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ABSTRACT

In this paper we utilize White’s Reality Check bootstrap methodology ~White ~1999!!
to evaluate simple technical trading rules while quantifying the data-snooping bias
and fully adjusting for its effect in the context of the full universe from which the
trading rules were drawn. Hence, for the first time, the paper presents a compre-
hensive test of performance across all technical trading rules examined. We con-
sider the study of Brock, Lakonishok, and LeBaron ~1992!, expand their universe
of 26 trading rules, apply the rules to 100 years of daily data on the Dow Jones
Industrial Average, and determine the effects of data-snooping.

TECHNICAL TRADING RULES HAVE BEEN USED in financial markets for more than a
century. Numerous studies have been performed to determine whether such
rules can be employed to provide superior investing performance.1 By and
large, recent academic literature suggests that technical trading rules are
capable of producing valuable economic signals. In perhaps the most com-
prehensive recent study of technical trading rules using 90 years of daily
stock prices, Brock, Lakonishok, and LeBaron ~1992! ~BLL, hereafter! find
that 26 technical trading rules applied to the Dow Jones Industrial Average
~DJIA! significantly outperform a benchmark of holding cash. Their findings
are especially strong because every one of the trading rules they consider is
capable of beating the benchmark. When taken at face value, these results
indicate either that the stock market is not efficient even in the weak form—a
conclusion which, if found to be robust, will go against most researchers’
prior beliefs—or that risk premia display considerable variation even over
very short periods of time ~i.e., at the daily interval!.

An important issue generally encountered, but rarely directly addressed
when evaluating technical trading rules, is data-snooping. Data-snooping
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occurs when a given set of data is used more than once for purposes of
inference or model selection. When such data reuse occurs, there is always
the possibility that any satisfactory results obtained may simply be due to
chance rather than to any merit inherent in the method yielding the results.
With respect to their choice of technical trading rules, BLL state that “nu-
merous moving average rules can be designed, and some, without a doubt,
will work. However, the dangers of data snooping are immense” ~p. 1736!.
Thus, BLL rightfully acknowledge the effects of data-snooping. They go on to
evaluate their results by fitting several models to the raw data and resam-
pling the residuals to create numerous bootstrap samples. The goal of this
effort is to determine the statistical significance of their findings. However,
as acknowledged by BLL, they are not able “to compute a comprehensive
test across all rules. Such a test would have to take into account the depen-
dencies between results for different rules” ~p. 1743!.2 This task has thus far
eluded researchers.

A main purpose of our paper is to extend and enrich the earlier research
on technical trading rules by applying a novel procedure that permits com-
putation of precisely such a test. Although the bootstrap approach ~intro-
duced by Efron ~1979!! is not new to the evaluation of technical analysis,
White’s ~1999! Reality Check bootstrap methodology adopted in this paper
permits us to correct for the effects of data-snooping in a manner not pre-
viously possible. Thus we are able to evaluate the performance of technical
trading rules in a way that permits us to ascertain whether superior per-
formance is a result of superior economic content, or is simply due to luck.3

The potential impact of data-snooping on the performance of technical trad-
ing rules is recognized early on by Jensen and Bennington ~1970! who refer
to it as “selection bias” and explain it this way: “given enough computer
time, we are sure that we can find a mechanical trading rule which “works”
on a table of random numbers—provided of course that we are allowed to
test the rule on the same table of numbers which we used to discover the
rule” ~p. 470!.

Data-snooping need not be the consequence of a particular researcher’s
efforts.4 It can result from a subtle survivorship bias operating on the
entire universe of technical trading rules that have been considered histor-
ically. Suppose that, over time, investors have experimented with technical
trading rules drawn from a very wide universe—in principle thousands of

2 BLL account for part of the problem associated with data-snooping within the set compris-
ing their 26 trading rules by reporting the average performance of these trading rules. This can
be regarded as the expected performance of a trading rule randomly chosen from their universe,
although it does not measure the performance of the best trading rule.

3 A very early attempt at assessing the best performance of a set of 24 financial forecasting
services through use of a simple Monte Carlo procedure is presented in Cowles ~1933!. We are
grateful to Stephen Brown for bringing our attention to this.

