
Finding Longest Increasing and Common Subsequences in

Streaming Data∗

David Liben-Nowell

Department of Computer Science

Carleton College

dlibenno@carleton.edu

Erik Vee

IBM Almaden Research Center

vee@almaden.ibm.com

An Zhu

Google, Inc.

anzhu@google.com

Abstract

We present algorithms and lower bounds for the Longest Increasing Subsequence (LIS) and
Longest Common Subsequence (LCS) problems in the data-streaming model. To decide if the
LIS of a given stream of elements drawn from an alphabet Σ has length at least k, we discuss a
one-pass algorithm using O(k log |Σ|) space, with update time either O(log k) or O(log log |Σ|);
for |Σ| = O(1), we can achieve O(log k) space and constant-time updates. We also prove a lower
bound of Ω(k) on the space requirement for this problem for general alphabets Σ, even when
the input stream is a permutation of Σ. For finding the actual LIS, we give a dlog(1 + 1/ε)e-
pass algorithm using O(k1+ε log |Σ|) space, for any ε > 0. For LCS, there is a trivial Θ(1)-
approximate O(log n)-space streaming algorithm when |Σ| = O(1). For general alphabets Σ,
the problem is much harder. We prove several lower bounds on the LCS problem, of which the
strongest is the following: it is necessary to use Ω(n/ρ2) space to approximate the LCS of two
n-element streams to within a factor of ρ, even if the streams are permutations of each other.

1 Introduction

Longest increasing and common subsequences. Let S = 〈x1, x2, . . . , xn〉 be a sequence of
integers. A subsequence of S is a sequence 〈xi1 , xi2 , . . . , xik〉 with i1 < i2 < · · · < ik. A subsequence
is increasing if xi1 ≤ xi2 ≤ · · · ≤ xik . We consider two problems related to subsequences:

• longest increasing subsequence (LIS): given a sequence S, find a maximum-length increasing
subsequence of S (or find the length of such a sequence); and

• longest common subsequence (LCS): given two sequences S and T , find a maximum-length
sequence x that is a subsequence of both S and T (or find the length of x).

∗Appears in Journal of Combinatorial Optimization, Volume 11, Number 2, March 2006, pp. 155–175. A pre-
liminary version of this paper appears in the Proceedings of the 11th International Computing and Combinatorics
Conference (COCOON’05), August 2005, pp. 263–272. This document was last updated on 5 May 2006. Comments
are welcome.

1

Both LIS and LCS are fundamental combinatorial questions that have been well studied within the
computer-science literature (e.g., [4, 8, 18, 23, 24, 31], among many others).

Among a large number of important applications of both of these problems, we highlight a few
that arise in computational biology. The BLAST (Basic Local Alignment Search Tool) database [3]
supports queries of the following form: for a sequence σ of amino acids, for example, what segments
of known proteins have high local similarity to σ? Zhang [34] has proposed filtering the results of
a BLAST query with an approach that uses an LIS algorithm as a black box to assemble BLAST
information about local similarity into a coherent picture of global similarity. An LIS step is
also part of the MUMmer system for aligning entire genomes [12], and a straightforward LCS
computation gives the value of the optimal alignment of two sequences of DNA [30].

The data-streaming model. In the past few years, as we have witnessed the proliferation of
massive data sets as diverse as fully sequenced genomes and the link structure of the World Wide
Web, traditional notions of algorithmic efficiency have begun to appear inadequate. A polynomial-
time algorithm—normally seen as the theoretical holy grail for a problem—may simply not be fast
enough when it is run on an input as big as the multi-billion base pairs of the human genome.

Researchers in theoretical computer science has thus begun to explore new models of compu-
tation, with new notions of efficiency, that more realistically capture when an algorithm is “fast
enough.” The data-streaming model [22] is one such well-studied model. In this model, an algo-
rithm must make a small number of passes over the input data, processing each input element as
it goes by. Once the algorithm has seen an element, it is gone forever; thus we must compute and
store a small amount of useful information about the previously read input. We are interested in
algorithms that use a sublinear amount of additional space. (With a linear amount of space, a
streaming algorithm can simply store the entire input and then run a traditional algorithm.) We
typically aim for a polylogarithmic amount of space and a polylogarithmic amount of processing
time for each element of the input. Ideal data-streaming algorithms make only a single pass over
the data, but we are also interested in multipass streaming algorithms, in which the algorithm can
make a small number (typically constant) of passes over the input data.

LIS/LCS in the data-streaming model. In this paper, we study the difficulty of the LIS and
LCS problems in the data-streaming model. We are motivated in our exploration by the fact that
LIS and LCS are fundamental combinatorial questions arising naturally in the streaming context
that are essentially different from other problems previously studied in this model. We believe that
a solid characterization of the tractability of basic questions like LIS and LCS will lead to a greater
understanding of the power and limitations of the data-streaming model.

Applications for LIS and LCS also arise in many natural settings. For example, the optimal-
alignment problem for two DNA sequences requires the computation of the LCS of two genomes,
strings of length potentially far in excess of the size of main memory. Sequentially fetching blocks
of data from disk is significantly faster than random block fetches; thus sequentially streaming the
data from disk, using a small number of passes over the data, is highly desirable. (This approach
has been considered in the external-memory community for other problems as well [7, 15].)

Another potential application for LIS and LCS in the streaming model is that, in certain real-life
settings, high-speed data can pass by a bounded-memory device—e.g., a stream of packets passing
a router—and we may wish to perform some sort of computation on the stream. The question of
“what is different about this data stream now, as compared to yesterday?” has been studied from

2

the perspective of large changes in the frequencies of particular elements in the stream [11]; LCS
looks at the same question from the perspective of changes in the order of elements in the stream.
In a related application, Banerjee and Ghosh [5] have explored the use of LCS as a mechanism for
clustering the users of a website on the basis of their “clickstreams” through the site.

One notable difference between LIS (and, similarly, LCS) and problems that have been previ-
ously considered in the data-streaming model is that the LIS of a stream is an essentially global
order-based property. Many of the problems that have been considered in the streaming model—
for example, finding the most frequently occurring items in a stream [9, 13], clustering streaming
data [21], finding order statistics for a given stream [2, 27], or calculating the distance between two
vectors presented as a stream of ordered pairs (xi, i) of values and indices [2, 6, 16, 17, 25, 29]—are
entirely independent of the order in which the elements are presented in S; permuting the items in
the stream does not affect the correct answers to these questions. Two exceptions are (1) counting
inversions in a stream [1]—i.e., the number of pairs of indices (i, j) such that i < j but xi > xj ,
and (2) computing a stream’s histogram [19, 20]—i.e., a compact approximation of the stream by a
piecewise constant function. However, there are some significant distinctions between these prob-
lems and LIS. Counting inversions is a much more local problem than LIS, in the sense that an
inversion is a relationship between exactly two items in the stream, whereas an increasing subse-
quence of length ` is a relationship among ` items. Histograms are much more robust than LIS to
small changes in the data: if we consider an LIS that consists primarily of the same repeated value,
and we perturb the input so that many occurrences of this value are slightly smaller, then the LIS
radically changes. Thus algorithms that store some sort of approximation of the stream’s previous
elements face significant obstacles in solving the LIS and LCS problems. While these differences do
not preclude the existence of efficient streaming algorithms for LIS or LCS, they do suggest some
of the difficulties.

Our results. In this paper, we give a full characterization (up to logarithmic factors) of LCS in
the data-streaming model, even in the context of approximation. We also fully characterize (again
up to logarithmic factors) the exact version of LIS, leaving approximations for future work. We
first present positive results on (1) computing the length of the LIS of a given input stream, and
(2) outputting a maximum-length increasing sequence itself. Fredman’s algorithm [18], which was
originally developed outside the context of the data-streaming model but which can be naturally
interpreted as a streaming algorithm, yields a one-pass streaming algorithm that uses O(k log |Σ|)
space with update time O(log k) to compute the length of the LIS for a given input stream, where
the n elements of the stream are drawn from the (ordered) alphabet Σ = {1, . . . , |Σ|}, and k is
the length of the LIS. This algorithm can also achieve an update time of O(log log |Σ|) if it is
implemented using van Emde Boas queues or y-fast trees [32, 33]. For the problem of returning the
length-k LIS of a given stream, Fredman’s approach gives a one-pass streaming algorithm that uses
O(k2 log |Σ|) space. We reduce the space requirement to O(k1+ε log |Σ|) by using dlog(1 + 1/ε)e
passes over the data, for any ε > 0. This space usage is nearly optimal, because merely storing
the LIS itself requires Ω(k log |Σ|) space when |Σ| = Ω(n). When the elements of the stream are
drawn from a small alphabet, we can achieve O(|Σ| log k) space and O(log |Σ|) update time—i.e.,
logarithmic space and constant-time updates if |Σ| = O(1)—for computing the length of the LIS.
For finding the LIS itself, we achieve the same bounds using O(|Σ|2 log k) space.

