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Abstract

Given two sequences, the traditional longest
common subsequence (LCS) problem is to obtain
the common subsequence with the maximum num-
ber of matches, without considering the continuity
of the matched characters. However, in many ap-
plications, the matching results with higher conti-
nuity are more meaningful than the sparse ones,
even if the number of matched characters is a lit-
tle lower. Accordingly, we define a new variant of
the LCS problem, called the flexible longest com-
mon subsequence (FLCS) problem. In this paper,
we design a scoring function to estimate the con-
tinuity of a matching result between two strings.
We show that the optimal solution of FLCS can
be determined in O(n2) time, where n denotes the
longer length of the two input sequences. There-
fore, the results in this paper offer a new efficient
tool for sequence analysis.

1 Introduction

The topic of evaluating how similar one string
or one sequence to another is, such as the longest
common subsequence [3, 4, 7–10, 15, 17] or the
edit distance [2, 14], has been studied for several
decades. Based on these algorithms, methods for
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solving verification [6], classification [1, 11], and
clustering [13] problems are further developed.

Given two sequences X and Y , the longest
common subsequence (LCS) problem asks for the
longest sequence that is a subsequence of both
X and Y . Meanwhile, the edit distance prob-
lem is to find the minimum number of opera-
tions (to insert, delete or substitute one charac-
ter each time) required for modifying one string
to another. However, to our knowledge, the con-
tinuity of matched characters has not yet been
emphasized in previous methods. In Figure 1,
there are two alignment results Z1 and Z2 of string
X = applebreadcookieorangepeach and string
Y = orangemilkmeloncakebanana, where Z1 has
more matched characters (which is 9) than Z2

(which is 8) does. However, Z1 does not seem to be
quite meaningful because of its scattered matches.

In bioinformatics, longer continuous matches in
amino acid sequences mean that these sequence
segments are likely to have the same function. For
plagiary detection, long and continuous matches
infer that many sentences were copied from one
article to the other. Therefore, it is interesting
and necessary to devise a comparison scheme that
considers the continuity of matches. For this pur-
pose, we propose the flexible longest common sub-
sequence (FLCS) problem.

The organization of this paper is as follows. In
Section 2, we give a formal definition to the FLCS
problem, and propose a straightforward algorithm
with O(n3) time. In Section 3, we further propose
improved O(n2 × min{r log r, n})-time, O(n2r)-
time, and O(n2)-time algorithms, where r denotes
the size of the dominant list in our algorithm,
which is usually much less than n. Finally, the
conclusions are given in Section 4.
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X:

Y:

Z1:

--app---l--e-breadcookie-orangepeach

orangemilkmelonca----k-ebanan----a--

--a-----l--e----a----k-e---an----a--

|Z1| = 9

(a)

X:

Y:

Z2:

|Z2| = 8

applebreadcookieorange-----------pe---ach

----------------orangemilkmeloncakebanana

----------------orange------------e---a--

(b)

Figure 1: Two alignment results with different
continuity.

2 The Flexible Longest Common

Subsequence Problem

2.1 Problem Definition

For a given sequence of elements S =
s1s2s3 . . . s|S|, where |S| represents the length of
S, we use si to denote the ith element of S. Also,
let Si..j = sisi+1si+2 . . . sj denote a substring from
the ith element to the jth element of S. For two
given sequences X and Y , a pair of two characters
from X and Y is defined as follows.

Definition 1. A pair (i, j) is called a matched
pair iff xi = yj. Otherwise, (i, j) is a mismatched
pair. A character xi (yj) can form a mismatched
pair with a gap, represented as (i,∞) or (∞, j),
where x∞ and y∞ denote symbols that does not
exist in X and Y .

Thus, an alignment result (such as Z1 in Figure
1) consists of a sequence P of pairs. However, for
ease of reading, the alignment results are repre-
sented in characters, rather than pairs of indices.

Definition 2. Given an alignment result P =
p1p2p3 . . . p|P |, a matched segment of P is a sub-
string pipi+1pi+2 . . . pj of P that contains only
matched pairs. Similarly, a mismatched segment
of P is a substring of P that contains only mis-
matched pairs.