4 Indeed, BLL report that they do not consider a larger set of trading rules than the 26 rules
for which they report results.
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parameterizations of a variety of types of rules. As time progresses, the
rules that happen to perform well historically receive more attention and
are considered “serious contenders” by the investment community, and un-
successful trading rules are more likely to be forgotten.5 After a long sam-
ple period, only a small set of trading rules may be left for consideration,
and these rules’ historical track records will be cited as evidence of their
merits. If enough trading rules are considered over time, some rules are
bound by pure luck, even in a very large sample, to produce superior per-
formance even if they do not genuinely possess predictive power over asset
returns. Of course, inference based solely on the subset of surviving trad-
ing rules may be misleading in this context because it does not account
for the full set of initial trading rules, most of which are likely to have
underperformed.

The effects of such data-snooping, operating over time and across many
investors and researchers, can only be quantified provided that one consid-
ers the performance of the best trading rule in the context of the full uni-
verse of trading rules from which this rule conceivably is chosen. A further
purpose of our study is to address this issue by constructing a universe of
nearly 8,000 parameterizations of trading rules ~see Appendix A! which are
applied to the DJIA over the 100-year period from 1897 through 1996. We
use the same data set as BLL to investigate the potential effects of data-
snooping in their experiment.6 Our results show that, during the 90-year
sample period originally investigated by BLL, 1897–1986, certain trading
rules did indeed outperform the benchmark, even after adjustment is made
for data-snooping. We base our evaluation both on mean returns and on the
Sharpe ratio, which adjusts for total risk.

Since BLL’s study finished in 1986, we benefit from having access to an-
other 10 years of data on the Dow Jones portfolio. We use these data to test
whether their results hold out-of-sample. Interestingly, we find that this is
not the case: The probability that the best-performing trading rule did not
outperform the benchmark during this period is nearly 12 percent, suggest-
ing that, at conventional levels of significance, there is scant evidence that
technical trading rules were of any economic value during the period
1987–1996.

To determine whether transaction costs or short-sale constraints could have
accounted for the apparent historical success of the trading rules studied by
BLL, we also conduct our bootstrap simulation experiment using price data
on the Standard and Poor’s 500 ~S&P 500! index futures. Transaction costs
are easy to control in trading the futures contract and it also would not have
been a problem to take a short position in this contract. Over the 13-year
period since the futures contract started trading in 1984, we find no evi-
dence that the trading rules outperform the benchmark.

5 See also Lo and MacKinlay ~1990! for a similar point.
6 We thank Blake LeBaron for providing us with the data set used in the BLL study.
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Although the current paper adopts a bootstrap methodology to evaluate
the performance of technical trading rules, the methodology applied in this
paper also has a wide range of other applications. This is important be-
cause the dangers from data-snooping emerge in many areas of finance
and economics, such as in the predictability of stock returns ~as addressed,
e.g., by Foster, Smith, and Whaley ~1997!!, modeling of exchange and in-
terest rates, identification of factors and “anomalies” in cross-sectional tests
of asset pricing models ~Lo and MacKinlay ~1990!!, and other exercises in
which theory does not suggest the exact identity and functional form of the
model to be tested. Thus, the chosen model is likely to be data-dependent
and a genuinely meaningful out-of-sample experiment is difficult to carry
out.

The plan of the paper is as follows. Section I introduces the bootstrap
data-snooping methodology, Section II reviews the existing evidence on tech-
nical trading rules, and Section III introduces the universe of trading rules
that we consider in the empirical analysis. Section IV presents our bootstrap
results for the data set studied by BLL, and Section V conducts the out-of-
sample experiment. Finally, Section VI discusses in more detail the economic
interpretation of our findings.

I. The Bootstrap Snooper

Data-snooping biases are widely recognized to be a very significant prob-
lem in financial studies. They have been quantified by Lo and MacKinlay
~1990!,7 described in mainstream books on investing ~O’Shaughnessy ~1997!,
p. 24! and forecasting ~Diebold ~1998!, p. 87!, and have recently been ad-
dressed in the popular press ~Business Week, Coy ~1997!!: “For example, @Da-
vid Leinweber, managing director of First Quadrant, LP, in Pasadena,
California# sifted through a United Nations CD-ROM and discovered that
historically, the single best prediction of the Standard & Poor’s 500 stock
index was butter production in Bangladesh.” Our purpose in this study is to
determine whether technical trading rules have genuine predictive ability or
fall into the category of “butter production in Bangladesh.” The apparatus
used to accomplish this is the Reality Check bootstrap methodology which
we brief ly describe.

