
INFORMATION AND CONTROL 64, 100--118 (1985) 

Algorithms for Approximate String Matching* 
ESKO UKKONEN 

Department of  Computer Science, University of Helsinki, 
Tukholmankatu 2, SF-00250 Helsinki, Finland 

The edit distance between strings a~ ... a m and bl "'" b, is the minimum cost s of a 
sequence of editing steps (insertions, deletions, changes) that convert one string into 
the other. A well-known tabulating method computes s as well as the corresponding 
editing sequence in time and in space O(mn) (in space O(min(m, n)) if the editing 
sequence is not required). Starting from this method, we develop an improved 
algorithm that works in time and in space O(s. min(m, n)). Another improvement 
with time O(s.min(m, n)) and space O(s-min(s, m, n)) is given for the special case 
where all editing steps have the same cost independently of the characters involved. 
If the editing sequence that gives cost s is not required, our algorithms can be 
implemented in space O(min(s, m, n)). Since s =  O(max(m, n)), the new methods 
are always asymptotically as good as the original tabulating method. As a by- 
product, algorithms are obtained that, given a threshold value t, test in time 
O(t 'min(m,n))  and in space O(min(t ,m,n))  whether s<<.t. Finally, different 
generalized edit distances are analyzed and conditions are given under which our 
algorithms can be used in conjunction with extended edit operation sets, including, 
for example, transposition of adjacent characters. © 1985 Academic Press, Inc. 

1. INTRODUCTION 

To define the edit distance between two strings, let A = a l ' " a  m be any 
string over  an a lphabet  X and let the possible editing operations on A be: 

(i) deleting a symbol  from any posit ion, say i, to give 

a 1 . . . a  i l a i + l  " " a m ;  

(ii) inserting a symbol  b ~ £" at posi t ion i to give al "'" aibai+ 1 "'" am; 

(iii) changing a symbol  at posit ion i to a new symbol  b ~ S to give 

al  "'" a i -  l ba i+  l " "" am. 

Each editing step can be unders tood  as an appl icat ion of a rewrit ing rule 
a ~ b where a and b, a :~ b, are in S or at most  one of a and b is the empty  
string e. Rules with b = e define deletions, rules with a = e define insertions 
and rules with nonempty  a and b define changes. Clearly, with these editing 
operat ions  it is possible to convert ,  s tep-by-step,  any string A into another  
string B. 

* This paper is a revised and expanded version of a paper presented at the International 
Conference on "Foundations of Computation Theory" held in Borgholm, Sweden, August 
21-27, 1983. 
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Each editing operation a--* b has a non-negative cost 6(a ~ b). Given 
strings A = a l . " a  m and B =  b l " b n ,  we want to determine a sequence of 
editing operations which convert A into B so that the sum of individual 
costs of editing operations in the sequence is minimized. The minimum cost 
is denoted by D(A, B) and called, as by Wagner and Fischer (1974), the 
edit distance from A to B; Sellers (1974) uses the term evolutionary distance 
while the idea was formulated already by Levenshtein (1966). The problem 
of computing D(A, B) is also known as the string-to-string correction 
problem. Being able to compute the edit distance as well as the 
corresponding sequence of editing steps has applications in various string 
matching problems arising in areas such as information retrieval, pattern 
recognition, error correction, and molecular genetics. 

Computing D(A, B) becomes considerably simpler as soon as we may 
assume that there is always an editing sequence with cost D(A, B) con- 
verting A into B such that if an element is deleted, inserted or changed, it is 
not modified again. This means that all editing operations could be applied 
on A in one parallel step yielding B; cf. the "traces" of Wagner and Fischer 
(1974). 

As noted by Wagner and Fischer, this requirement is easily satisfied: It 
suffices that the cost function 8 fulfills the triangle inequality, i.e., 

6(a ~ c) <~ 6(a -,  b) + 6(b --, c) (1) 

for all a, b, c such that a ~ c, a--+ b, and b ~ c are editing operations. We 
also assume that 

6 ( a ~ b ) > O  (2) 

for all operations a ~ b. This is a natural requirement (since a d-b) which is 
essential for our results. When (1) is true, distance D(A, B) can be deter- 
mined with a well-known tabulation method as follows: For all 0 ~ i~< m 
and O<<,j<~n, denote by d,j the edit distance D(al . . .a i ,  b l . . .b i )  from 
string al.. .a~ to string b l . . . b  j. Then the (m+  1)x (n+  1) matrix (d•) can 
be computed from the recurrence 

doo = 0 
(3) 

d~j = min(d~_ ~.j_ 1 -}- IF a i = bj THEN 0 ELSE 6(a i ~ bj), 

d i -  1,j -}- (~( a i  --* e ), 

di .s_l+6(e~bj)) ,  i > 0 o r j > 0 .  

Clearly, matrix (do.) can be evaluated starting from doo and proceeding 
row-by-row or column-by-column (and assuming that all undefined values 
d~i referred to in the minimization step have default value oo). This takes 
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time and space O(mn). Finally, dmn equals D(A, B). Moreover, the 
sequence of editing steps that give D(A, B) can be recovered from the 
matrix (du) using the standard technique applied in dynamic programming 
in which one follows some "minimizing path" backwards from dmn to d0o 
and records at each stage, which of the alternatives gives the minimum. So, 
if we have found that d U is on a minimizing path and, for example, 
d o. = dr_ 1,~ + 6(ai ~ e) then dt ~,j is the next entry on the path and "delete 
at" is the editing operation. 