Suppose there are |Z| segments z1z2z3 . . . z|Z|

in P . Let ZM be the set of matched segments. To

X:

Y:

F(P) = 22+32+12 = 14

abbacbba

ab-acb-a

Figure 2: An example for computing the scoring
function F (P ).

emphasize continuous matches, each matched seg-
ment zi in P is measured by a polynomial function
f(x) = xγ referring to the length of zi, where γ is
a constant. That is, the score of the whole align-
ment is the summation of the scores of all matched
segments, denoted as F (P ), as follows.

F (P ) =
∑

zi∈ZM

|zi|
γ . (1)

In the above equation, γ is a user-specified
parameter. For clarity, the length of each
segment is supposed to be locally maximized.
That is, for each matched (mismatched) segment
pipi+1pi+2 . . . pj , the pairs pi−1 and pj+1 can only
be mismatched (matched) pairs.

Figure 2 shows a scoring example for sequences
X = abbacbba and Y = abacba. There are three
matched segments, which are z1 = ab, z3 = acb,
and z5 = a. The lengths of z1, z3 and z5 are 1,
3 and 2, respectively. Therefore, when γ = 2, we
have F (P ) = 12 + 32 + 22 = 14. By adjusting
the parameter γ in the scoring function, we can
control the degree of emphasis on continuity. The
higher γ is, the higher score the function gains
on continuous matches. If γ = 1, the obtained
score of this function is the same as the length
of the traditional LCS. The formal definition of
the flexible longest common subsequence (FLCS)
problem is given as follows.

Definition 3. The Flexible Longest Common
Subsequence Problem: Given two sequences X =
x1x2x3 . . . xm, Y = y1y2y3 . . . yn, and a scoring
function F (P ) with γ as the continuity coefficient,
the flexible longest common subsequence problem
is to obtain the sequence P of matching pairs for
X and Y which corresponds to a common subse-
quence of X and Y with maximal F (P ).

2.2 The Straightforward Dynamic
Programming

In this section, we first propose a simple al-
gorithm with O(n3) time. Let L(Xi, Yj) denote
the optimal score of the FLCS between prefixes
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X1..i and Y1..j . The straightforward dynamic pro-
gramming for computing L(Xi, Yj) is presented in
Equation 2.

L(Xi, Yj) =

max















L(Xi−1, Yj)
L(Xi, Yj−1)
{L(Xi−c, Yj−c) + cγ | c ∈ N

and X(i−c+1)..i = Y(j−c+1)..j}

(2)

The correctness of the above algorithm can
be easily verified, since it examines each possible
length for the last matched segment that ends with
xi = yj. Clearly, the time complexity of the algo-
rithm is O(n3), where it is assumed that m ≤ n.

3 Improved Algorithms for the

FLCS problem

In this section, we first propose an algorithm
with the dominant strategy, which solves the
FLCS problem in O(n2 × min{r log r, n}) time,
where r denotes the maximal size of dominant
lists. After that, we improve the algorithm by
predicting the dominance, which gives an O(n2r)-
time algorithm. Finally, we show that the compu-
tation time can be further reduced to O(n2).

3.1 The Algorithm with the Dominant
Strategy

To reduce the time spent on checking the
length, the concept of dominant points [5] is ap-
plied. If there is always one solution better than
another, we say that this one dominates another,
and the dominated solutions can be removed from
the dominant list. Algorithm 1 is a general im-
plementation for solving the FLCS with domi-
nant lists, whose notations are explained as fol-
lows. We use Di,j = {e1, e2, e3, . . . , e|Di,j |} to de-
note the dominant list that preserves the candi-
date solutions for L(Xi, Yj) in lattice cell (i, j).
Each candidate solution is represented by a vector
ek = (sk, vk), where sk and vk record its score and
the length of the last matched segment ending at
xi = yj, respectively.