We also present (the first, to the best of our knowledge) lower bounds on LIS/LCS in the
streaming model in Section 4. (In the comparison model, Fredman has proven lower bounds on

3

computing LIS, via a reduction from sorting [18].) As with many lower bounds in the streaming
model, our results are based upon the well-observed connection between the space required by a
streaming algorithm to solve a problem and the problem’s communication complexity. Specifically, a
space-efficient streaming algorithm A to solve a problem gives rise to a solution to the corresponding
two-party problem with low communication complexity: one party runs A on the first part of the
input, transmits the small state of the algorithm to the other party, who then continues to run A
on the remainder of the input. We prove a lower bound of Ω(k) space for computing the LIS of a
stream whenever n = Ω(k2) by giving a reduction from the Set-Disjointness problem, which is
known to have high communication complexity.

In Section 5, we turn to the LCS problem. For solving LCS in the data-streaming model,
we note a simple LIS-based algorithm requiring O(n log |Σ|) space to compute the LCS of two n-
element sequences presented as streams. If we want to compute the LCS of one n-element reference
permutation against any number of test permutations, we can achieve the same space bound,
independent of the number of test permutations. For small alphabets, we can also approximate
LCS in small space: we can achieve a simple |Σ|-approximation using O(|Σ| log n) space and O(1)
update time. Our main results on LCS, however, are lower bounds. We prove that if the two
streams are general sequences—that is, not necessarily permutations of each other—then we need
Ω(n) space to ρ-approximate the LCS of two streams of length n to within any factor ρ. (Note that
the lower bound is independent of the desired approximation ratio.) Finally, we prove our strongest
lower bound: if the given streams are n-element permutations, then Ω(n/ρ2) space is required to
ρ-approximate the LCS.

2 Notation

Throughout this paper, we will use n to denote the length of the input streams, Σ = {1, 2, . . . , |Σ|}
to denote the (integral) alphabet from which elements of the stream are drawn, and k to denote
the length of the longest increasing or common subsequence of the input stream(s). We will write
sequences and subsequences in angle brackets (e.g., S = 〈x1, . . . , xn〉).

For any sequence σ, we let σi denote the ith element in σ. Let |σ| denote the length of σ.
Write last(σ) := σ|σ|. Define all-but-last(σ) = 〈σ1, σ2, . . . , σ|σ|−1〉 as the (|σ| − 1)-element sequence
resulting from removing from σ its last element last(σ) = σ|σ|. Let 〈〉 denote the empty sequence.
For a single element xi, let 〈xi〉 denote the one-element sequence that contains the lone element xi.
For two sequences σ = 〈σ1, . . . , σ|σ|〉 and σ′ = 〈σ′

1, . . . , σ
′
|σ′|〉, we denote the concatenation of the

streams by concat(σ, σ′) = 〈σ1, . . . , σ|σ|, σ
′
1, . . . , σ

′
|σ′|〉.

Finally, for any value x ≥ 0, we say that x̃ is a ρ-approximation of x if x ≤ x̃ ≤ ρx.

3 Streaming Algorithms for Longest Increasing Subsequence

We begin by presenting positive results on the LIS problem, both for computing the length of an
LIS and for actually producing an LIS itself. A small-space algorithm to calculate the length of
the LIS was given by Fredman [18]—and later rediscovered by Bespamyatnikh and Segal [8]—in a
context other than the data-streaming model. When it is viewed in the data-streaming context,
this algorithm yields a one-pass algorithm to compute the length of the LIS of a given stream using
O(k log |Σ|) space and update time of O(log k) or O(log log |Σ|), where k is the length of the stream’s
LIS. The algorithm also naturally gives a O(k2 log |Σ|)-space algorithm to find a longest increasing

4

Fredman(S): // compute the length of the LIS of the stream S = 〈x1, . . . , xn〉.

1. Initialize k′ := 0, A[0] := −∞, and A[1] := ∞.

// k′ is the length of the LIS in the stream seen so far.

// A[i] stores the smallest possible last element in a length-i increasing subsequence in the stream so far.

2. While there are elements left in the stream S:

(a) read the next element xi from S.

(b) find the ` such that A[`] ≤ xi < A[` + 1]. // using binary search or van Emde Boas queues.

(c) set A[` + 1] := xi.

(d) if ` + 1 > k′, then increment k′ and initialize A[k′ + 1] := ∞.

3. Return k′.

Figure 1: Fredman’s algorithm to compute the length of the LIS in stream S.

subsequence itself. Here we briefly describe Fredman’s algorithm, then we give a modification of
this algorithm to handle the case of |Σ| = O(1), and finally we extend this approach to a more
space-efficient multipass streaming algorithm to compute an LIS itself.

3.1 Computing the Length of an LIS

Let S = 〈x1, x2, . . . , xn〉 be a stream of data, and consider a length-` increasing subsequence
σ = 〈xi1 , xi2 , . . . , xi`〉 of S. We say that σ is (`, j)-minimal if last(σ) is minimized over all length-`
increasing subsequences of the substream 〈x1, x2, . . . , xj〉. We say that such a sequence σ is an
(`, j)-minimal increasing sequence, or simply an (`, j)-MIS.

The streaming algorithm of Fredman [18] for computing the LIS’s length is based on storing
the last element of an (`, j)-MIS in an array cell A[`] for all ` ∈ {1, . . . , k′} as we scan the stream,
where k′ is the length of the LIS in the stream seen so far. Note that, by definition, the elements
of A must be sorted in increasing order: if σ = 〈σ1, . . . , σ`+1〉 is an (`+1, j)-MIS, then it necessarily
contains an increasing length-` subsequence 〈σ1, . . . , σ`〉 where σ` ≤ σ`+1. We update A[`+1] := xj

when the next element xj in the stream falls between A[`] and A[` + 1], the currently stored values
for the last element of the (`, j)-MIS and (` + 1, j)-MIS. The fact that the elements of A appear in
sorted order means that the update step only requires finding the predecessor A[`] of the stream
element xj in A. Pseudocode for the algorithm is shown in Figure 1.

Lemma 3.1. Consider any stream S = 〈x1, . . . , xn〉 and any index i ∈ {1, . . . , n}. After i iterations
of the while loop in Fredman(S), we have that k′ is the length of the LIS of 〈x1, . . . , xi〉 and

A[`] =





−∞ if ` = 0,
last(ρ) for an (`, i)-MIS ρ if 1 ≤ ` ≤ k′,
∞ if ` = k′ + 1, and
uninitialized otherwise.

5

Proof. We first strengthen the stated property by adding the previously mentioned sortedness
condition to the induction hypothesis: for all j and for all j ′ > j such that A[j] and A[j ′] are both
initialized, we have that A[j] ≤ A[j ′].

The proof follows by induction, in a relatively straightforward manner. For the base case i = 0,
the property is vacuously true. For the inductive case, assume that the desired properties were
maintained after we read the element xi−1 from the stream. Now consider the moment at which
we read the next element xi from the stream. Let ` be such that A[`] ≤ xi < A[` + 1], as in
the algorithm. It is clear that only MIS’s of length ` + 1 or more might have a new smallest last
element, because every shorter MIS already consists entirely of elements that are smaller than xi.
In other words, the newly read element xi can only affect values in A with indices ` + 1 or higher.

On the other hand, note that xi can only extend an existing increasing subsequence σ into a
longer increasing subsequence if σ ends with some element σ|σ| ≤ xi. For all such subsequences, we
have σ|σ| ≤ xi < A[` + 1] by the definition of `. Hence by the induction hypothesis, the sequence σ
has length ` or shorter. But then the sequence σ′ = concat(σ, 〈xi〉) is of length at most ` + 1. Thus
the element xi can only affect values in A with indices ` + 1 or lower.

Indeed, we now have a new subsequence σ′ of length ` + 1 with xi as the last element, by
extending the (`, i)-minimal increasing subsequence by adding the last element A[`]. Thus it is
necessary and sufficient to update A[` + 1]. It is immediately clear that the requirement on k ′ is
maintained, and it also clear that the new A[j]’s respect the sortedness constraint.

Theorem 3.2. We can decide whether the LIS of a stream of integers drawn from alphabet Σ
has length at least some given number k, or compute the length k of the LIS of the given stream,
with a one-pass streaming algorithm that uses O(k log |Σ|) space and has update time O(log k) or
O(log log |Σ|) per element.