This method (hereafter called the basic algorithm) with different 
variations has been invented and analyzed several times in various con- 
texts, see, e.g., Lowrance and Wagner (1975), Needleman and Wunsch 
(1970), Sankoff (1972), Sellers (1974, 1980), Vintsyuk (1968), Wagner and 
Fisher (1974). Note that for computing dmn without the editing sequence it 
suffices in the basic algorithm to save only one row or column of (d~) from 
which the next row or column can be generated. Hence only O(min(m, n)) 
space is needed. 

It turns out that the basic algorithm often evaluates unnecessary values 
d~ and stores them inefficiently. These observations are presented in more 
detail in Section 2 where we also give the resulting improved algorithm for 
computing D(A, B). Compared to the O(mn) algorithm, the new method 
has the interesting feature that its efficiency does not depend only on m and 
n but also on the value of edit distance D(A, B) to be computed. The 
smaller is D(A, B), the faster is the algorithm. In Section 3 we modify the 
basic algorithm for the important special case where the cost function 6 is 
constant. An application to the problem of computing the longest common 
subsequence is also considered. Section 4 presents some generalizations 
where we allow additional editing operations such as transpositions. 

2. IMPROVED ALGORITHM 

Let us assume henceforth that the cost function 6 satisfies (1) and (2) 
which means that recurrence (3) correctly defines matrix (d•). We now 
examine the relation between different entries d U more carefully. 

Graphically, the dependencies between entries d~ can be illustrated by 
drawing a directed arc from di7, to d U if and only if the minimization step in 
(3) gives d~ from dcj,. The resulting graph is called the dependency graph. 
An example matrix (dg) for strings A = yxxzy and B = xyxzyz is shown in 
Fig. 1. The arcs of the dependency graph on paths from doo to d56 are also 
represented. 

Cost function 8 used in the example is given by 6(a ~ b )=  2 whenever 
a = e or b = e, and 6(a ~ b ) =  3 in the remaining cases where a va b. From 
(3) it follows that vertical arcs correspond to deletions, horizontal arcs 
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FIG. 1. Matrix (du) with the dependency graph. 
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correspond to insertions, and diagonal arcs correspond to changes or 
matches. Moreover, if we label each arc with the cost 5(a ~ b) of the 
associated editing operation (we let 6(a --, b) = 0 if a = b), the value d~: is 
the sum of labels on any path from doo to do. Hence we have 

LEMMA 1. I f  the dependency graph contains a directed path from d~/ to 
di,:, then di, :, = d~ + d, where d denotes the sum of  labels' on the path. 

The dependency graph can be understood as a subgraph of a larger 
graph of the form shown in Fig. 2, The graph has nodes (do) and directed 
arcs such that an arc comes to d:: from d~ 1,:, from d~_ ~,j_ 1 and from 
di, j_ 1, and the costs associated with the arcs are 6(ag--* e), 6(ag ~ bj), and 
6(e ~ bj), respectively. It is not difficult to see that the value of dmn is the 
minimum total cost on the paths leading from d00 to dm,. So the problem 
of computing the edit distance could be solved, say, with Dijkstra's 
algorithm for the single source shortest path problem which in this special 
case can be made to run in time O(mnlog(mn)). However, the regular 

FIG. 2. Potential dependencies. 

643/64/1-3-8 
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topology of the above graph allows simpler and more efficient solutions 
such as the basic O(mn) method. 

Returning to the dependency graph, it should be clear that only those 
entries d o that are on some path from doo to d,~n are relevant for the value 
of dm,. In fact, were some such path known a priori, we could compute din, 
by evaluating the entries on the path starting from d0o and assuming that 
all the entries not on the path have default value oe. Also note that dm,, = 
O(max(m, n)) since any path from doo to dmn contains at most m + n arcs. 

Consider now the problem of testing whether or not D(A,  B) is at most t 
where t ~> 0 is a given threshold value. This can be solved, of course, by 
evaluating (d~) with the basic algorithm and then testing whether dm, ~ t. 
On the other hand, from Lemma 1 we know that the values d 0 are 
monotonically increasing along any path in the dependency graph. 
Therefore, if dmn actually is ~< t and if some d o. gets a value larger than t, 
then d,7 cannot belong to any path leading to din,. Moreover, all entries 
that will not get a value > t, must be in a diagonal band of (do) which is 
the narrower the smaller is t. 

To make this precise, denote by A the minimum cost of all deletions and 
insertions, that is, 

A = min(c~(a ~ b) [ a ¢ b and (a = e or b = e) 

and, by (2), A > 0. To refer to the diagonals of (do) we number them with 
integers - m ,  - m  + 1,..., 0, 1 ..... n such that the diagonal denoted by k con- 
sists of those de for which j -  i = k. 

LEMMA 2. I f  the dependency graph contains a directed path f rom d o. to 
drj, then drj, >~ d~j + Ij' - i' - ( j -  i)l " A. 