Building on work of Diebold and Mariano ~1995! and West ~1996!, White
~1999! provides a procedure to test whether a given model has predictive
superiority over a benchmark model after accounting for the effects of data-
snooping. The idea is to evaluate the distribution of a suitable performance

7 Lo and MacKinlay ~1990! quantify the data-snooping bias in cross-sectional tests of asset
pricing models where the firm characteristic used to sort stocks into portfolios is correlated
with the estimation error of the performance measure.
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measure giving consideration to the full set of models that led to the best-
performing trading rule. The test procedure is based on the l 3 1 perfor-
mance statistic:

Nf 5 n21 (
t5R

T

Zft11, ~1!

where l is the number of technical trading rules, n is the number of predic-
tion periods indexed from R through T so that T 5 R 1 n 2 1, Zft11 5 f ~Zt , Zbt!
is the observed performance measure for period t 1 1, and Zbt is a vector of
estimated parameters. Generally, Z consists of a vector of dependent vari-
ables and predictor variables consistent with Diebold and Mariano’s ~1995!
or West’s ~1996! assumptions. For convenience, we reproduce key results of
White ~1999! in Appendix B.

In our application there are no estimated parameters. Instead, the various
parameterizations of the trading rules ~bk, k 5 1, . . . , l ! directly generate re-
turns that are then used to measure performance. In our full sample of the
DJIA, n is set equal to 27,069, representing nearly 100 years of daily pre-
dictions. R is set equal to 251, accommodating the technical trading rules
that require 250 days of previous data in order to provide a trading signal.
For the purpose of assessing technical trading rules, each of which is in-
dexed by a subscript k, we follow the literature in choosing the following
form for fk, t11:

fk, t11 5 ln@1 1 yt11 Sk~xt , bk!# 2 ln@1 1 yt11 S0~xt , b0!# , k 5 1, . . . , l, ~2!

where

xt 5 $Xt2i %i50
R , ~3!

Xt is the original price series ~the DJIA and S&P 500 Futures, in our case!,
yt11 5 ~Xt11 2 Xt!0Xt , and Sk~{! and S0~{! are “signal” functions that convert
the sequence of price index information xt into market positions for system
parameters bk and b0.8 The signal functions have a range of three values: 1
represents a long position, 0 represents a neutral position ~i.e., out of the
market!, and 21 represents a short position. As discussed below, we will
utilize an extension of this setup to evaluate the trading rules with the Sharpe
ratio ~relative to a risk-free rate! in addition to mean returns. The natural

8 Note that the best trading rule, identified as the one with the highest average continuously
compounded rate of return, will also be the optimal trading rule for a risk-averse investor with
logarithmic utility defined over terminal wealth.
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null hypothesis to test when assessing whether there exists a superior tech-
nical trading rule is that the performance of the best technical trading rule
is no better than the performance of the benchmark. In other words,

H0 : max
k51, . . . , l

$E~ fk!% # 0. ~4!

Rejection of this null hypothesis will lead us to believe that the best tech-
nical trading rule achieves performance superior to the benchmark.

White ~1999! shows that this null hypothesis can be evaluated by applying
the stationary bootstrap of Politis and Romano ~1994! to the observed values
of fk, t . Appendix C explains the details of our application of the bootstrap as
well as our choice of parameters in the block resampling procedure. Resam-
pling the returns from the trading rules yields B bootstrapped values of Nfk,
denoted as Nfk, i

* , where i indexes the B bootstrap samples. We set B 5 500 and
then construct the following statistics:

QVl 5 max
k51, . . . , l

$!n~ Nfk!%, ~5!

QVl, i 5 max
k51, . . . , l

$!n~ Nfk, i
* 2 Nfk!%, i 5 1, . . . , B. ~6!

We compare QVl to the quantiles of QVl, i
* to obtain White’s Reality Check

p-value for the null hypothesis. By employing the maximum value over all
the l trading rules, the Reality Check p-value incorporates the effects of
data-snooping from the search over the l rules.