Proof. By Lemma 3.1, the length of the LIS is correctly computed by Fredman. Clearly, the decision
problem can also be solved with a minor change to the output of this algorithm.

For the space bound, observe that we store k values from the stream—that is, k values in the
range {1, . . . , |Σ|}—in the array A, requiring O(log |Σ|) bits each. The only superconstant-time
step in the update operation is to find the ` such that A[`] ≤ xi < A[` + 1]. This can be done in
O(log k) time by explicitly storing the array A and using binary search; alternatively, we can use
van Emde Boas queues [32] or y-fast trees [33] to support updates in O(log log |Σ|) time.

When the alphabet is of small size, we can modify this algorithm to be much more efficient
in terms of both its update time and its space requirements. Instead of storing k different values
drawn from the stream in the array A, we instead maintain the length of the longest increasing
subsequence that has a particular element of the alphabet as its last element, for every alphabet
character, as we read the stream. Specifically, consider an array B[1 . . . |Σ|] such that B[a] denotes
the length of the longest increasing subsequence σ(a) ending with a ∈ Σ. When a new element xi

of the stream arrives, we simply reset B[xi] := 1 + max{B[1], . . . , B[xi − 1], B[xi]}. The length of
the LIS is then max{B[1], . . . , B[|Σ|]}. Hence we can compute the length of the LIS exactly using
O(|Σ| log k) space, with O(|Σ|) update time.

The update time can be improved to O(log |Σ|) by placing a complete binary tree on top of
the array B, with each node augmented to store the maximum value beneath it in the tree. To
further reduce the space usage for short streams—and to avoid the initial Θ(|Σ|) time and space
required for initialization of the array B and the tree T—we use a red/black tree in place of the

6

LIS-small-alphabet(S): // compute the length of the LIS of the stream S = 〈x1, . . . , xn〉, with xi ∈ Σ.

// B[j] stores the length of the longest increasing subsequence ending with element j ∈ Σ in the stream so far.

// Treat an uninitialized B[j] as B[j] = 0.

1. While there are elements left in the stream S:

(a) read the next element xi from S.

(b) set B[xi] := 1 + max{B[1], . . . , B[xi − 1], B[xi]}.

2. Return max{B[1], . . . , B[|Σ|]}.

Figure 2: An algorithm to compute the length of the LIS in stream S when the alphabet Σ has
small size. To implement Steps 1b and 2 efficiently, we use a balanced binary tree T to store the
initialized values of B[j]. Every internal node u of T is augmented to store the maximum leaf-
node value in the subtree rooted at u. This augmentation allows the computation of any “prefix
maximum”—that is, max{B[1], . . . , B[j]} for any index j—in O(log |Σ|) time, and the augmented
data can be updated in O(log |Σ|) time when B[xi] is initialized (i.e., inserted into T) or increased
(i.e., deleted and reinserted into T).

complete binary tree, again augmenting every node to store the maximum value beneath it in the
tree. When the element a ∈ Σ first appears in the stream, we insert the key/value pair (a, B[a]) into
the tree; when B[xi] is updated we delete and reinsert the xi entry from the tree. The maximum
value beneath each node in the tree can be maintained through node deletion and insertion in a
red/black tree in O(log |T |) time. (This data structure is a simplified version of an order-statistic
tree [10].) See Figure 2 for the pseudocode.

Theorem 3.3. We can decide whether the LIS of a stream of integers drawn from alphabet Σ has
length at least some given number k, or compute the length k of the LIS of the given stream, with
a one-pass streaming algorithm that uses O(|Σ| log k) space and has update time O(log |Σ|).

Proof. Correctness of the while loop in LIS-small-alphabet(·) follows immediately by induction, and
the space requirement and update time follow immediately from the balance of the tree T and the
above discussion of the data augmentation.

When |Σ| is constant, this algorithm requires only O(log k) space and O(1) update time. Note
also that if the alphabet size |Σ| is unknown, we achieve the same update time and space usage as
described above; this algorithm does not require knowledge of |Σ| to compute the LIS.

3.2 Finding an LIS

The algorithms described in the previous section only compute the length of the LIS, but do not
explicitly find such a sequence. We can straightforwardly modify Fredman’s algorithm to return an
LIS itself: as the stream elements are read, we maintain, for each `, a length-` increasing sequence σ`

whose last element is A[`]:

• initialize σ0 := 〈〉 to be the empty sequence in Step 1.

7

• when A[` + 1] is set to xi in Step 2c because A[`] ≤ xi < A[` + 1], also update the sequence
σ`+1 := concat(σ`, 〈xi〉).

• return σk′

instead of k′ in Step 3.

Updating the sequence σ`+1 can be done in O(1) time using a linked node structure. Specifically,
maintain an array of pointers P [1 . . . k′]. For each new data item xi, create a node with key xi.
Call the new node η. To update σ`+1 to be concat(σ`, 〈xi〉), simply set P [` + 1] to point to η (the
node for xi), and set the pointer for node η to point to the same node as P [`].

Updating in this way may use too much space, because we never delete any nodes. To avoid
wasting this space, we use reference counting, a standard garbage-collection technique. Augment
each node to include a counter of the number of pointers that point to it. Also maintain a list of
nodes to be deleted. Then, when we insert the node η, we increment the counter for the node to
which η points. We decrement the counter for the node to which P [` + 1] previously pointed. If
the counter for that node is now zero, we add it to the list of nodes to be deleted. In any case, if
the list of nodes to be deleted is nonempty, we delete one node from the list. (Of course, whenever
we delete a node, we decrement the counter of the node to which it pointed. If that counter is now
zero, we add that node to the list of nodes to be deleted.)

This modification adds only a constant amount of extra running time per update, so the update
time per element remains O(log k) or O(log log |Σ|), and the space requirement is O(k2 log |Σ|).

In the remainder of this section, we present a multipass streaming algorithm based upon the
ideas of Fredman’s algorithm that outputs an LIS of length k using O(k1+ε log |Σ|) space in dlog(1+
1/ε)e passes over the data, for any ε > 0. (We first describe a two-pass streaming algorithm that
requires less space than Fredman(·), and we will subsequently generalize this algorithm to a p-pass
algorithm for a general p.) The space used by this algorithm is nearly optimal, because merely
storing a length-k sequence in general requires Ω(k log |Σ|) space when |Σ| = Ω(n) and when n is
sufficiently larger than k.

A two-pass algorithm. Note that Fredman’s algorithm maintains k sequences σ1, . . . , σk, taking
a total of O(k2 log |Σ|) space. The key modification for our two-pass algorithm is the following:
during the first pass over the data, the algorithm only remembers part of each σ`; specifically, we
store every qth element of σ`—for a value of q to be computed below—plus the last element of σ`.
That is, for each length ` ∈ {1, . . . , k}, we maintain the sequence

σ̃` = 〈σ`
1, σ

`
q+1, σ

`
2q+1, . . . , σ

`
b `−2

q
cq+1

, σ`
`〉,

where σ` is a length-` increasing sequence ending with A[`], as in the one-pass version of the
algorithm. Storing the last element of σ̃` will give us all of the information that we need to
update the stored sequences. Recall that all-but-last(σ) denotes the sequence σ with its last element
removed, and that σ0 := 〈〉 is initialized to the empty sequence. The update rule during the first
pass of the algorithm is then the following:

when A[`] ≤ xi < A[` + 1]:

σ̃`+1 :=

{
concat(σ̃`, 〈xi〉) if ` ≡ 1 (mod q)
concat(all-but-last(σ̃`), 〈xi〉) otherwise.

That is, the sequence σ`+1 is just σ` with the next stream element put either after the last element
of σ` (if ` + 1 is a qth index) or in place of the last element of σ` (if not).

8

After the first pass is complete, we discard the subsequences σ̃1, . . . , σ̃k−1. Thus the only
information we retain is the subsequence

σ̃k = 〈σk
1 , σk

q+1, σ
k
2q+1, . . . , σ

k
b k−2

q
cq+1

, σk
k〉

where σk is a length-k LIS of the input. For ease of notation in the following, we will write
the elements of σ̃k as an array z, so that z[i] := σ̃k

i = σk
iq+1 for i ∈ {1, . . . , b(k − 2)/qc} and

z[b(k − 2)/qc + 1] := σ̃k
b(k−2)/qc+1 = σk

k .
In the second pass, we want to “fill in the blanks” of the subsequence σ̃k to produce σk.

