] Z. Galil and J.I. Seiferas, "Time-space,
optimal string matching", J. Computer
and System Sciences 26 (1983),280-294.

[IJ A.G. Ivanov "Distinguishing an approxi
mative word's inclusion on Turing
machine in real time", (A Russian paper.
The title is translated into English),
Izvestia Academee Nauk USSR Seria
Matematicheskiya 48 (1984),520-568.

[KMP] D.E. Knuth, J.H. Morris and V.R. Pratt,
"Fast pattern matching in strings",
SIAM J. Compo 6 (1977),322-350.

[KR] R.M. Karp, and M.O. Rabin, "Efficient
randomized pattern-matching algo-
rithms", manuscript, 1980.

[LVl] G.M. Landau and U. Vishkin "Efficient
string matching with k mismatches",
Theoret. Comput. ScL, to appear.

[LV2] G.M. Landau and U. Vishkin IfEfficient
string matching with k differences",
TR-36/85, Department of Computer Sci
ence, Tel Aviv University, 1985.

[LVN] G.M. Landau, U. Vishkin and R. Nussinov
"An efficient string matching algorithm
with k differences for nucleotide and
amino acid sequences ", TR-37/85,
Departrnent of Computer Science, Tel
Aviv University, 1985.

[ML] M.G. Main and R.J. Lorentz, "An
O(n log n) algorithm for finding all
repetitions in a string", J.. of Algorithms
(1984), pp. 422-432.

[S] P. H. Sellers, The theory and computa
tion of evolutionary distances: Pattern
recognition. J. of Algorithms 1 (1980),
359-373.

[SK] D. Sankoff and J.B. Kruskal (editors),
Time Warps, String Edits, and

Macromolecules: the Theory and Prac
tice of Sequence Comparison, Addison
Wesley, Reading, MA, 1983.

[U] E. Ukkonen, IrOn approximate string
matching", Proc. lnt. Conf. Found.
Compo Theor., Lecture Notes in Corn
puter Science 158, Springer-Verlag,
1983, 487-495.

[U85] E. Ukkonen, "Finding approximate pat
tern in strings", J. of Algorithms 6
(1985), 132-137.

136