This approach may also be modified to evaluate forecasts based on the
Sharpe ratio which measures the average excess return per unit of total
risk. In this case we seek to test the null hypothesis

H0 : max
k51, . . . , l

$g~E~hk!!% # g~E~h0!!, ~7!

where h is a 3 3 1 vector with components given by

hk, t11
1 5 yt11 Sk~xt , bk!, ~8!

hk, t11
2 5 ~ yt11 Sk~xt , bk!!2, ~9!

hk, t11
3 5 rt11

f , ~10!
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where rt11
f is the risk-free interest rate at time t 1 1 and the form of g~{! is

given by

g~E~hk, t11!! 5
E~hk, t11

1 ! 2 E~hk, t11
3 !

%E~hk, t11
2 ! 2 ~E~hk, t11

1 !!2
. ~11!

The expectations are evaluated with arithmetic averages. Relevant sample
statistics are

Nfk 5 g~ Nhk! 2 g~ Nh0!, ~12!

where Nh0 and Nhk are averages computed over the prediction sample for the
benchmark model and the kth trading rule, respectively. That is,

Nhk 5 n21 (
t5R

T

hk, t11, k 5 0, . . . , l. ~13!

The Politis and Romano ~1994! bootstrap procedure is applied to yield B
bootstrapped values of Nfk, denoted as Nfk, i

* , where

Nfk, i
* 5 g~ Nhk, i

* ! 2 g~ Nh0, i
* !, i 5 1, . . . , B, ~14!

Nhk, i
* 5 n21 (

t5R

T

hk, t11, i
* , i 5 1, . . . , B. ~15!

We can now apply White’s Reality Check methods to obtain the p-value for
the Sharpe ratio performance criterion.

II. Technical Trading Rule Performance and Data-Snooping Biases

After more than a century of experience with technical trading rules, these
rules are still widely used to forecast asset prices. Taylor ~1992! conducts a
survey of chief foreign-exchange dealers based in London and finds that in
excess of 90 percent of respondents place some weight on technical analysis
when predicting future returns. Unsurprisingly, the wide use of technical
analysis in the finance industry has resulted in several academic studies to
determine its value.

Levich and Thomas ~1993! research simple moving average and filter trad-
ing rules in the foreign currency futures market. They apply a bootstrap
approach to the raw returns on the futures, rather than fitting a model to
the data and resampling the residuals. Their research suggests that some
technical rules may be profitable. Evidence in favor of technical analysis is
also reported in Osler and Chang ~1995! who use bootstrap procedures to

Data-Snooping and Technical Trading Rule Performance 1653



examine the head and shoulders charting pattern in foreign exchange mar-
kets. However, Levich and Thomas note the dangers of data-snooping and
suggest that “Other filter sizes and moving average lengths along with other
technical models could, of course, be analyzed. Data-mining exercises of this
sort must be avoided” ~p. 458!. With the development of White’s Reality
Check, it is no longer necessary to avoid such data mining exercises, as we
can now account for their effects.

Our study uses BLL as a springboard for analysis. Their study utilizes the
daily closing price of the DJIA from 1897 to 1986 to evaluate 26 technical trad-
ing rules. These rules include the simple moving average, fixed moving aver-
age, and trading range break. BLL find that these rules provide superior
performance. One drawback to their analysis is that they are unable to ac-
count for data-snooping biases. In their words, “the possibility that various spu-
rious patterns were uncovered by technical analysis cannot be dismissed.
Although a complete remedy for data-snooping biases does not exist, we mit-
igate this problem: ~1! by reporting results from all our trading strategies, ~2!
by utilizing a very long data series, the Dow Jones index from 1897 to 1986,
and ~3! emphasizing the robustness of results across various nonoverlapping
subperiods for statistical inference” ~page 1733!. As explained in the previous
section, our method provides just such a data-snooping remedy.

Three conclusions can be drawn from these previous studies. First, there
appears to be evidence that technical trading rules are capable of producing
superior performance. Second, this evidence is tempered by the widely rec-
ognized importance of data-snooping biases when evaluating the empirical
results. Third, the preferred way to handle data-snooping appears to be to
focus exclusively on the performance of a small subset of trading rules in
order not to fall victim to data-snooping biases. Nevertheless, as mentioned
in the introduction, there are reasons to believe that such a strategy may
not work in practice. Technical trading rules that historically have been suc-
cessful are also the ones most likely to catch the attention of researchers
because they are the ones promoted by textbooks and the financial press.
Hence, even though individual researchers may act prudently and do not
experiment extensively across trading rules, the financial community may
effectively have acted as such a “filter,” necessitating a consideration in prin-
ciple of all trading rules that have been considered by investors.