Proof  Since d 0 is on diagonal k = j -  i and diT, on diagonal k' = j '  - i', 
any path from d 0 to di7. contains at least J k ' - k [  deletions (i.e., vertical 
arcs) if k ' - k ~ O  and at least I k ' - k [  insertions (i.e., horizontal arcs) if 
k ' -  k/> 0. Lemma 2 now follows from Lemma 1. I 

Lemma 2 implies d i j ) [ j - i [  .A  for every d o on a path from doo to dmn, 
and so, by Lemma 1, I J -  i[ ~ do/A <~ dmn/A. Hence to compute dm, it suf- 
fices to consider elements d o in the diagonal band given by 
-dmn/A  < ~ j - i  <~ dm,/A. However, an even smaller diagonal band can be 
taken: 

COROLLARY l. If d~j is on some path leading f rom doo to dmn in the 
dependency graph then - p  <~ j - i <<, n - m + p i f  m <~ n, and n - m - p <~ 
j - i < , p  i f  m > n ,  where p = L ½ ( d m n / J -  I n -m iL l .  
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Proof A path from do0 to d,nn consists of subpaths leading from d0o to 
d U and from d,j to dmn. Hence; from Lemma 2, 

dmn>~doo + [ j - i [  " A + [ n - m - ( j - i ) [  " A 
(4) 

= ( [ j - i [  + t n - m - ( j - i ) l ) ' A .  

The rest of the proof is by a straightforward case analysis. For example, 
suppose that n ~>m and j~< i. Then from (4) we get 
d m ~ > ~ [ - ( j - i ) + n - m - ( j - i ) ] . A ,  that is, d m ~ / A - ( n - m ) > ~ - 2 ( j - i ) .  
This means, because j - i ~ < 0  is an integer and n~>m, that 
- h ½ ( d m , / A - ] n - m ] ) J < ~ j - i < ~ O ,  which is as required. The remaining 
cases are left to the reader. | 

From Corollary 1 it follows that in testing whether D(A, B)<~ t, the 
evaluation of (d~/) can be limited to the diagonal band which is, i fp  der~otes 
t½(t/A - [n - m] )_], between diagonals - p  and n - m + p when m ~< n, and 
between diagonals n - m - p and p when m > n. Figure 3 clarifies the num- 
bering of the diagonals as well as shows the diagonal band for m ~< n. 

So we obtain the following algorithm which assumes that all entries d o 
initially have value ~ :  

P R OC EDURE testl(t): 
IF t/A < I n -  m[ T H E N  reject 
ELSE 

p := h½((t/A) - [n - m[ )J; 
FOR i : = 0  UPTO m DO 

IF n ~> m T H E N  
FOR j := max(0, i -  p) U P T O  min(n, i +  (n - m )  + p) DO 

evaluate dij from (3) E N D F O R  
ELSE 

F O R j  :=max(0,  i+ ( n - m ) - p )  U P TO  min(n, i + p )  DO 
evaluate di; from (3) ENDFO R 

ENDIF;  
ENDFOR;  

ENDIF;  
IF dmn <~ t T H E N  accept ELSE reject ENDIF.  

Algorithm testj evaluates (in the nontrivial case t/A >>. I n - m ] )  a band of 
(d•) that consists of 1 + I n - m l  +2p  diagonals. Since each diagonal con- 
tains at most rain(m, n) entries and since 1 + In - m] + 2p ~< 1 + t/A = O(t), 
procedure test1 evaluates O(t. rain(m, n)) entries. Its time requirement is 
therefore O(t .min(m,  n)). Also the space requirement can be made to 
O(t .min(m,  n)) by storing only the entries in the band. 

One immediately realizes, however, that to compute the next row of the 
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band, only the previous row is needed. Each row contains 
1 + [n - m [  + 2p = O(t) elements, hence the space complexity reduces in this 
way to O(t). We get the following algorithm test2 where array elements 
ro, rl ..... rln_ml+2 p are used to successively store the rows of the diagonal 
band and r 1 and rln_ml +2p+1 are sentinels. Initially, r i=  oo for all i. Also 
assume 6(X--* Y)= ~ whenever Y= bh where h < 0 or h > n: 

P R OC EDURE teStz(t): 
IF t/A < hn- m[ T H E N  reject 
ELSE 

p := L½(t/A)- I n -  m[ )_J; 
k ' : = k : = I F n / > m T H E N  - p E L S E  - p + ( n - m ) ;  
FOR i : = 0  U P T O  m DO 

F O R j : = 0 U P T O  [ n - m [ + 2 p D O  
rj : = I F  i = j + k = O  T H E N  0 

ELSE min(rj + IF ai = bj+k TH EN  0 ELSE ~(ai--* b/+k), 
r j +  I + 6(ai ~ e), 
rj 1 + 6(e ~ bj+k))  

ENDFOR;  
k : = k + l ;  

ENFOR; 
ENDIF;  
IF rl. m] +2p+k '  ~ t T H E N  accept ELSE reject ENDIF.  

Instead of proceeding row-by-row in procedure test2, an analogous 
columnwise evaluation of the diagonal band should be used when the 
columns are shorter than the rows, that is, when m < n. This makes the 
space requirement to O(min(t, m, n)). 

Procedure test2 can further be improved by adding two pointers, Pl and 
P2, that point to the first and to the last value rg which is ~<t; initially 
Pl = 1 and P2 = In - m] + 2p + 1. Then it suffices that j gets values starting 
from max(0, P l - 1 ) ,  and when the interval represented by Pl and P2 
vanishes, the algorithm can be terminated with reject!on of t. This 

do0 

xx\ " ~ , , x n  _ m 

ON, ~'\% 

dmn 

FIG.  3. D i a g o n a l s  - p ,  0, n - m,  a n d  n - m + p w h e n  m ~< n. 
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modification does not improve the worst case complexity but is useful in 
practice because the diagonal band reserved for the test can be too broad. 