Specifically, we want to find an increasing subsequence τ ` that starts with z[`] and ends with
z[`+1], for each index `. Notice that we can do this sequentially—for one ` at a time—because two
consecutive τ subsequences do not overlap except at the endpoints. Each desired subsequence τ `

has length exactly q +1, except for the last subsequence (which has length at most q +1). The LIS
of the stream is formed by simply concatenating the τ sequences, without duplicating the boundary
elements z[`] that appear in the consecutive τ `−1 and τ ` sequences.

We claim that the space usage of this two-pass algorithm is better than Fredman’s algorithm.
As usual, let k denote the length of the stream’s LIS. In the first pass, we store a sequence of `/q
elements of Σ for each ` ∈ {1, . . . , k}. Overall, then, the space consumption of the first pass is∑k

`=1(`/q)(log |Σ|) = O((k2

q) log |Σ|). In the second pass, we use O(q2 log |Σ|) space to compute the
length-(q + 1) sequences τ and O(k log |Σ|) space for the final LIS. Thus the total space required
for the entire second pass is O(q2 log |Σ|+ k log |Σ|). The total space requirement of the algorithm,
then, is O(max(k2

q , q2) · log |Σ|+k log |Σ|). This quantity is minimized by selecting q := k2/3, which
makes the overall space consumption O(k4/3 log |Σ|).

Generalizing to a p-pass algorithm. We can generalize this idea to a larger number of passes
by computing each subsequence τ ` recursively. As before, in the first pass the algorithm stores
only every qth element in each σ`, and then all stored subsequences except σ̃k are discarded. Then
the algorithm uses p − 1 passes to find the Θ(k/q) subsequences τ 1, τ2, . . . , τ b(k−2)/qc, where each
subsequence τ ` has length O(q). The pseudocode is shown in Figure 3.

Let S(k, p) denote the space required by a p-pass algorithm to find a subsequence of length k.
Then we have the following recurrence: S(k, p) = max(O((k2

q) log |Σ|), S(q, p − 1)) + O(k log |Σ|).
Hence, the space requirements are optimized by setting q := k1−1/(2p−1), which gives S(k, p) =
O(k1+1/(2p−1) log |Σ|).

Theorem 3.4. Fix a parameter ε > 0. For a given length k, we can find a length-k increasing
subsequence of a stream of integers drawn from Σ with a dlog(1 + 1/ε)e-pass streaming algorithm
that uses O(k1+ε log |Σ|) space and has update time O(log k) or O(log log |Σ|).

We can find the LIS of a stream even when its length k is not known in advance, using the same
number of passes, the same update time, and space O(1

εk1+ε log |Σ|).

Proof. Given a parameter ε > 0, we set p := dlog(1 + 1/ε)e. Then the p-pass streaming algo-
rithm multipassLIS(S, p, k) uses space O(k1+ε log |Σ|) to compute the LIS of the given stream S.
Correctness follows just as in Fredman’s algorithm, and the space bound was derived above.

When k is unknown, we can achieve the stated bounds via a slight modification to multipassLIS().
Define a recursive sequence by q0 := 1 and qj+1 := qj + q1−ε

j for all j ≥ 0. In the first pass of the

9

multipassLIS(S, p, k) // compute a length-k LIS of the stream S = 〈x1, . . . , xn〉 using p passes over the data.

// Maintain every qth element of S’s LIS; each pass successively decreases q to include more and more elements.

1. Set q := k1−1/(2p−1).

2. Return fill-in-the-blanks(S, create-blanks(S, k, q), p − 1, q).

create-blanks(S, k, q): // Find every qth entry of a length-k increasing sequence in S.

1. Initialize σ̃0 := 〈〉. // Treat uninitialized eσ`
j as infinite.

2. While there are still elements left in S:

(a) read the next element xi from S.

(b) find the ` such that σ̃`
` ≤ xi < σ̃`+1

`+1 and then set

σ̃`+1 :=

{
concat(σ̃`, 〈xi〉) if ` ≡ 1 (mod q)
concat(all-but-last(σ̃`), 〈xi〉) otherwise.

3. Return σ̃k.

fill-in-the-blanks(S, z, p, k): // Use p passes to fill in a length-k increasing sequence between each zj , zj+1.

1. If k = 1 or p = 0, then return z.

2. Initialize Z ′ := 〈〉 and q := k1−1/(2p−1).

3. Repeatedly read the next element from S until it equals z1.

4. For j = 1 to |z| − 1:

(a) initialize σ̃1 := 〈zj〉 and reset all other σ̃` to be uninitialized.

(b) repeat until σ̃k
k = zj+1 or there are no elements remaining in S:

i. read the next element xi from S.

ii. if xi ≥ zj then find the ` such that σ̃`
` ≤ xi < σ̃`+1

`+1 // Treat uninitialized eσ`
j as infinite.

and then set

σ̃`+1 :=

{
concat(σ̃`, 〈xi〉) if ` ≡ 1 (mod q)
concat(all-but-last(σ̃`), 〈xi〉) otherwise.

(c) set Z ′ := concat(Z ′, all-but-last(σ̃k∗

)), where k∗ denotes the largest index such that
σ̃k∗

k∗ = zj+1. (Unless there are no more elements in S, the quantity k∗ is simply k∗ = k.
If the stream has been read entirely, then k∗ may be smaller.)

5. Set Z ′ := concat(Z ′, 〈z|z|〉).

6. Return fill-in-the-blanks(S, Z ′, p − 1, q).

Figure 3: A p-pass streaming algorithm to find a longest increasing subsequence. This algorithm
uses space O(k1+1/(2p−1) log |Σ|) and has update time O(log k) or O(log log |Σ|).

10

algorithm only, for each length ` we maintain the sequence σ̃` = 〈σ`
dq0e

, σ`
dq1e

, σ`
dq2e

, . . . , σ`
dqt`

e, σ
`
`〉

where t` is the largest index such that dqt`e < `. The update rule then changes to the following:

σ̃`+1 :=

{
concat(σ̃`, 〈xi〉) if ` = dqje for some j
concat(all-but-last(σ̃`), 〈xi〉) otherwise.

After the first pass is complete, we again discard all stored sequences except the last. That is, we
retain only the sequence

σ̃k = 〈σk
dq0e

, σk
dq1e

, σk
dq2e

, . . . , σk
dqte

, σk
k〉

where t is the largest index such that dqte < k. By the definition of the qj ’s, we see that dqj+1e −
dqje ≤ qj+1 − qj + 1 ≤ q1−ε

j + 1 ≤ k1−ε, for all j + 1 ≤ t. So the number of elements from the LIS

that we are missing, between any σk
dqje

and σk
dqj+1e

, is at most k1−ε. But in multipassLIS() when k
is known in advance the size of the gap between elements that are retained after the first pass is
also k1−ε. Thus the size of the gaps in the retained sequence in the modified algorithm is no larger
than the size of the gaps in the standard algorithm, and we can resume the standard algorithm for
the second pass and all passes that follow, with a slight modification to fill-in-the-blanks() to handle
the fact that the gaps are now of varying width. Correctness follows analogously to the standard
algorithm.

Thus the space usage and update time are identical to multipassLIS() for all passes after the
first. For the first pass of the algorithm, the update time is identical to the standard algorithm.
However, the space used is O(kt log |Σ|). We now bound t. First, notice that the qj ’s form an
increasing sequence, and hence the definition gives us that

qj+j′ ≥ qj + j′q1−ε
j for any j, j′ ≥ 0. (1)

We now claim the following:

for all integers r ≥ 1: if q` < 2r, then ` ≤ 2rε

ε ln 2
+ r (2)

We prove (2) by induction on r. The base case r = 1 is immediate. For the inductive case, assume
q` < 2r, and let `′ be the index such that q`′ < 2r−1 ≤ q`′+1. By the inductive hypothesis, then, we
have that `′ ≤ 2(r−1)ε

ε ln 2 + r − 1. Hence we have

2r > q` by assumption

≥ q`′+1 + (` − `′ − 1)q1−ε
`′+1 by (1)

≥ 2r−1 + (` − `′ − 1)
(
2r−1

)1−ε
by the fact that q`′+1 ≥ 2r−1, by definition of `′.

Solving for `, we have

` ≤ 2(r−1)ε + 1 + `′

≤ 2(r−1)ε + 1 + 2(r−1)ε

ε ln 2 + r − 1 by the inductive hypothesis

≤ 2(r−1)ε

ε ln 2 (1 + ε ln 2) + r by algebraic manipulation.

Because 1+x ≤ ex for all x ≥ 0, we have that 1+ε ln 2 ≤ eε ln 2 = 2ε. Thus we see that ` ≤ 2rε

ε ln 2 +r,
and claim (2) follows. Setting r = dlg ke in (2), we see that t = O(1

εkε). Thus the total space used
in the first pass of the algorithm is O(1

εk1+ε log |Σ|), as desired.