III. Universe of Trading Rules

To conduct our bootstrap data-snooping analysis, we first need to specify
an appropriate universe of trading rules from which the current popular
rules conceivably may have been drawn. The magnitude of data-snooping
effects on the assessment of the performance of the best trading rule is de-
termined by the dependence between all the trading rules’ payoffs, so the
design of the universe from which the trading rules are drawn is crucial to
the experiment. We consider a very large number ~7,846! of trading rules
drawn from a wide variety of rule specifications. To be considered in our
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universe, a trading rule must have been in use in a substantial part of the
sample period. This requirement is important for the economic interpreta-
tion of our results. Only if the trading rules under consideration are known
during the sample would the existence of outperforming trading rules seem
to have consequences for weak-form market efficiency or variations in ex
ante risk premia.9 For this reason, we make a point of referring to sources
that quote the use of the various trading rules under consideration.

The trading rules employed in this paper are drawn from previous academic
studies and the technical analysis literature. Included are filter rules, moving
averages, support and resistance, channel breakouts, and on-balance volume
averages. We brief ly describe each of these types of rules. Appendix A provides
the parameterizations of the 7,846 trading rules used to create the complete
universe. Few of the original sources for the technical trading rules report their
preferred choice of parameter values, so we simply choose a wide range of pa-
rameterizations to span the sorts of models investors may have considered
through time. Of course, our list of trading rules does not completely exhaust
the set of rules that were considered historically. Nevertheless, our list of rules
is vastly larger than those compiled in previous studies, and we include the
most important types of trading rules that can be parsimoniously parameter-
ized and that do not rely on “subjective” judgments.

The notation used in the following description corresponds to that on trad-
ing rule parameters used in Appendix A.

A. Filter Rules

Filter rules are used in Alexander ~1961! to assess the efficiency of stock
price movements. Fama and Blume ~1966! explain the standard filter rule:

An x per cent filter is defined as follows: If the daily closing price of a
particular security moves up at least x per cent, buy and hold the se-
curity until its price moves down at least x per cent from a subsequent
high, at which time simultaneously sell and go short. The short position
is maintained until the daily closing price rises at least x per cent above
a subsequent low at which time one covers and buys. Moves less than x
per cent in either direction are ignored. ~p. 227!

The first item of consideration is how to define subsequent lows and highs.
We will do this in two ways. As the above excerpt suggests, a subsequent
high is the highest closing price achieved while holding a particular long
position. Likewise, a subsequent low is the lowest closing price achieved
while holding a particular short position. Alternatively, a low ~high! can be

9 Suppose that some technical trading rules can be found that unambiguously outperform
the benchmark over the sample period, but that these are based on technology ~e.g., neural
networks! that only became available after the end of the sample. Since the technique used was
not available to investors during the sample period, we do not believe that such evidence would
contradict weak-form market efficiency.
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defined as the most recent closing price that is less ~greater! than the e
previous closing prices. Next, we will expand the universe of filter rules by
allowing a neutral position to be imposed. This is accomplished by liquidat-
ing a long position when the price decreases y percent from the previous
high, and covering a short position when the price increases y percent from
the previous low. Following BLL, we also consider holding a given long or
short position for a prespecified number of days, c, effectively ignoring all
other signals generated during that time.

B. Moving Averages

Moving average cross-over rules, highlighted in BLL, are among the most
popular and common trading rules discussed in the technical analysis liter-
ature. The standard moving average rule, which utilizes the price line and
the moving average of price, generates signals as explained in Gartley ~1935!:

In an uptrend, long commitments are retained as long as the price trend
remains above the moving average. Thus, when the price trend reaches
a top, and turns downward, the downside penetration of the moving
average is regarded as a sell signal. . . . Similarly, in a downtrend, short
positions are held as long as the price trend remains below the moving
average. Thus, when the price trend reaches a bottom, and turns up-
ward, the upside penetration of the moving average is regarded as a buy
signal. ~p. 256!