By updating these values, one solution can
be extended from one list to the next. When
xi = yj , the function ex1 extends each solution
ek = (sk, vk) ∈ Di−1,j−1 to e′ = (s′, v′) ∈ Di,j , as
shown in Equation 3.

ex1(ek) = (sk − v
γ
k + (vk + 1)γ , vk + 1). (3)

On the other hand, when xi 6= yj, the function
ex2 extends each solution ek = (sk, vk) ∈ Di−1,j ∪
Di,j−1 to e′ = (s′, v′) ∈ Di,j , as follows.

ex2(ek) = (sk, 0). (4)

For γ ≥ 1, we say that ek1
= (sk1

, vk1
) dom-

inates ek2
= (sk2

, vk2
) if sk1

≥ sk2
and vk1

≥
vk2

. That is, no matter how these two solutions
are extended, the score of the extended solution
e′k1

= (s′k1
, v′k1

) will not be worse than the ex-
tended solution e′k2

= (s′k2
, v′k2

). Once a solution
is dominated by any other solution, it can be re-
moved from the dominant list. In Algorithm 1, the
function dom(E) removes all dominated solutions
in the given list E. By applying the algorithm
for finding 2D maximal on bounded integer points
[15], it takes O(n) time for computing each Di,j

because 0 ≤ vk ≤ n. Therefore, the time com-
plexity of this algorithm is bounded by O(n3), or
O(n2r log r), where the maximal size of Di,j is as-
sumed to be bounded by r. By our observation, r
is usually much less than n.

3.2 The Algorithm with Dominance
Prediction

Based on Equation 3, we can predict the score
fk(t) of ek for the next t extensions with ex1,
which can be written as Equation 5.

fk(t) = sk − v
γ
k + (vk + t)γ (5)

For two solutions ek1
and ek2

, the intersection
point t of fk1

(t) and fk2
(t) can be computed by

Equation 6. By computing such t, which we call
the survival time, the timing for the future domi-
nance of ek1

and ek2
can be predicted.

fk1
(t) = fk2

(t),

sk1
− v

γ
k1

+ (vk1
+ t)γ = sk2

− v
γ
k2

+ (vk2
+ t)γ

(6)

For conciseness, in this paper we consider the
special case with γ = 2, whose intersection point
can be calculated by the formula shown in Equa-
tion 7.

t =
sk1
− sk2

2(vk2
− vk1

)
. (7)

For other positive integer γ = 3, 4, or 5, one can
refer to Galois theory [16]. For other values of γ,
we have to approximate the integer-precise answer
by numerical analysis, like the Newton-Raphson
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Algorithm 1 The dynamic programming algorithm with the dominant concept.

Di,0 = D0,j = the list of the initial solution.
for i = 1→ m do

for j = 1→ n do

if xi = yj then

E = ex1(Di−1,j−1) ∪ ex2(Di−1,j) ∪ ex2(Di,j−1)
else

E = ex2(Di−1,j) ∪ ex2(Di,j−1)
end if

Di,j = dom(E)
end for

end for

method [12], which can be achieved in a few iter-
ations for nonnegative integer t.

Note that only the nonnegative t is meaningful.
If the obtained t is negative, it means that solu-
tions ek1

and ek2
cannot dominate each other in

the future.
From hereafter, we include an additional sur-

vival time tk in the vector of each solution, i.e.,
ek = (sk, vk, tk), where tk is a nonnegative in-
teger. The survival time tk means that ek is
alive from time 0 (now) to time tk, and it will
be expired (dominated by some other solutions)
on time tk + 1, where the current Di,j is marked
as time 0. During the process, we order the domi-
nant list decreasingly by sk, thus the first solution
e1 ∈ Di,j , denoted as Di,j,1, is always with the
highest score. For Di,j,1, we use ti,j,1 to denote
its survival time. The function for computing the
survival time for two solutions ek1

and ek2
is de-

noted as intersect(ek1
, ek2

), which is assumed to
take constant time.