11

Theorem 3.4 is our main result on computing actual longest increasing subsequences, but before
we turn to lower bounds on LIS in Section 4, we note that we can again more efficiently find an
LIS itself when the alphabet Σ is small. In particular, when |Σ| = O(1), we can actually find an
LIS using just O(log k) space and O(1) update time, the same requirements that we had for merely
determining its length.

Theorem 3.5. We can find an LIS of a stream of integers drawn from alphabet Σ with a one-pass
streaming algorithm that uses O(|Σ|2 log k) space and has update time O(log |Σ|).

Proof. First, observe that rather than maintaining σ` for each length ` as in Fredman’s algorithm,
we need only maintain σB[j] for each j ∈ Σ. (Recall that B[j] denotes the length of the longest
increasing subsequence that ends with the element j ∈ Σ in the stream so far. See Figure 2.)
Furthermore, we only need O(|Σ| log k) space to store each sequence σ`, because it suffices to keep
track of the indices i for which σ`

i 6= σ`
i+1, and there are at most |Σ| such indices in an increasing

sequence. Hence, we can find the LIS using space O(|Σ|2 log k) and update time O(log |Σ|).

4 Lower Bounds for LIS

We now turn our attention to establishing lower bounds on the space requirements for streaming
algorithms that solve the LIS problem. In this section, we prove that Ω(k) bits of storage are
required to decide if the LIS of a stream of n elements has length at least k, for any n = Ω(k2).
Our lower bounds, like most lower bounds on space usage in the data-streaming model, are derived
from the well-observed connection between space consumption for streaming algorithms and the
communication complexity of a related two-party problem. Specifically, our proof is based on
reducing the set-disjointness problem to LIS in the data-streaming model:

Definition 4.1 (Set Disjointness). Party A holds an n-bit string sA, and Party B holds another
n-bit string sB. The pair 〈sA, sB〉 forms a ‘yes’ instance for the Set-Disjointness problem if and
only if the ith bit of both sA and sB is 1, for some index i.

We say that sA and sB intersect in a ‘yes’ instance and are disjoint in a ‘no’ instance. The
communication complexity of a protocol solving Set-Disjointness is the maximum number of
bits communicated between Party A and Party B, taken over all valid inputs. Lower bounds
for the set-disjointness problem have been studied extensively (e.g., [6, 26, 28]), and this problem
is known to have high communication complexity. The strongest results show that even in the
randomized setting, Set-Disjointness requires a large amount of communication:

Theorem 4.2 (Bar-Yossef, Jayram, Kumar, Sivakumar [6]). Let δ ∈ (0, 1/4). Let A be a
(possibly randomized) protocol for the Set-Disjointness problem that, for every input 〈sA, sB〉, is
correct with probability at least 1 − δ. Then A requires at least n

4 (1 − 2
√

δ) bits of communication
between Party A and Party B. The same bound holds even if A is only required to be correct when
the vectors sA and sB both contain exactly n/4 ones.

We now reduce Set-Disjointness to the problem of determining if an increasing subsequence of
length

√
n exists in an n-element stream. This reduction will show that deciding whether the LIS

has length k requires Ω(k) space in the streaming model, even with randomization and some chance
of error, whenever n = Ω(k2).

12

Suppose we are given an instance 〈sA, sB〉 of Set-Disjointness, where n := |sA| = |sB|. We
construct a stream S-lis(sA, sB) satisfying three relevant properties: (i) the first half of the stream
will depend only on sA; (ii) the second half of the stream will depend only on sB; and (iii) the
stream’s LIS will have length at least n + 1 if and only if 〈sA, sB〉 are non-disjoint.

For each index i ∈ {1, . . . , n}, write Ni := (n + 1) · (i− 1) for readability. We associate with an
index i the (n + 1)-element sequence 〈Ni + 1, . . . , Ni + n, Ni+1〉, divided into two parts.

• Define A-part(i) := 〈Ni+1, Ni+2, . . . , Ni+i〉 to be the length-i increasing sequence consisting
of the first i of these integers. Define B-part(i) := 〈Ni + i + 1, Ni + i + 2, . . . , Ni+1〉 to be the
length-(n − i + 1) increasing sequence consisting of the remaining (n− i+1) of these integers.

• Define S-lisA(sA) to be the sequence consisting of the concatenation of the sequences A-part(i)
for every i ∈ {i : sA(i) = 1}, listed in decreasing order of the index i. Similarly, let S-lisB(sB)
be the sequence consisting of the sequences B-part(i) for every i ∈ {i : sB(i) = 1}, also listed
in decreasing order of the index i.

• Define the stream S-lis(sA, sB) := concat(S-lisA(sA), S-lisB(sB)).

The first two requirements above are clearly satisfied: the sequence S-lisA(sA) depends only on the
vector sA, and similarly the sequence S-lisB(sB) depends only on the vector sB. We claim that the
third property is satisfied as well:

Lemma 4.3. If the vectors sA and sB intersect, then |LIS(S-lis(sA, sB))| ≥ n+1. If the vectors sA

and sB do not intersect, then |LIS(S-lis(sA, sB))| ≤ n.

Proof. We start with the obvious direction. Suppose that sA and sB intersect—i.e., suppose that
sA(i) = sB(i) = 1 for some particular i. Then observe that S-lis(sA, sB) contains the length-(n+1)
increasing subsequence concat(A-part(i), B-part(i)) = 〈Ni + 1, Ni + 2, . . . , Ni + n, Ni+1〉.

For the converse direction, we prove the contrapositive. Suppose that sA and sB do not intersect.
Observe that for any two indices i and j such that i < j we have the following two facts: (1)
A-part(i) follows A-part(j) in S-lisA(sA), and (2) the integers in A-part(i) are all smaller than those
in A-part(j). Thus any increasing subsequence that is wholly within S-lisA(sA) can contain integers
from A-part(i) for only a single index i. Likewise, any increasing subsequence that is wholly within
S-lisB(sB) can contain integers from B-part(j) for only a single index j. Thus the only potential
length-(n+1) increasing subsequences must be subsequences of concat(A-part(i), B-part(j)) for some
indices i and j so that sA(i) = sB(j) = 1. (By assumption, then, we must have i 6= j.) Furthermore,
unless i < j, all the integers in A-part(i) are larger than the integers in B-part(j). Thus the LIS of
S-lis(sA, sB) has length at most |A-part(i)| + |B-part(j)| = i + n − j + 1 ≤ n.

We now improve the construction so that the resulting stream S-lis(sA, sB) is a permutation,
i.e., it contains each element of {0, 1, . . . , |Σ| − 1} exactly once. (Previously our alphabet has been
Σ = {1, . . . , |Σ|}; here we use a zero-indexed alphabet because our construction is an extension of
the above S-lis(sA, sB), and adding a zero element to the alphabet allows us to give a much simpler
description of the extension.) We will show that a suitable |Σ| = Θ(n2) suffices.

We modify S-lisA(sA) and S-lisB(sB) as follows: we include the integers from A-part(i) and
B-part(i) even when sA(i) = 0 or sB(i) = 0, but we include them in such a way that only two of
these elements can be part of a longest increasing subsequence.

13

• Let UA := {x | ∃i : sA(i) = 0, x ∈ A-part(i)} and let UB := {x | ∃i : sB(i) = 0, x ∈ B-part(i)}
denote the sets of “unused” numbers in S-lisA(sA) and S-lisB(sB), respectively—that is, those
integers in {1, . . . , Nn+1} that do not appear in the stream S-lis(sA, sB).

• Define pad-A(sA) to be the sequence consisting of integers in UA listed in decreasing order,
followed by the integer 0. Define pad-B(sB) to be the sequence consisting first of the lone
integer Nn+1 + 1 = (n + 1) · n + 1, followed by the integers in UB listed in decreasing order.

• Now define S-lisπ
A(SA) := concat(pad-A(sA), S-lisA(sA)). (We write ‘π’ in the superscript to

denote a permutation.) Similarly, define S-lisπ
B(SB) := concat(S-lisB(sB), pad-B(sB)).

• Finally, define S-lisπ(sA, sB) := concat(S-lisπ
A(sA), S-lisπB(sB)). This stream consists of the

“missing” elements of sA in decreasing order, followed by 0, then followed by the “present”
elements; then the “present” elements of sB, followed by (n + 1) · n + 1, followed by the
“missing” elements of sB in decreasing order.