There are numerous variations and modifications of this rule. We examine
several of these. For example, more than one moving average ~MA! can be
used to generate trading signals. Buy and sell signals can be generated by
crossovers of a slow moving average by a fast moving average, where a slow
MA is calculated over a greater number of days than the fast MA.10

There are two types of “filters” we impose on the moving average rules.
The filters are said to assist in filtering out false trading signals ~i.e., those
signals that would result in losses!. The fixed percentage band filter re-
quires the buy or sell signal to exceed the moving average by a fixed multi-
plicative amount, b. The time delay filter requires the buy or sell signal to
remain valid for a prespecified number of days, d, before action is taken.
Note that only one filter is imposed at a given time. Once again, we consider
holding a given long or short position for a prespecified number of days, c.

C. Support and Resistance

The notion of support and resistance is discussed as early as in Wyckoff
~1910! and is tested in BLL under the title of “trading range break.” A simple
trading rule based on the notion of support and resistance ~S&R! is to buy

10 The moving average for a particular day is calculated as the arithmetic average of prices
over the previous n days, including the current day. Thus, a fast moving average has a smaller
value of n than a slow moving average.
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when the closing price exceeds the maximum price over the previous n days,
and sell when the closing price is less than the minimum price over the
previous n days. Rather than base the rules on the maximum ~minimum!
over a prespecified range of days, the S&R trading rules can also be based
on an alternate definition of local extrema. That is, define a minimum ~max-
imum! to be the most recent closing price that is less ~greater! than the e
previous closing prices. As with the moving average rules, a fixed percentage
band filter, b, and a time delay filter, d, can be included. Also, positions can
be held for a prespecified number of days, c.

D. Channel Breakouts

A channel ~sometimes referred to as a trading range! can be said to occur
when the high over the previous n days is within x percent of the low over
the previous n days, not including the current price. Channels have their
origin in the “line” of Dow Theory which was set forth by Charles Dow around
the turn of the century.11 The rules we develop for testing the channel break-
out are to buy when the closing price exceeds the channel, and to sell when
the price moves below the channel. Long and short positions are held for a
fixed number of days, c. Additionally, a fixed percentage band, b, can be
applied to the channel as a filter.

E. On-Balance Volume Averages

Technical analysts often rely on volume of transactions data to assist in
their market-timing efforts. Although volume is generally used as a second-
ary tool, we include a volume-based indicator trading rule in our universe of
rules. The on-balance volume ~OBV! indicator, popularized in Granville ~1963!,
is calculated by keeping a running total of the indicator each day and adding
the entire amount of daily volume when the closing price increases, and
subtracting the daily volume when the closing price decreases. We then ap-
ply a moving average of n days to the OBV indicator, as suggested in Gartley
~1935!. The OBV trading rules employed are the same as for the moving
average trading rules, except in this case the value of interest is the OBV
indicator rather than price.

F. Benchmark

Following BLL, our benchmark trading rule for the mean return perfor-
mance measure is the “null” system, which is always out of the market.
Consequently, S0 is always zero. An alternative interpretation, also empha-
sized by BLL ~p. 1741!, is to regard a long position in the DJIA as the bench-
mark and superimpose the trading signals on this market index. According
to this second interpretation a buy signal translates into borrowing money
at the risk-free interest rate and doubling the investment in the stock index,
a “neutral” signal translates into simply holding the stock index, and a sell
signal translates into a zero position in the stock index ~i.e., out of the market!.

11 Hamilton ~1922! and Rhea ~1932! explain the Dow line in detail.
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In the case of the Sharpe ratio criterion, we follow standard practice and
compute this measure relative to the benchmark of a risk-free rate. This
also means that trading rules earn the risk-free rate on days where a neu-
tral signal is generated.

G. Span of the Trading Rules

An important question is whether or not our full universe of trading rules
spans a space significantly larger than that spanned by the 26 BLL rules. To
investigate this issue, we form the covariance matrix of returns for the BLL
universe of trading rules, which is a 26 3 26 matrix. Also, we randomly
select 474 rules from the full universe and add these to the 26 BLL rules for
a total of 500 rules, and then form the covariance matrix of returns for the
500 rules. This provides a 500 3 500 covariance matrix.12 Applying principal
components analysis to both of the matrices yields their respective sets of
eigenvalues. The greater is the number of nonzero eigenvalues, the larger is
the effective span of the trading rules, so we can address this question by
comparing the eigenvalues of the two matrices.