Summarizing, we have proved 

THEOREM 1. There is an algorithm which, given strings a 1 " " a  m and 
b l " " b n  and a number t, tests in time O ( t .m in (m ,n ) )  and in space 
O(min(t, m, n)) whether or not D(al "'" am, bj "" bn) <~ t. 1 

It is also possible to determine the value of D ( a l " ' a m ,  b~ ' "bn)  with 
algorithm test1 or with algorithm test2: When testl(t) or test2(t) accepts t, 
we know that the value dmn = D(a~"" am, bl"'" bn) has been correctly com- 
puted. Hence test1 or test2 must be called successively with increasing 
values t, until t is accepted. Then dmn gives the edit distance 
D(al . . . am,  b 1 ...bn). For example, the following simple algorithm com- 
putes D(al"'" am, b~ "'" bn) in this way to s: 

1. t : = ( ] n - m ] + l ) . A ;  

2. WHILE testz(t) rejects DO t := 2t ENDWHILE;  (5) 

3. s := r ln  ml+Zp+k, whererln ml+Zp+k, is as in test2. 

To analyze the time complexity of (5), let to= ( I n - m l  + 1)" A, t~ = 2 t  0, 
t2 = 22to,..., tr = 2rlO be the values of t used as the parameters of test 2 on 
line 2. Noting our analysis of test2, algorithm (5) needs time 
O((52r=0 t i ) 'min(m, n)), that is, time O(tr.min(m, n)). Since s >  tr/2, we 
get that the time complexity is, in fact, O(s.min(m,  n)). The space 
requirement is dominated by the space for test2, hence it is 
O(min(tr, m, n)), that is, O(min(s, m, n)). 

If the editing operation sequence that gives D(al " " a  m, b 1 " "bn )  is 
needed, algorithm (5) must be modified such that testl is used instead of 
test2. The time requirement remains O(s .min(m,n) ) ,  but the space 
requirement increases to O(s. min(m, n)) since test1 stores all entries in the 
diagonal band of (do) . From the stored values the editing steps can be 
recovered as explained in Section 1. So we have obtained 

THEOREM 2. The edit distance s = D ( a ~ ' . . a m ,  b~ ' "bn )  as well as the 
corresponding sequence of  editing steps can be computed in time and space 
O(s. min(m, n)). I f  the editing sequence is not needed, the space requirement 
can be reduced to O(min(s, m, n)). 1 

3. SPECIAL CASES 

In this section we assume that each editing operation has the same cost, 
independently of the symbols involved. Without loss of generality, the con- 

1 TO get correct upper bounds also when t = 0 or s = 0, one would prefer writing t + 1 and 
s + 1 instead of t and s in all O-expressions of this paper. 
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stant cost 6(a ~ b) can be scaled to be = 1. Then 6 satisfies condi t ion (1) 
and (2), and therefore the edit distance can again be computed  f rom (3) 
which gets the form 

doo = 0 
(6) 

d,~ = min(d  i_ 1,j--  1 -}- IF  a i = bj T H E N  0 ELSE 1, 

di 1,j + 1, 

d i j _ l  + 1), i > 0  or j > 0 .  

N o w  edit distance D(al""am,  b1""bn) simply means  the m i n i m u m  num- 
ber of editing steps that  t ransform al""am into bl""b~.  

It  turns out  that  matr ix  (do) can in this case be stored in a smaller space 
than  for a general 6. This is because the values dis on the same diagonal  
form a non-decreasing sequence which increases in unit steps: 

LEMMA 3. Let the cost of every editing operation be equal to 1. Then for 
every du, d o=di 1,j 1 or d o .=di 1,j-l + l. 

Proof Since d o is always an integer, it suffices to show that  d 0 -  1 <~ 

di_ 1j-  1 <~ do. 
The minimizat ion step in (6) directly implies that  d o cannot  be larger 

t h a n d i _ l j _ l + l , i . e . , d  o - l ~ < d i  1,s 1. 
As regards the second inequality, it is trivially true for doo. We proceed 

by induct ion on i +  j. Assume first that  the minimizing pa th  to d o comes 
f rom d i_ 1.s- 1. Then (6) implies that  dij = d i_ ~,s- 1 or d o = d i_ 1 j -  ~ + 1. 
Hence d o ~> di_ 1,s-1, as required. Assume then that  the minimizing pa th  to 
d o comes f rom di_ 1,j; the symmetr ic  case where the pa th  comes f rom d~,j 
is similar. Then again by (6), d o = d ~ _ l j + l .  By induct ion hypothesis  
di 1,j ) di 2,S- 1" Hence d o ) d i_ 2,j 1 + 1. Since d~ 1,j 1 ~ di 2,j  1 "t- 1 by 
(6), this implies that  d 0/> d~ 1,j 1, as required. | 

L e m m a  3 suggests an al ternative way of storing matr ix  (dis): For  each 
diagonal  of (do), it suffices to store informat ion  which tells the points  on 
the diagonal  where the value increases. Formal ly ,  denote  

fkp = the largest index i 

such that  dij = p and d 0 is on diagonal  k. Since all values on diagonal  k are 
~> [kl, values fkp are defined for p = Ikl, Ikl + 1 ..... p . . . .  where Pmax is the 
largest value on diagonal  k. In addition, it is convenient  to define 

fk.lkl 1 = [ k [ - - 1 ,  if k < 0 ;  

= - 1, otherwise, 
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FIG, 4. 

x y x z y 

0 1 2 3 4 5 

1 1 1 2 3 4 

2 1 2 1 2 3 

3 2 2 2 2 3 

4 3 3 3 2 3 

Matrix (do) for strings yxxz and xyxzy. 

and f,p = -oo  for the remaining fkp possibly referred to in algorithms to be 
presented. 