The extending functions with survival time are
denoted as ext1 and ext2. When xi = yj , ext1

extends one solution ek = (sk, vk, tk) ∈ Di−1,j−1

to e′k = (s′k, v
′
k, t

′
k) ∈ Di,j , shown as follows.

ext1(ek) = (sk−v
γ
k+(vk+1)γ , vk+1, tk−1). (8)

Similarly, when xi 6= yj , ext2 is defined as fol-
lows.

ext2(ek) = (sk, 0,∞). (9)

The new algorithm for constructing the domi-
nant list Di,j with survival time is shown in Al-
gorithm 2, and the function insert(Di,j , e

′) is de-
scribed by Algorithm 3.

Here we provide some explanations for Algo-
rithms 2 and 3. To construct the dominant list
Di,j , extended solutions are collected from Di−1,j ,
Di,j−1 and Di−1,j−1. For extended solutions from
Di−1,j or Di,j−1, the solution with the highest

Algorithm 2 Construction of Di,j with predicted
survival time.
Di,0 = D0,j = {(0, 0,∞)}
for i = 1→ m do

for j = 1→ n do

E = ext2(Di−1,j,1) ∪ ext2(Di,j−1,1)
e′ = dom(E)
if xi = yj then

Di,j = ext1(Di−1,j−1)
if ti,j,1 < 0, remove Di,j,1 from Di,j

insert(Di,j , e
′)

else

Di,j = {e
′}

end if

end for

end for

Algorithm 3 Insert e′ into Di,j and maintain el-
ements in the list.
function insert(Di,j , e

′ = (s′, v′, t′))
if s′ ≤ s1, then discard e′ and return

k← 1
t′ = intersect(e′, e1)
while t′ ≥ tk do

remove ek from Di,j

k ← k + 1
t′ = intersect(e′, ek)

end while

push e′ on top of Di,j

end function
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score would dominate all other solutions, because
v′ = 0. That is, what we have to compare is
the top solutions in Di−1,j and Di,j−1, which
are Di−1,j,1 and Di,j−1,1. For xi = yj , Di,j

can be constructed by extending Di−1,j−1, remov-
ing expired solutions, and inserting the solution
e′ = (s′, v′, t′) (extended from Di−1,j or Di,j−1).

To insert e′ = (s′, v′, t′) into Di,j , and to main-
tain the dominant solutions, the function insert

is presented in Algorithm 3. First, to ensure that
e′ is not dominated by any other solution in Di,j ,
since for each ek ∈ Di,j we have vk ≥ v′ = 0,
s′ > s1 should be satisfied. Otherwise e′ is dom-
inated and it must be discarded. Next, t′ should
be updated by intersecting e′ with existing solu-
tions in Di,j . For some solution ek = (sk, vk, tk), if
t′ ≥ tk, then ek is dominated by e′, which means ek
should be removed. Note that even when t′ = tk,
ek should be removed because s′ > sk. There are
up to |Di,j | intersections to be computed, and fi-
nally, e′ should be placed on the top of Di,j .

Figure 3 illustrates an example for X =
aabbbacbba, Y = aabbacba, and γ = 2, where
the situation xi = yj is specified by grey color. For
demonstration, to construct the dominant list of
the cell (5, 4), solutions from D4,4, D5,3 and D4,3

should be collected. For the solutions from D4,4

and D5,3, since the v′ will become 0, the solution
with the highest s′ will dominate all the others in
D4,4 and D5,3. By comparing the extended score
of (16, 4,∞) (the best one in D4,4) and (9, 0, 2)
(the best one in D5,3), the solution e′ = (16, 0,∞)
(extended from (16, 4,∞)) is retrieved. For the
solutions from D4,3, since the situation has been
predicted, the list {(9, 0, 2), (5, 1,∞)} is extended
as {(10, 1, 1), (8, 2,∞)}. Since t values are in in-
creasing order , the first element (with the smallest
t value) in the list should be checked for expira-
tion. The expired solution will be removed. In
this example, no solution is expired.

Following Algorithm 3, the detailed steps for
inserting e′ = (16, 0,∞) into {(10, 1, 1), (8, 2,∞)}
are described as follows.