Figure 1 provides the results from this exercise in the form of a “scree”
diagram plotting the eigenvalues ~sorted in descending order! along the hor-
izontal axis. The 10 largest eigenvalues are plotted in Panel A of Figure 1,
the next 190 eigenvalues are plotted in Panel B, thereby exhibiting the 200
largest eigenvalues. Of course, the covariance matrix for the BLL universe
only has 26 eigenvalues.

The figure suggests that the covariance matrix of returns for the full uni-
verse has substantially more nonzero eigenvalues than the matrix for the
BLL universe. For example, the BLL universe eigenvalues drop below 1.0 3
1025 after only 11 eigenvalues. The random sample of the full universe, on
the other hand, has 196 eigenvalues above 1.0 3 1025. This experiment is
performed numerous times with different random samples of the full uni-
verse of trading rules. The qualitative results do not change. Thus we can be
assured that our universe of 7,846 trading rules does indeed span a sub-
stantially larger space than the original 26 BLL rules. It is important that
the span of the set of trading rules included in our universe is sufficiently
large because the data-snooping adjustment only accounts for snooping within
the space spanned by the included rules.

IV. Empirical Results

The trading results from the DJIA are reported for the 90 years and four
subperiods used by BLL, as well as for the entire 100-year full sample and
the 10 years since the BLL study.13 The S&P 500 Futures results are re-
ported for the entire available sample. The sample periods are:

12 A subsample of the full universe of 7,846 trading rules is used due to computational ca-
pacity constraints.

13 We refer to Table I in BLL for a description of the basic statistical properties of the data
set.
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In-Sample
Subperiod 1: January 1897–December 1914
Subperiod 2: January 1915–December 1938
Subperiod 3: January 1939–June 1962
Subperiod 4: July 1962–December 1986

Out-of-Sample
Subperiod 5: January 1987–December 1996
S&P 500 Futures: January 1984–December 1996

For each sample period, Table I reports the historically best-performing trad-
ing rule, chosen according to the mean return criterion. Two trading rule
universes are used: the BLL universe with 26 rules and our full universe
with 7,846 rules. Table II reports results when the best-performing trading
rule is chosen according to the Sharpe ratio criterion.

One would expect that the best-performing trading rule in the full uni-
verse would be different from the best performer in the much smaller and
more restricted BLL universe. Nonetheless, it is interesting to notice the
very different types of trading rules that are identified as optimal perform-
ers in the full universe. The BLL study identifies trading rules based on long
moving averages ~50-, 150-, and 200-day averages! as the best performers,
but in the full universe of trading rules, the best-performing trading rules
use much shorter windows of data typically based on two- through five-day
averages. Hence the best trading rules from the full universe are more likely
to trade on very short-term price movements.

A. Results for the Mean Return Criterion

Table III presents the performance results of the best technical trading rule
in each of the sample periods. The table reports the performance measure ~i.e.,
mean return! along with White’s Reality Check p-value and the nominal p-value.
The nominal p-value is that which results from applying the bootstrap meth-
odology to the best trading rule only, thereby ignoring the effects of the data-
snooping. Hence, the difference between the two p-values will represent the
magnitude of the data-snooping bias on the performance measure.

Turning to the actual performance of the selected trading rules, first con-
sider the results for the universe of 26 trading rules used by BLL. Both in
the full sample and in the first four subperiods, we find that the apparent
superior performance of the best trading rule stands up to a closer inspec-
tion for data-snooping effects. This finding is not surprising considering that
every single one of BLL’s trading rules outperforms the benchmark, and
hence a consideration of dependencies between trading rules is unlikely to
overturn their original finding.