An example matrix (d~/) for strings yxxz and xyxzy is shown in Fig. 4. 
Since diagonal 1 of this matrix has values 1, 1, 1, 2, 3, we have that 
L _ I  = - o o , f j 0 =  -1 ,  L~ = 2, f l 2 =  3, f ~  =4.  

Recovering each value d u from (fkp) is simple: Find p such that 
fk, p _ l < i ~ f k p ,  where k = j - i .  Then du= p. In particular, din,= 
D(at. . .  am, b~ "b,) equals the unique p so that 

fn_m,p=m. (7) 

Clearly, storing matrix (du) as (fkp) does not increase space requirement. 
Rather, considerable saving is sometimes possible. For example, if the 
diagonal band evaluated by algorithm test1 of Section 2 is represented with 
fkp's, the storage needed reduces to O(t.s), where s = D(al '"am,  bl""bn). 
This further implies that the version of algorithm (5) which computes also 
the editing sequence can be made to work in space O(s2). More important 
is, however, that by adopting representation (fkp) the edit distance can be 
computed in time O(s. rain(m, n)) with a direct algorithm which avoids the 
reduction in (5) to tests D ( a l ' " a  m, b l ' "  b,,)<, t. This decreases the con- 
stant factor in the time bound. 

To develop this algorithm we need first an algorithm for computing (fkp) 
directly without using du's as intermediate results. Assume that p/> Ik[ and 
that for all k', fk,,p 1 has been correctly computed. Then the following 
algorithm (8) computes fkp: 

1. t :=max( fk ,  p l + l ,  f k _ t , p _ l , f k + t , p  1 + 1 ) ;  

2. WHILE a t + l = b , + l + k  DO t : = t + l  ENDWHILE;  (8) 

3. fkp : = I F  t > m  or t + k > n  THEN undefined ELSE t. 

To prove (8) correct, note that by the induction hypothesis, the block of 
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entries with value p - 1  reaches in matrix (du) row f~,p_ 1 on diagonal k, 
row f k - l ,p  1 on diagonal k - 1 ,  and row f~+l,p 1 on diagonal k +  1. 
Denote by t' the value of t after step 1, that is, t' =max(fk,  p 1+ 1, 
f ~ - l , p - l , f k + l , p  1+ 1), and by t" the correct value of fk  p. We show that 
t' ~< t" and that 

ac+l=bc+l+k,. . . ,a, , ,=br,+k, at, ,+l~br,+k+l. (9) 

This will show (8) correct since these conditions imply that the value of t 
equals t" after step 2. 

Assume, for example, that t '=fk+l,p 1-}-1. Hence dr_i, r l+(k+1/= 
p- -1 .  Since t'>>.fk, p _ l + l  and t'>~f, l,p 1, we havedc  1,r l+k>~P - 1  
and dt, c+~k_l)>~p--1, and also dc,c+k>~p. Then by (6), dc.c+k=p, and 
by Lemma 3, t'~< t", as required. To prove (9), notice first that from the 
definition of t" it follows d,,r + k = P for r = t', .... t", and de, + 1.c, + 1 + k = P + 1 
(or t " + l > m  or t " + l + k > n ) .  Since t '=max(fk ,  p 1+1,  fk-~,p-~,  
fk+l,p ~+ 1), the elements above and to the left of dr, r+ k must be ~>p for 
r = t ' + l  ..... t " + l ,  that is, dr_l,r+k>~p and d . . . .  l+k~>p. Then, by (6), 
dr,,+ k can be equal to p only if ar=br+k, for r= t' + l,..., t", and 
d,.+Lc,+l+k can be equal to p +  1 only if a,.+lff:br,+l+k. So (9) is true 
and the proof is complete. 

To compute edit distance s = D(a~ "" a,,,, b~ "" b,), we must find p such 
that (7) is true. This can be done with the next algorithm which calls 
algorithm (8) to compute (fkp), column by column: 

1. p := - 1 ;  

2. WHILE f ,_m,p ~ m DO 

3. p : = p + l ;  

4. F O R k : = - p ,  - p + l  ..... p D O  (10) 

evaluate f~p with algorithm (8) ENDFOR;  

ENDWHILE;  

5. s :=p.  

Although (10) correctly computes s, it asks algorithm (8) to evaluate many 
entries fkp whose value is actually undefined, because the range of values 
assigned for k in step 4 is too large. There are diagonals - m ,  - m  + 1,..., n 
in matrix (do.). Hence k can be restricted to - m  ~<k~< n. Moreover, each 
diagonal contains at most min(m, n ) +  1 entries. This means, noting how 
fkp is defined, that for a fixed k, fgp may have a nontrivial value only for 
p = Ikl, Ikl + 1 ..... Ikl + min(m, n). Therefore it suffices that for a fixed p, k 
gets values such that [k I=p-min(m,n) , . . . . , p .  Hence k must in s tep4 
satisfy the conditions 

- m ~ k ~ n  
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and 

(-p<~k<~ - p  + min(m, n) or p - m i n ( m ,  n)<~k<~p). 