It is straightforward to verify that S-lisπ(sA, sB) is a permutation of the set {0, . . . , (n + 1) ·n + 1}.
Furthermore, it is easy to see that the additions of pad-A(sA) and pad-B(sB) each increase the LIS
by exactly one:

Lemma 4.4. If the vectors sA and sB intersect, then |LIS(S-lisπ(sA, sB))| ≥ n+3. If the vectors sA

and sB do not intersect, then |LIS(S-lisπ(sA, sB))| ≤ n + 2.

Proof. The stream S-lisπ(sA, sB) consists of three segments: (i) a prefix ending with the element 0
that is a decreasing sequence, (ii) the stream S-lis(sA, sB), and (iii) a suffix starting with the element
(n+1) ·n+1 that is again a decreasing sequence. Thus any increasing subsequence of S-lisπ(sA, sB)
can contain at most one element from the prefix segment and at most one element from the suffix.
Thus the following sequence must be a longest increasing subsequence of S-lisπ(sA, sB): first the
integer 0, then an LIS of S-lis(sA, sB), and finally the integer (n + 1) · n + 1. By Lemma 4.3, then,
the length of the LIS of S-lisπ(sA, sB) is n + 3 if and only if the vectors sA and sB intersect.

With this construction in hand, we are now ready to prove our main lower-bound result for com-
puting longest increasing subsequences in the data-streaming model:

Theorem 4.5. Fix any length n and any length k such that n ≥ (k−2)(k−3)+1. Any randomized
streaming algorithm A that decides whether LIS(S) ≥ k for any stream S that is a permutation of
{0, . . . , n} with probability greater than 3/4 requires Ω(k) space.

Proof. Suppose that the randomized streaming algorithm A can decide with probability greater
than 3/4 whether any n-element permutation contains an increasing subsequence of length k. We
show how to solve an instance 〈sA, sB〉 of the Set-Disjointness problem with |sA| = k− 3 = |sB|
with probability greater than 3/4 by calling A.

Specifically, the stream that we consider is S := concat(ExtraNumbers, S-lisπ(sA, sB)), where
ExtraNumbers := 〈n − 1, n − 2, . . . , (k − 2)(k − 3) + 2〉. Observe that the LIS of S has exactly the
same length as the LIS of S-lisπ(sA, sB), because the elements of ExtraNumbers, the prepended part
of S, are all larger than those in S-lisπ(sA, sB), and the numbers in ExtraNumbers are presented in
descending order. Thus, by Lemma 4.4, the LIS of S has length k—and A(S) returns true with
probability greater than 3/4—if and only if sA and sB do not intersect.

14

A lower bound on the space required by A then follows via the high communication complexity
of Set-Disjointness: to solve the given instance 〈sA, sB〉 of the Set-Disjointness problem,
Party A simulates the algorithm A on the stream concat(ExtraNumbers, S-lisπ

A(sA)) and then sends
all stored information to Party B, who continues to simulate A on S-lisπ

B(sB)—i.e., the remainder
of the stream S. This protocol allows Party A and Party B to decide whether the LIS of S is at
least k, and therefore whether sA and sB intersect. By Theorem 4.2, then, Party A must transmit
at least Ω(k) bits in this protocol, and thus A must use Ω(k) space.

5 Longest Common Subsequence

We now turn to the problem of finding the longest common subsequence of two streams S1 and S2

of integers. Throughout this section, we consider the adversarial streaming model, where elements
from the two streams can be presented in any order of interleaving. In the lower bounds that we
derive in this paper, the streaming algorithm will be presented with all n1 of the elements of the
stream S1 before it receives any of the n2 elements of the second stream S2.

Let n := max{n1, n2} denote the size of the larger stream. As with all streaming problems,
there is a trivial streaming algorithm that uses Θ(n log |Σ|) space: simply store both n-element
streams in their entirety and then run a standard (non-streaming) LCS algorithm.

There is also a trivial |Σ|-approximation working in O(|Σ| log n) space and O(1) update time.
For each element in the alphabet Σ, simply calculate the length of the LCS of the two streams
using only the given element. That is, for each element a ∈ Σ, let counta denote the number of
times that a appears in the stream in which it is less prevalent—i.e., the quantity count a denotes
the minimum over i ∈ {1, 2} of the number of times that the element a appears in Si. (The counta

values can be maintained using Θ(|Σ|) counters, each using O(log n) space, that are incremented
as elements from the stream are read.) The maximum of the values counta is clearly a lower bound
on the length of the true LCS of the two streams using all elements. Furthermore, it is also within
a |Σ|-factor of the optimal LCS, because any length-k sequence of elements drawn from Σ must
contain at least k/|Σ| copies of at least one of the alphabet symbols, by the pigeonhole principle.
When |Σ| = O(1), we then have a streaming algorithm that is a constant-factor approximation for
LCS and uses only logarithmic space.

We can give another algorithmic upper bound for a version of LCS, based upon a simple
connection with LIS. Suppose that we are first given one reference permutation R, and then we
are subsequently given a large number of test permutations S1,S2, . . . ,Sq; we want to compute
the LCS of R and Si for every 1 ≤ i ≤ q. Our streaming algorithm stores the permutation R
as a lookup table and then, for each Si, runs the LIS algorithm from Section 3, where we treat x
as less than y if and only if x appears before y in R. This algorithm requires O(n log |Σ|) total
space—O(n log |Σ|) to store R and O(k log |Σ|) = O(n log |Σ|) for the LIS computation. Note that
this bound is independent of q.

In the remainder of this section, we present several lower bounds for LCS, again using a series
of reductions from the Set-Disjointness problem.

5.1 Lower Bound on Exact and Approximate LCS

To begin, we do not impose the restriction that the streams S1 and S2 are permutations of each
other. In this setting, it is straightforward to show that Ω(n) space is required, even if we are

15

willing to settle for an approximation to the LCS:

Theorem 5.1. Fix any desired approximation ratio ρ ≥ 1. Let A be any randomized streaming
algorithm that computes a ρ-approximation of the LCS of any two streams S1 and S2 that have
length at least n, presented in adversarial order, with probability greater than 3/4. Then A requires
Ω(n) space, even if the algorithm is presented with all of S1 followed by all of S2.

Proof. Suppose that the algorithm A can always distinguish the following two cases with probability
greater than 3/4: either streams S1 and S2 contain an LCS of length at least one, or their LCS
has length zero. Thus, if A(S1,S2) outputs the correct answer within any approximation ratio
ρ ≥ 1, then the algorithm must be able to distinguish between the length-0 and length-1 cases,
independent of the ratio ρ.

We show how to solve any instance 〈sA, sB〉 of Set-Disjointness with probability greater
than 3/4 with |sA| = 4n = |sB|, where sA and sB both contain exactly n ones, by using A. Let
the n-element stream S1 consist of all indices i such that sA(i) = 1, listed in arbitrary order.
Similarly, let S2 consist of all n indices i such that sB(i) = 1, again listed in arbitrary order.
Thus LCS(S1,S2) ≥ 1 if there is at least one index i such that both sA(i) = 1 and sB(i) = 1 and
LCS(S1,S2) = 0 otherwise.

This fact implies the desired lower bound, because we can solve the Set-Disjointness using A
as in Theorem 4.5. The first party simulates A on the stream S1 and then passes its state to
the second party. The second party finishes simulating A on the stream S2. By Theorem 4.2, this
transmitted state must therefore use Ω(n) space. To show that we still require Ω(n) space when one
or both of the streams has length strictly larger than n, we simply add arbitrary unique elements
to each of the above streams.

Although this construction establishes hardness for multiplicative approximation of LCS, a simple
variant shows that any data-streaming algorithm solving LCS within an additive α requires Ω(n/α)
space: simply repeat each element in the streams 2α + 1 times.

5.2 Lower Bound on Exact LCS for Permutations

We now improve the construction to show a lower bound on the space required for LCS even when
S1 and S2 are both permutations of the set {1, . . . , n}.

Given an instance 〈sA, sB〉 of the Set-Disjointness problem where there are exactly n/4 ones
in both sA and sB, we construct two streams as follows:

• Define RA as the sequence that contains {i : sA(i) = 1} listed in increasing order, and define
RA as the sequence that contains {i : sA(i) = 0} listed in decreasing order. Similarly, define
RB to contain {i : sB(i) = 1} listed in increasing order, and define RB to contain the elements
of {i : sB(i) = 0} listed in decreasing order.

• Define S-lcsπ
A(sA) := concat(RA, RA) and S-lcsπB(sB) := concat(RB, RB).

Lemma 5.2. If the vectors sA and sB intersect, then |LCS(S-lcsπ
A(sA), S-lcsπB(sB))| ≥ n/2 + 2.