• At first, because s′ = 16 > s1 = 10, we know
that e′ is not dominated by any other solu-
tions in the list, and it should be inserted.

• To update t′ of e′, the intersection of e′ and
D5,4,1 = (10, 1, 1) is first computed, which is
t′ = 3. By t′ = 3 ≥ t5,4,1 = 1, D5,4,1 is
dominated and removed.

• Moving on to the new D5,4,1 = (8, 2,∞), the
intersection of e′ and D5,4,1 is t

′ = 2. Because

t′ = 2 < t5,4,1 =∞ is satisfied, no more dom-
ination will occur, and the loop terminates.

• To keep the list in order, e′ is placed on the
top of D5,4.

• Finally, the process of D5,4 finishes. We have
D5,4 = {(16, 0, 2), (8, 2,∞)}.

For Di,j with xi 6= yj, the dominant list can
be constructed in constant time. However, for the
case xi = yj , both the extension from Di−1,j−1

and the function insert require O(r) time, where
r is the maximal size of the dominant list. Thus,
the time complexity of this improved algorithm is
O(n2r), which is bounded by O(n3).

3.3 The O(n2)-time Algorithm

After analyzing the time complexity of the algo-
rithm in Section 3.2, the bottlenecks are the task
for extending solutions from Di−1,j−1 to Di,j , and
the function insert for inserting e′ into Di,j . In
this section, we define a new solution represen-
tation, by which the one-by-one extension from
Di−1,j−1 to Di,j can be avoided, and the infor-
mation required by the algorithm is still retriev-
able. After that, by amortizing the time required
for checking and deleting elements in insert, we
show that the optimal FLCS can be determined in
O(n2) time.

Instead of the representation ek = (sk, vk, tk)
used in Section 3.2, a new representation of a so-
lution ǫk = (σk, νk, τk) is defined as follows. First,
we use σk to represent the score that ǫk has ac-
cumulated from the beginning till the last mis-
matched pair, but without the last matched seg-
ment. In other words, sk = σk + v

γ
k . In addition,

νk denotes the row index of the lattice cell where
the last mismatched pair of ǫk is. Hence, for a so-
lution ǫk in Di,j , we have vk = i− νk. Finally, let
τk be the largest row index of the lattice cell where
ǫk still survives. That is, we have tk = τk − i for
each ǫk ∈ Di,j .

These two kinds of representations ek and ǫk
can be converted to each other in constant time.
Clearly, ek = (sk, vk, tk) = (σk + (i − νk)

γ , i −
νk, τk − i), and ǫk = (σk, νk, τk) = (sk − v

γ
k , i −

vk, tk + i). As ek = (0, 0,∞) in D0,j or Di,0 for an
initial solution, the corresponding initial solution
is now set as ǫk = (0− 0γ , i− 0,∞+ i) = (0, i,∞).
Therefore, with this new representation, a solution
ǫk can be extended to ǫ′k by extd1 or extd2 with
Equation 10.
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0 1 2 3 4 5 6 7 8
- a a b b a c b a

0 - (0,0,∞) (0,0,∞) (0,0,∞) (0,0,∞) (0,0,∞) (0,0,∞) (0,0,∞) (0,0,∞) (0,0,∞)
1 a (0,0,∞) (1,1,∞) (1,1,∞) (1,0,∞) (1,0,∞) (1,1,∞) (1,0,∞) (1,0,∞) (1,1,∞)
2 a (0,0,∞) (1,1,∞) (4,2,∞) (4,0,∞) (4,0,∞) (4,0,1)

(2,1,∞)
(4,0,∞) (4,0,∞) (4,0,1)

(2,1,∞)
3 b (0,0,∞) (1,0,∞) (4,0,∞) (9,3,∞) (9,0,2)

(5,1,∞)
(9,0,∞) (9,0,∞) (9,0,2)

(5,1,∞)
(9,0,∞)

4 b (0,0,∞) (1,0,∞) (4,0,∞) (9,0,2)
(5,1,∞)