This can further be simplified such that we arrive at algorithm (11): 

1. p : =  --1; 

2. r :=p- -min(m,  n); 

3. WHILE f n  -- m,p ~ m DO 

4. p : = p + l ;  

5. r : = r + l ;  

6. IF r ~< 0 THEN FOR k := -p ,  - p  + 1,..., p DO 
evaluate f~p with algorithm (8) ENDFOR 

ELSE FOR k : = m a x ( - m ,  -p),..., - r ,  r,..., rain(n, p) DO 
evaluate fkp with algorithm (8) ENDFOR 

ENDIF; 
ENDWHILE;  

7. s :=p .  
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(11) 

To analyze the time requirement of algorithm (t l), let again 
s= D(al "" am, bl "'" b,7). The values assigned for k in step 6 are in the 
range - s  ..... s and each value can occur for at most min(m, n) + 1 different 
values p, or actually, for at most min(s, m, n) + 1 different values p since 
0 ~ p ~ s in step 6. Hence (11) evaluates O(s" min(s, m, n)) entries f~p and 
therefore runs in time O(s.min(s, m, n)) without counting the time needed 
by the calls of algorithm (8) in step 6. The running time of (8) is dominated 
by the time of the while-loop in step 2. Obviously, test a~+~ =b,+~+k is 
performed for a fixed k at most once for each t. Therefore, for a fixed k 
again, the total time for step 2 during different calls of (8) is O(min(m, n)). 
There are O(s) different values k, hence the total time for the calls of 
algorithm (8 ) in  algorithm (11)is O(s.min(m, n)). So (11) runs in total 
time O(s. min(m, n)). 

As regards space, the above analysis shows that algorithm (11) evaluates 
O(s. min(s, m, n)) different entries fkp. Hence O(s.min(s, m, n)) space suf- 
fices. 

The editing operation sequence giving the edit distance s can be found 
from the stored values fkp using a procedure that is analogous to the 
method used with the basic algorithm. In light of algorithm (8), one must 
now find a maximizing path leading to fn . . . .  . For example, the following 
procedure computes the editing operation sequence in time O(s). 
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1. p : = s ;  

2. k : = n - m ;  

3. WHILE p > 0  DO 

4. t := max(fk, p_ l + l, f k_  l,p_ l, fk + l,p_ l + l ); 

5. Let i, 1 ~< i ~< 3, be such that the/ th of expressions 
fk, p-1 + 1, f k - l , p -1 ,  fk+l,p 1 + 1 has the largest value; 

6. IF i =  1 THEN 
announce edit operation "change a, to bt+ k" 

7. ELSIF i =  2 THEN (12) 
announce edit operation "insert bt+g between at and a,+ 1"; 
k : = k - 1  

8. ELSE 
announce edit operation "delete aT; 
k : = k + l  

ENDIF; 

9. p : - - - p - l ;  
ENDWHILE. 

If the editing sequence is not needed, step 1 of algorithm (8) reveals that 
only values fk .p- i  for all k are needed to evaluate values fkp. Since Ikl ~< s,. 
the space requirement of (11) reduces to O(s). This further reduces to 
O(min(s, m, n)) since--as already noted--the same value p -  1 can appear 
on at most 2. min(m, n) + 1 different diagonals of (do), which means that 
values fk, p-1 are nontrivial and need to be stored for at most 
2"min(m, n ) +  1 different k. So we have completed a proof of the next 
theorem. 

THEOREM 3. Let the cost of  each editing operation be equal to 1. Then 
the edit distance s=D(a l  ""am, b~'"bn)  as well as the corresponding 
sequence of editing steps can be computed in time O(s'min(m, n)) and in 
space O(s. rain(s, m, n)). I f  the editing sequence is not needed, the space 
requirement can be reduced to O(min(s, m, n)). 

The only explicit difference between Theorem 3 and Theorem 2 is the 
smaller space bound O(s 'min(s ,m,n) )  of Theorem3. It should be 
emphasized, however, that algorithm (11) is simpler than algorithm (5). 
Hence the constant factors in Theorem 3 are smaller than in Theoren5 2. 

Also worth noting is that in the best case the running time of (11) can be 
significantly smaller than O(s'min(m, n)). This is in contrast with the basic 
algorithm of Section 1 which always needs time O(mn), and with algorithm 
(5) which always needs time O(s.min(m, n)). At its best, algorithm (11) 
needs time O(s 2 + min(m, n)). For example, the time requirement is of this 
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form for strings (xry)" and (xrz)" whose edit distance is s. Algorithm (11) 
computes s in time O(s2+ sr). 

Consider then the problem of testing for a given threshold value t, 
whether the edit distance of two strings is at most t. Clearly, this can be 
accomplished with a slightly modified algorithm (11): If p grows larger 
than t, announce that the edit distance is larger than t. Otherwise it is at 
most t. The method needs time O(t. min(m, n)) and space O(min(t, m, n)). 

Observe that Lemma 3 and hence Theorem 3 (and also Theorem2)  
remain true if we reduce the editing operation set. For example, if insertion 
and deletion are the only operations, the correspondingly modified 
algorithm is as (11) but in the maximization step of algorithm (8) it suffices 
now to take the maximum of the second expression and the third 
expression. 