Otherwise, the length of the LCS is at most n/2 + 1.

Proof. Suppose that sA and sB intersect. Then we claim that we can construct a common subse-
quence of S-lcsπ

A(sA) and S-lcsπB(sB) of length at least n/2+2, as follows. First choose the common

16

element from RA and RB. Because sA and sB intersect, the set {i : sA(i) = sB(i) = 0} must
contain at least n/2 + 1 elements, because there are exactly n/4 ones in each sA and sB. This fact
implies the existence of a common subsequence of RA and RB of length at least n/2+1. Therefore
there must be a common subsequence of S-lcsπ

A(sA) and S-lcsπB(sB) with total length n/2 + 2.
Conversely, suppose that sA and sB have no common element. Then none of the elements in RA

match any of the elements of RB. Of course, some elements in RA might be matched with elements
in RB. But the elements of RA are listed in increasing order, while the elements of RB are listed in
decreasing order. Thus, at most one element of RA can be matched with RB. If we do take such
an element as part of an LCS, then the remaining sequence must be a common subsequence of RA

and RB. But these sequences contain exactly n/2 common elements. So the longest sequence is
length at most n/2 + 1.

On the other hand, if we do not use any common elements of RA and RB, we can instead use
common elements from RB and RA. But in this case, we can only use one such element, because RB

is an increasing sequence, while RA is strictly decreasing. The rest of the LCS must be a common
subsequence of RA and RB. As before, RA and RB have exactly n/2 elements in common, giving
an LCS whose total length is n/2 + 1. Thus LCS(S-lcsπ

A(sA), S-lcsπB(sB)) can have length at most
n/2 + 1.

Theorem 5.3. Fix any length n and any length k such that n ≥ 2k−4. Any randomized streaming
algorithm A that decides whether LCS(S1,S2) ≥ k for any streams S1,S2 that are permutations of
{1, . . . , n} with probability greater than 3/4 requires Ω(k) space.

Proof. The theorem follows analogously to Theorem 5.1 when n = 2k − 4: deciding whether
S-lcsπA(sA) and S-lcsπB(sB) have a common subsequence of length n/2+2 = k requires Ω(k) = Ω(n)
space, by Lemma 5.2, which together with Theorem 4.2 implies the stated lower bound.

To prove the same bounds when n > 2k − 4, we pad the streams as in Theorem 4.5. Add the
decreasing sequence n, n−1, n−2, . . . , 2k−4+1 to the beginning of S-lcsπ

A(sA), and add the increasing
sequence 2k − 4 + 1, 2k − 4 + 2, . . . , n to the end of S-lcsπ

B(sB). Then any common subsequences of
these extended sequences are either (1) contained entirely in the unextended portions of S-lcsπ

A(sA)
and S-lcsπB(sB) or (2) have length at most one. Then, as before, the LCS has length k if and only
if sA and sB intersect, and thus we require Ω(k) space to compute the LCS.

5.3 Lower Bound on Approximating LCS for Permutations

In this section, we extend the lower-bound results on the space requirements for computing the
LCS of two permutations to the case of approximation algorithms.

Consider an instance 〈sA, sB〉 of the Set-Disjointness problem, where |sA| = |sB| = n and
where there are exactly n/4 ones in sA and sB. Suppose that we are able to ρ-approximate the
LCS of two permutations, for some approximation factor ρ > 1. We will show how to solve the
Set-Disjointness instance using the LCS approximation.

For each index i ∈ {1, . . . , n}, we construct two sequences apxρA(i,sA) and apxρB(i,sB) so that
|LCS(apxρA(i,sA), apxρB(i,sB))| is ρ2 if sA(i) = sB(i) = 1 and is at most ρ otherwise. We will then
appropriately assemble these sequences for each index i. For any index i ∈ {1, . . . , n}, the sequences
apxρA(i,sA) and apxρB(i,sB) have length ρ2 and consist of exactly the same set of ρ2 integers. We
define them as follows.

17

• For simplicity of notation, define Z i,ρ := {(i− 1) · ρ2 + 1, (i− 1) · ρ2 + 2, . . . , (i− 1) · ρ2 + ρ2}.
Both apxρA(i,sA) and apxρB(i,sB) will consist of exactly this set of integers.

• Let apxρA(i,sA) consist of the elements of Z i,ρ listed in increasing order if sA(i) = 1.

Let apxρA(i,sA) consist of the elements of Z i,ρ listed in decreasing order if sA(i) = 0.

• For sB(i) = 1, define apxρB(i,sB) be the elements of Z i,ρ listed in increasing order.

For sB(i) = 0, we use the more complicated median ordering of the elements Z i,ρ, so that
the longest increasing subsequence and the longest decreasing subsequence both have length
exactly ρ. For the set {1, . . . , m2}, the median ordering is defined as the following sequence:

〈m, m − 1, . . . , 1; 2m, 2m − 1, . . . , m + 1; . . . ; m2, m2 − 1, . . . , m(m − 1) + 1〉.

When sB(i) = 0, we define apxρB(i,sB) to be the median ordering of the elements of Z i,ρ.

• Define S-apxρ-lcs
π
A(sA) := concat(apxρA(1,sA), apxρA(2,sA), . . . , apxρA(n,sA))—that is, the

concatenation of the apxρA(i,sA) sequences in increasing order of the index i.

Define S-apxρ-lcs
π
B(sB) := concat(apxρB(n,sB), apxρB(n − 1,sB), . . . , apxρB(1,sB))—that is,

the concatenation of the apxρB(i,sB) sequences in decreasing order of the index i.

Lemma 5.4. If the vectors sA and sB intersect, then |LCS(S-apxρ-lcs
π
A(sA), S-apxρ-lcs

π
B(sB))| ≥ ρ2.

If the vectors sA and sB do not intersect, then the length of the LCS is at most ρ.

Proof. Suppose that the vectors sA and sB intersect. Let the index i be such that sA(i) = sB(i) = 1.
Then the sequences apxρA(i,sA) and apxρB(i,sB) are identical. Hence the sequence

〈(i − 1) · ρ2 + 1, (i − 1) · ρ2 + 2, . . . , i · ρ2〉

has length ρ2 and is a subsequence of both S-apxρ-lcs
π
A(sA) and S-apxρ-lcs

π
B(sB).

Conversely, suppose that the vectors sA and sB do not intersect. Recall that S-apxρ-lcs
π
A(sA) lists

the sequences apxρA(i,sA) in increasing order of index i, while S-apxρ-lcs
π
B(sB) lists the sequences

of apxρB(i,sB) in decreasing order of index i. Thus any common subsequence of S-apxρ-lcs
π
A(sA)

and S-apxρ-lcs
π
B(sB) can only contain numbers that form a common subsequence of apxρA(i,sA) and

apxρB(i,sB) for some particular index i. But for every index i, we have that one of the following
three cases holds:

1. sA(i) = 1 and sB(i) = 0, so |LCS(apxρA(i,sA), apxρB(i,sB))| = ρ, because one is an increasing
sequence while the other is a median sequence; or

2. sA(i) = 0 and sB(i) = 1, so the LCS has length 1, because one sequence is a decreasing
sequence while the other is an increasing sequence; or

3. sA(i) = 0 and sB(i) = 0, so the LCS has length ρ, because one is an increasing sequence and
the other is a median sequence.

(There can be no index i where sA(i) = sB(i) = 1 because, by assumption, the vectors sA and sB

do not intersect.) Therefore the LCS of S-apxρ-lcs
π
A(sA) and S-apxρ-lcs

π
B(sB) has length at most ρ.

18

Theorem 5.5. Fix any desired approximation ratio ρ ≥ 1. Let A be any randomized stream-
ing algorithm that decides with probability greater than 3/4 whether (i) LCS(S1,S2) ≥ ρ2 or (ii)
LCS(S1,S2) ≤ ρ, for any two permutations S1 and S2 of {1, . . . , n}, presented in adversarial order.
Then A requires Ω(n/ρ2) space, even if the algorithm is presented with all of the elements of S1

followed by all of the elements of S2.