(16,4,∞) (16,0,∞) (16,0,∞) (16,0,3)
(10,1,∞)

(16,0,∞)

5 b (0,0,∞) (1,0,∞) (4,0,∞) (9,0,2)
(5,1,∞)

(16,0,2)
(8,2,∞)

(16,0,∞) (16,0,∞) (17,1,∞) (17,0,∞)

6 a (0,0,∞) (1,1,∞) (4,0,1)
(2,1,∞)

(9,0,∞) (16,0,∞) (17,1,1)
(13,3,∞)

(17,0,∞) (17,0,∞) (20,2,∞)

7 c (0,0,∞) (1,0,∞) (4,0,∞) (9,0,∞) (16,0,∞) (17,0,∞) (20,2,0)
(20,4,∞)

(20,0,∞) (20,0,∞)

8 b (0,0,∞) (1,0,∞) (4,0,∞) (9,0,2)
(5,1,∞)

(16,0,3)
(10,1,∞)

(17,0,∞) (20,0,∞) (29,5,∞) (29,0,∞)

9 b (0,0,∞) (1,0,∞) (4,0,∞) (9,0,2)
(5,1,∞)

(16,0,2)
(8,2,∞)

(17,0,∞) (20,0,∞) (29,0,4)
(21,1,∞)

(29,0,∞)

10 a (0,0,∞) (1,1,∞) (4,0,1)
(2,1,∞)

(9,0,∞) (16,0,∞) (17,1,1)
(13,3,∞)

(20,0,∞) (29,0,∞) (30,1,3)
(24,2,∞)

Figure 3: The 2D lattice of the dynamic programming with the efficient dominant method.

extd1(ǫk) = (σk, νk, τk) for xi = yj
extd2(ǫk) = (σk + v

γ
k , i,∞) for xi 6= yj .

(10)

The computation for tk and vk is transformed to
the row indexes of lattice cells, which need not be
updated cell by cell. The score σk is updated only
when the last matched segment terminates with
xi 6= yj. Note that vk = i− νk, where i is the row
index of the cell that ǫk comes from. Since only
one solution is concerned for a mismatched pair,
we update variables only when a mismatch occurs.
Hence, we have a representation that reduces the
one-by-one extension from Di−1,j−1.

We apply the new representation ǫk based the
algorithm in Section 3.2, obtaining a new modified
algorithm. By ek = (sk, vk, tk) = (σk+(i−νk)

γ , i−
νk, τk − i), we have the following transformation.
First, the score predicting function fk(τ) is shown
as Equation 11.

fk(t) = sk − v
γ
k + (vk + t)γ

= σk + (i+ t− νk)
γ

fk(τ) = σk + (τ − νk)
γ

(11)

Next, the function intersect(ǫk1
, ǫk2

) returns
the integer-precise point τ that makes fk1

(τ) =
fk2

(τ). The modified algorithm to construct dom-
inant lists is shown in Algorithm 4, where τi,j,1 is
the counterpart of ti,j,1, and the modified insertion
function is shown in Algorithm 5.

Note that the original bottleneck of extend-
ing solutions from Di−1,j−1 to Di,j is now dras-
tically reduced with the simple operation Di,j =

Algorithm 4 Construction of Di,j for each lattice
cell (i, j).

Di,0 = D0,j = {(0, i,∞)}
for i = 1→ m do

for j = 1→ n do

E = extd2(Di−1,j,1) ∪ extd2(Di,j−1,1)
ǫ′ = dom(E)
if xi = yj then

Di,j = Di−1,j−1

if τi,j,1 < i, remove Di,j,1 from Di,j

inst(Di,j , ǫ
′)

else

Di,j = {ǫ
′}

end if

end for

end for

Algorithm 5 Insert ǫ′ into Di,j and maintain el-
ements in the list.
function inst(Di,j , ǫ

′ = (σ′, ν′, τ ′))
if σ′ ≤ σ1 + (i − ν1)

γ , then discard ǫ′ and
return

k← 1
τ ′ = intersect(ǫ′, ǫ1)
while τ ′ ≥ τk do

remove ǫk from Di,j

k ← k + 1
τ ′ = intersect(ǫ′, ǫk)

end while

push ǫ′ on top of Di,j

end function
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Di−1,j−1. It can be done in constant time by shal-
low copying fromDi−1,j−1 toDi,j . In other words,
the address of Di−1,j−1 is copied as the address of
Di,j , and only a minor part of data are updated.