When the cost of each individual editing step equals 1, computing the 
edit distance has an important application to finding the longest common 
subsequence (LCS) of two strings, as noted by Wagner and Fischer (1974). 
In fact, let s' be the edit distance of al "'" am and b 1 " "  b n when the allowed 
editing operations include only deletion and insertion. Then the length of 
the LCS for these strings is r =  (m+n-s ' ) /2 .  As already explained, a 
modified algorithm (11) computes s' from which we get r. The actual LCS 
can be found by performing on a ~ ' " a m  all deletions in the editing 
sequence that gives s'. For strings of approximately equal lengths, this 
method of computing the LCS seems as efficient as the recent method by 
Nakatsu, Kambayashi, and Yajima (1982). For example, in the case m = n 
their algorithm takes time O(m" (m-r ) ) .  This equals the time bound 
O(s'. m) of the modified algorithm (11), since s' = 2m - 2r. 

Finally we consider possible generalizations of Lemma 3. One might sus- 
pect that Lemma 3 could be generalized to say that for all cost functions 6 
satisfying (1) and (2), the value of d~j monotonically increases on every 
diagonal of (du). That this is not the case, can be seen by the following 
example. Let the costs for the editing operations be 

6(x, y ) = 6 ( y , x ) =  1 

b(o, x )  = 6(x,  o) = 3 

b(O, y)=6(y ,  O)= 2. 

Then for strings A = B =  xy, we obtain the matrix in Fig. 5, where the 
values on diagonals - 1  and 1 are not monotonically increasing. 

Assume, however, that the cost function 6 satisfies (1) and (2), and that 
all deletions have the same cost and all insertions have the same cost. Thus 
for some constants cl and c 2 and for all a#e ,  6(a-+e)=c I and 
6(e ~ a) = c2. Then it is easy to modify the proof of Lemma 3 to show that 
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x y 

0 3 5 

x 3 0 2 

y 5 2 0 

FIG. 5. M a t r i x  (do.) for s t r ings A = B = xy. 

di-  a j -  1 ~< do for all i, j. Hence the value of d 0 increases along the diagonals 
of (do), but the increments are not necessarily equal to 1. Representation 
(fkp) cannot be used directly for (dij). However, denote by G(r)  the rth dif- 
ferent value (in increasing order) occurring on diagonal k and by fk(r)  the 
largest row index i such that d~,i+k = G(r). With these structures one can 
encode (du) in algorithm (5). This complicates the procedure but improves 
the space efficiency in some cases. 

4. EXTENSIONS 

The problem of computing the edit distance can be extended in several 
directions. For  example, editing operation sets that are larger than the set 
considered so far may be relevant in some applications. To generally 
analyze such extensions, we say that anedi l ing operation set is any finite set 
E c N * x N *  of ordered pairs ( x , y ) ,  usually written as x - * y ,  over 
alphabet N such that x ¢  y. Element x--* y in E represents an editing 
operation that replaces an occurrence of x in a string in S*  by y. The 
editing operation set of Section 1 can be represented as 

Eo= {x--* y lx ,  y E S u  {e}, x C y } .  

A cost function f gives the cost 3(x ~ y) > 0 for each editing operation. We 
want again to determine a sequence of editing operations in E that convert 
a string A = a~ ... a,~ into a string B = b~--. bn so that the sum of individual 
costs of editing operations is minimized. The minimum cost is denoted by 
DE,~(A, B). Hence our previous notation D(A,  B) is an abbreviation for 
DE0,~(A, B). If it is not possible to transform A into B with the operations 
in E, we set DE.~(A, B) = 0o. 

For an arbitrary E, recurrence (3) defining matrix (d/j) gets the form 

doo = 0 (13) 

dg= min(IF a i = bj T H E N  di_ 1,j- 1 ELSE oo, 

d,_~,_r+,~(a~ k+l"'a~bj ,+l"'bjl 
ai_ k + 1"'" ai -* bj_~ + 1 is in E). 



APPROXIMATE STRING MATCHING 115 

However, dmn computed from (13) is not equal to De,~(A, B) for all E and 
6. As mentioned in Section 1, a sufficient condition for equality is that no 
two steps are chained together in some sequence of editing steps giving 
D E,6(A , B). 

To make this precise we define restricted editing sequences from A to B 
by specifying the active part for each intermediate string derived. At the 
beginning the whole A is active. Suppose then that we have arrived at an 
intermediate string uv with active part v. Let x ~ y in E be an editing 
operation such that x occurs in the active part, that is, v can be written as 
VlXV2 for some (possibly empty) strings v 1 and v 2. Then an editing step 
that replaces x by y is an allowed operation, and v2 is the active part of the 
new intermediate string uv~ yv2 obtained. If A produces B in this way, there 
is a restricted editing sequence from A to B. The minimum total cost of such 
sequences is denoted by D'e,~(A, B); if there are no restricted sequences 
from A to B, we set D'e,~(A, B ) =  ~ .  In some applications in error correc- 
tion and in information retrieval, the restricted edit distance is a natural 
measure of similarity between different strings. 

Obviously, D'E,~(A, B) is always >~DE,~(A, B). Moreover, both distances 
coincide for editing operation set E o when the cost function satisfies (1). 
While De,6 is not effectively computable, D~:,6 can be evaluated from (13), 
as can be easily shown by induction: 

THEOREM 4. Let matrix (do) be defined by (13). Then do= 
D'E,~(al "" " ai, bl "'" bj). In particular, dmn = D'e,~(a, ""  am, bl "'" bn). 

As in Section 2, recurrence (13) defines a dependency graph over (dij). 
Lemma 1 is true also for this graph. To generalize Lemma 2, let 

A e , ~ = m i n ( 6 ( x ~ y ) / [ p [  [ x ~  y is in E, p =  I x [ - [ y [  :~0). 