Proof. As in our previous lower-bound theorems, we show how to solve an instance 〈sA, sB〉 of
the Set-Disjointness problem with |sA| = n/ρ2 = |sB| using a streaming algorithm A that
distinguishes the cases of an LCS of length at most ρ from at LCS of length at least ρ2. By
Lemma 5.4, deciding the following question corresponds exactly to deciding whether sA and sB

intersect: do the constructed streams S-apxρ-lcs
π
A(sA) and S-apxρ-lcs

π
B(sB) have an LCS of length

(i) at least ρ2 or (ii) at most ρ? Thus a randomized data-streaming algorithm A that distinguishes
cases (i) and (ii) with probability greater than 3/4 can be used to solve the Set-Disjointness

problem with probability greater than 3/4. The first party simulates A on S-apxρ-lcs
π
A(sA) and then

passes the state of the algorithm to the second party. The second party finishes the simulation of
A on S-apxρ-lcs

π
B(sB). Again, by Theorem 4.2, this protocol implies that we need Ω(N/ρ2) space

for the LCS decision procedure.

Corollary 5.6. To ρ-approximate the LCS of n-element permutations, we need Ω(n/ρ2) space.

6 Conclusion and Future Work

A classic theorem of Erdős and Szekeres [14] follows from an elegant application of the pigeonhole
principle: for any sequence S of n + 1 numbers, there is either an increasing subsequence of S of
length

√
n or a decreasing subsequence of S of length

√
n. One of our original motivations for

looking at the LIS problem was to consider the difficulty of deciding, given a stream S, whether
(1) the length of the LIS of S is at least

√
|S|, (2) the length of the longest decreasing sequence is

at least
√
|S|, or (3) both. To do this, one needs an exact streaming algorithm for LIS; a minor

modification to the median sequence in Section 5 shows that one can have an LIS of length
√

n or
length

√
n − 1 with a longest decreasing subsequence of length

√
n or length

√
n + 1, respectively.

Of course, in the streaming model one is usually interested in approximate algorithms using,
say, polylogarithmic space. Our lower bounds for LCS show that one needs a large amount of
space for any reasonable approximation. However, our lower bounds for the LIS problem say that a
streaming algorithm that distinguishes between an LIS of length k and one of length k +1 requires
Ω(k) space. It is an interesting open question whether one can use a small amount of space to
approximate LIS in the streaming model.

7 Acknowledgements

We would like to thank D. Sivakumar for suggesting the problem to us, and for fruitful discussions.
Thanks also to Graham Cormode, Erik Demaine, Matt Lepinski, and Abhi Shelat for helpful
discussions and comments.

Part of this work was done while the authors were visiting IBM Almaden, and part of the work
of the first author was done at MIT. The work of the second author was supported in part by NSF
grant CCR-0098066.

19

References

[1] Miklós Ajtai, T. S. Jayram, Ravi Kumar, and D. Sivakumar. Approximate counting of in-
versions in a data stream. In Proceedings of the ACM Symposium on Theory of Computing
(STOC), pages 370–379, 2002.

[2] Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approximating the
frequency moments. Journal of Computer and System Sciences, 58(1):137–147, 1999.

[3] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. Basic local alignment
search tool. Journal of Molecular Biology, 215:403–410, 1990.

[4] A. Apostolico and C. Guerra. The longest common subsequence problem revisited. Algorith-
mica, 2:315–336, 1987.

[5] Arindam Banerjee and Joydeep Ghosh. Clickstream clustering using weighted longest common
subsequence. In SIAM International Conference on Data Mining Workshop on Web Mining,
2001.

[6] Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, and D. Sivakumar. An information statistics
approach to data stream and communication complexity. Journal of Computer and System
Sciences, 68(4):702–732, 2004.

[7] Michael A. Bender, Richard Cole, Erik D. Demaine, and Martin Farach-Colton. Scanning
and traversing: Maintaining data for traversals in a memory hierarchy. In Proceedings of the
European Symposium on Algorithms (ESA), pages 139–151, 2002.

[8] Sergei Bespamyatnikh and Michael Segal. Enumerating longest increasing subsequences and
patience sorting. Information Processing Letters, 76(1-2):7–11, 2000.

[9] Moses Charikar, Kevin Chen, and Martin Farach-Colton. Finding frequent items in data
streams. Theoretical Computer Science, 312(1):3–15, 2004.

[10] Thomas Cormen, Charles Leiserson, Ronald Rivest, and Cliff Stein. Introduction to Algorithms.
McGraw-Hill, 2nd edition, 2002.

[11] Graham Cormode and S. Muthukrishnan. What’s new: Finding significant differences in
network data streams. Transactions on Networking, February 2006.

[12] A. L. Delcher, S. Kasif, R. D. Fleischmann, J. Peterson, O. White, and S. L. Salzberg. Align-
ment of whole genomes. Nucleic Acids Research, 27(11):2369–2376, 1999.

[13] Erik D. Demaine, Alejandro López-Ortiz, and J. Ian Munro. Frequency estimation of Internet
packet streams with limited space. In Proceedings of the European Symposium on Algorithms
(ESA), pages 348–360, 2002.

[14] Paul Erdős and George Szekeres. A combinatorial problem in geometry. Compositio Mathe-
matica, pages 463–470, 1935.

[15] Martin Farach-Colton, Paolo Ferragina, and S. Muthukrishnan. Overcoming the memory
bottleneck in suffix tree construction. In Proceedings of the IEEE Symposium on Foundations
of Computer Science (FOCS), pages 174–185, 1998.

20

[16] Joan Feigenbaum, Sampath Kannan, Martin Strauss, and Mahesh Viswanathan. An ap-
proximate L1-difference algorithm for massive data streams. SIAM Journal on Computing,
32(1):131–151, 2002.

[17] Jessica H. Fong and Martin Strauss. An approximate Lp-difference algorithm for massive data
streams. Discrete Mathematics & Theoretical Computer Science, 4(2):301–322, 2001.

[18] M. L. Fredman. On computing the length of longest increasing subsequences. Discrete Math-
ematics, 11:29–35, 1975.

[19] Anna Gilbert, Sudipto Guha, Piotr Indyk, Yannis Kotidis, S. Muthukrishnan, and Martin
Strauss. Fast, small-space algorithms for approximate histogram maintenance. In Proceedings
of the ACM Symposium on Theory of Computing (STOC), pages 389–398, 2002.

[20] Sudipto Guha, Nick Koudas, and Kyuseok Shim. Data-streams and histograms. In Proceedings
of the ACM Symposium on Theory of Computing (STOC), pages 471–475, 2001.

[21] Sudipto Guha, Nina Mishra, Rajeev Motwani, and Liadan O’Callaghan. Clustering data
streams. In Proceedings of the IEEE Symposium on Foundations of Computer Science (FOCS),
pages 359–366, 2000.

[22] Monika Rauch Henzinger, Prabhakar Raghavan, and Sridar Rajagopalan. Computing on data
streams. Technical Report 1998-011, Digital Equipment Corporation, Systems Research Cen-
ter, May 1998.

[23] Daniel S. Hirschberg. Algorithms for the longest common subsequence problem. Journal of
the ACM, 24:644–675, 1977.

[24] J. Hunt and T. Szymanski. A fast algorithm for computing longest common subsequences.
Communications of the ACM, 20:350–353, 1977.

[25] Piotr Indyk. Stable distributions, pseudorandom generators, embeddings, and data stream
computations. In Proceedings of the IEEE Symposium on Foundations of Computer Science
(FOCS), pages 189–197, 2000.

[26] B. Kalyanasundaram and G. Schnitger. The probabilistic communication complexity of set
intersection. SIAM Journal on Discrete Mathematics, 5(5):545–557, 1992.

[27] Gurmeet Manku, Sridhar Rajagopalan, and Bruce Lindsay. Approximate medians and other
quantiles in one pass and with limited memory. In Proceedings of the ACM SIGMOD Inter-
national Conference on Management of Data, pages 426–435, 1998.

[28] A. Razborov. On the distributional complexity of disjointness. Journal of Computer and
System Sciences, 28(2), 1984.

[29] Michael E. Saks and Xiaodong Sun. Space lower bounds for distance approximation in the
data stream model. In Proceedings of the ACM Symposium on Theory of Computing (STOC),
pages 360–369, 2002.

[30] David Sankoff and Joseph Kruskal. Time Warps, String Edits, and Macromolecules: The
Theory and Practice of Sequence Comparison. Addison-Wesley, 1983.

21

[31] C. Schensted. Longest increasing and decreasing subsequences. Canadian Journal of Mathe-
matics, 13:179–191, 1961.

[32] Peter van Emde Boas. Preserving order in a forest in less than logarithmic time and linear
space. Information Processing Letters, 6(3):80–82, 1977.

[33] D. E. Willard. Log-logarithmic worst-case range queries are possible in space Θ(N). Informa-
tion Processing Letters, 17(2):81–84, August 1983.

[34] Hongyu Zhang. Alignment of BLAST high-scoring segment pairs based on the longest increas-
ing subsequence algorithm. Bioinformatics, 19(11):1391–1396, 2003.

22