Here we again take the same example X =
aabbbacbba, Y = aabbacba, and γ = 2 for com-
parison. The computation of the previous algo-
rithm is shown in Figure 3, and the computation
with the new representation is shown in Figure 4.
The dominant lists are constructed row by row as
the progressing of dynamic programming. Since
the address of Di−1,j−1 is copied toDi,j , the mem-
ory of Di−1,j−1 is reused in Di,j . Thus, only the
dominant lists in the current row are recorded,
and the lists in previous rows are simply moved
and slightly modified. In Figure 4, one can find
that lists Di−1,j−1 and Di,j are almost the same
if xi = yj .

For demonstration, to construct the dominant
list D5,4, solutions from D4,4, D5,3 and D4,3 are
collected. For the solutions from D4,4 and D5,3,
the solution ǫ′ with the highest score σk+(i−νk)

γ

will dominate all the others in D4,4 and D5,3. By
comparing (0, 0,∞) (the best one in D4,4 with ex-
tended score 0 + (4 − 0)2 = 16) and (9, 5, 7) (the
best one in D5,3 with extended score 9+(5−5)2 =
9), the solution ǫ′ = (16, 5,∞) (extended from
(0, 0,∞) in D4,4) is retrieved. For the solutions
from D4,3, the whole list {(9, 4, 6), (4, 3,∞)} is
kept for D5,4. However, the first element in the
list should be checked for expiration. Because
τ5,4,1 = 6 ≥ i = 5, no solution is expired. Fol-
lowing Algorithm 5, the detailed steps for insert-
ing ǫ′ = (16, 5,∞) into {(9, 4, 6), (4, 3,∞)} are
described as follows.

• At first, because σ′ = 16 > σ1+(i−ν1)
γ = 10,

we know that ǫ′ is not dominated by any other
solutions in the list, and it should be inserted.

• To update τ ′ of ǫ′, the intersection of ǫ′ and
D5,4,1 = (9, 4, 6) is first computed, which is 8.
By τ ′ = 8 ≥ τ5,4,1 = 6, D5,4,1 is dominated
and removed.

• Moving on to the new D5,4,1 = (4, 3,∞), the
intersection of ǫ′ and D5,4,1 is 7. Because
τ ′ = 7 < τ5,4,1 = ∞ is satisfied, no more
domination will occur, and the loop stops.

• To keep the list in order, ǫ′ is placed on the
top of D5,4.

• Finally, the maintenance process of D5,4 fin-
ishes. We have D5,4 = {(16, 5, 7), (4, 3,∞)}.

To end this section, we give the analysis of the
amortized time complexity. By Algorithm 4, at
most one solution is newly generated and inserted
into the list of each Di,j . The number of all new
solutions is therefore bounded by O(n2), which is
also the maximal number of times to remove a so-
lution. Though the function inst may take linear
time for processing some Di,j , the overall time is
still bounded by O(n2). Note that by applying
Hirschberg’s divide-and-conquer strategy [7], the
optimal solution can also be obtained in O(n2)
time, which completes our algorithm.

4 Conclusion

In this paper, we first define the flexible longest
common subsequence (FLCS) problem with the
concept of matching continuity. To find the opti-
mal solution of FLCS, an O(n2r log r)-time algo-
rithm is first developed, which is further improved
to O(n2r) and O(n2), where n denote the longer
length of the two input sequences, and r is the size
of dominant list. In real applications, the FLCS
score is useful for estimating the similarity with
emphasized continuity. In the future, we hope
to design a more general function that simulta-
neously considers the penalty of gaps, providing a
more flexible tool for sequence analysis.
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