(Here [x[, ]y[ denote the length of strings x, y.) Then, as in the proof of 
Lemma 2, one sees that if there is a directed path from d U to dcj, in the 
dependency graph defined by (13), then diT, ~> d,7 + IJ' - i' - ( j -  i)[ • AE, 6. 
This is because a path from d~ to d~7, must cross at least ] j ' - i ' - ( j - i ) [  
diagonals, and the cost of crossing a diagonal is at least A E, 6. Hence 
Lemma 2 as well as Corollary 1 are true with A replaced by A e, 6. Further- 
more, procedures test1 and test2 of Section 2, with every occurrence of A 
replaced by AE, 6 and every occurrence of (3) replaced by (13), correctly 
decide whether D'E,6(A, B) <<, t, and algorithm (5), after the same 
modification, correctly computes the restricted edit distance D'E,~(A, B). 
The modification does not change the complexity analysis of the 
algorithms. Hence the next generalization of Theorems 1 and 2 is true. 

THEOREM 5. There is an algorithm which, given strings a l . . . a  m and 
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b l " ' b n  and a number t, tests in time O ( t ' m i n ( m , n ) )  and in space 
O(min(t, m, n ) ) whether or not restricted edit distance 
s '=D'e ,~(a~ '"am,  b ~ " ' b ~ )  is at most t. The value s' as well as the 
corresponding sequence o f  restricted editing steps can be computed in time 
and space O(s"  min(m, n)). I f  the editing sequence is not needed, the space 
requirement can be reduced to O(min(s', m, n)). 

So D' e,~ can be evaluated efficiently while we do not consider algorithms 
for evaluating DE~, • Note that the upper bound on DE~, given by D'e,e may 
be useful in some applications. An interesting related question is to charac- 
terize those E and 6 for which DE~ = D' , E , g "  

Next we analyze a particular extension of Eo. Let E ~ = E o u  
{(ab, ba) ] a, b E X ,  a # b } ,  that is, E~ is the set of deletion, insertion, and 
change operations extended with operations that transpose two adjacent 
symbols. Transposition is useful in correcting, e.g., typing errors. A related 
larger operation set was analyzed by Lowrance and Wagner (1975). We 
give a quite natural condition on ~ which implies that De~,~ = D'e~,~. 

THEOREM 6. Let the cost function ~ satisfy (1) and (2) and moreover, let 
3(x --* y)  >>, c~(x' -* y')  for  every editing operation x --* y, x'  ~ y'  in E 1 such 
that Ixy I > ]x'y']. Then DEI,~ = D'el,~. 

Proof  We show that for any editing sequence with operations in E1 
there exists an equivalent but restricted sequence of at most the same cost. 
A simple case analysis shows how to eliminate the first and hence all 
editing steps that do not operate on the active part. We give here only one 
example. 

Let the first step x -* y to be eliminated be a transposition. Hence x = ab 
and y = ba for some characters a, b. In addition, suppose that character a 
in x has been produced by an earlier transposition ac---* ca. So the total 
effect is to convert acb to cba. Now replace ac--* ca and ab ~ ba with 
restricted steps a ~ e and e ~ a which have the same conversion effect but, 
by the assumptions of Theorem 6, at most the same cost. | 

Assume finally, as in Section 3, that the cost function is constant. So 
6(x ~ y ) =  1 for all x ~ y in El.  Then the conditions of Theorem 6 are 
satisfied and we could evaluate DEI,~ with a modified algorithm (5). But 
also Lemma 3 is immediately seen true for E1 with constant cost function. 
Hence a more efficient solution is possible using the algorithms of Sec- 
tion 3. We briefly sketch the modifications necessary. 

An expression that corresponds to transposition must be added to the 
list of expressions in the maximization step of algorithm (8). Therefore the 
following two steps replace step 1 of (8): 
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la. t := fk, p 1+1;  

lb. t:=max(t, fk_l ,p_l , fk+L p l + l ,  IFatat+l=bk+t+lbk+t 
T H E N t + I  ELSE - ~ ) .  

Of course, algorithm (11) must now use (8), as just modified. In algorithm 
(12), step 4 as well as the rest of the algorithm must be expanded to cope 
with steps la and lb. 

5. CONCLUSION 

We developed two versions of an algorithm that in time and in space 
O(s" min(m, n)) computes the edit distance s of two strings of length m and 
n. Both algorithms are easy to implement with small constant factors in the 
complexity bounds. The first algorithm works for arbitrary positive costs of 
individual editing steps. The second algorithm assumes that all steps have 
the constant cost equal to 1. Since s =  O(max(m, n)), the algorithms are 
asymptotically at least as efficient as the well known O(mn) method, while 
for small s they are significantly faster. As a by-product, we derived 
algorithms to test in time O(t" min(m, n)) and in space O(min(t, m, n)) for 
a given threshold value t, whether s ~< t. This kind of a test with a relatively 
small t is needed in applications where one wants to select from a larger set 
of strings all strings whose distance from a given string is at most t. In fact, 
the main stimulus to develops the methods of this paper came from certain 
applications in molecular genetics, where the O(mn) algorithm is 
unnecessarily inefficient since m and n are large and t is small, cf., Peltola et 
al. (1983). 

The derivation of the algorithm was based on a careful analysis of the 
O(mn) method. Similar ideas can possibly be used in improving some other 
dynamic programming or tabulating algorithms. 
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