Over the 100-year period from 1897 to 1996 the best technical trading rule
from the BLL universe is a 50-day variable moving average rule with a 0.01
band, yielding an annualized return of 9.4 percent.14 For comparison, the

14 Annualized mean returns are calculated as the mean daily return over the duration of the
sample, multiplied by 252. The mean daily return is simply the total return divided by the
number of days in the sample.
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mean annualized return on the buy-and-hold strategy is 4.3 percent during
this same period. In our full universe, the best trading rule chosen by the
mean return criterion is a standard five-day moving average rule. The av-
erage annual return resulting from this rule is 17.2 percent. The Reality
Check p-value is effectively zero ~i.e., less than 10B 5 0.002!, strongly indi-

PANEL A

PANEL B

Figure 1. Span of the Brock, Lakonishok, and LeBaron (1992) universe of trading
rules versus the full universe of trading rules: Eigenvalues 1 to 200 of the covariance
matrix of returns. The eigenvalues of the covariance matrix of returns are sorted in descend-
ing order for the Brock, Lakonishok, and LeBaron ~BLL! universe of trading rules ~i.e., a 26 3
26 matrix!, and for 500 randomly chosen rules from the full universe of trading rules ~i.e., a
500 3 500 covariance matrix!, including the 26 BLL rules. Panel A plots the 10 largest values
in sorted descending order along the x-axis, where the y-axis measures the eigenvalue. Panel B
plots eigenvalues 11 to 200, again sorted in descending order.
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Table I

Best Technical Trading Rules under the Mean Return Criterion
This table reports the historically best-performing trading rule, chosen with respect to the mean return criterion, in each sample period for both of
the trading rule universes: the Brock, Lakonishok, and LeBaron ~1992! ~BLL! universe with 26 rules and our full universe with 7,846 rules.

Sample BLL Universe of Trading Rules Full Universe of Trading Rules

In-sample
Subperiod 1 ~1897–1914! 50-day variable moving average, 0.01 band 5-day support & resistance, 0.005 band,

5-day holding period
Subperiod 2 ~1915–1938! 50-day variable moving average, 0.01 band 5-day moving average
Subperiod 3 ~1939–1962! 50-day variable moving average, 0.01 band 2-day on-balance volume
Subperiod 4 ~1962–1986! 150-day variable moving average 2-day on-balance volume
90 years ~1897–1986! 50-day variable moving average, 0.01 band 5-day moving average
100 years ~1897–1996! 50-day variable moving average, 0.01 band 5-day moving average

Out-of-sample
Subperiod 5 ~1987–1996! 200-day variable moving average, 0.01 band Filter rule, 0.12 position initiation,

0.10 position liquidation
S&P 500 Futures ~1984–1996! 200-day variable moving average 30- and 75-day on-balance volume
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Table II

Best Technical Trading Rules under the Sharpe Ratio Criterion
This table reports the historically best-performing trading rule, chosen with respect to the Sharpe ratio criterion, in each sample period for both
of the trading rule universes: the Brock, Lakonishok, and LeBaron ~1992! ~BLL! universe with 26 rules and our full universe with 7,846 rules.

Sample BLL Universe of Trading Rules Full Universe of Trading Rules

In-sample
Subperiod 1 ~1897–1914! 150-day trading range break-out 20-day channel rule, 0.075 width,

5-day holding period
Subperiod 2 ~1915–1938! 50-day variable moving average, 0.01 band 5-day moving average, 0.001 band
Subperiod 3 ~1939–1962! 50-day variable moving average, 0.01 band 2-day moving average, 0.001 band
Subperiod 4 ~1962–1986! 2 and 200-day fixed moving average,

10-day holding period
2-day moving average, 0.001 band

90 years ~1897–1986! 50-day variable moving average, 0.01 band 5-day moving average, 0.001 band
100 years ~1897–1996! 50-day variable moving average, 0.01 band 5-day moving average, 0.001 band

Out-of-sample
Subperiod 5 ~1987–1996! 150-day fixed moving average, 10-day holding period 200-day channel rule, 0.150 width,

50-day holding period
S&P 500 Futures ~1984–1996! 200-day fixed moving average, 0.01 band,

10-day holding period
20-day channel rule, 0.01 width,

10-day holding period
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Table III

Performance of the Best Technical Trading Rules under the Mean Return Criterion
This table presents the performance results of the best technical trading rule, chosen with respect to the mean return criterion, in each of the
sample periods. Results are provided for both the Brock, Lakonishok, and LeBaron ~BLL! universe of technical trading rules and our full universe
of rules. The table reports the performance measure ~i.e., the annualized mean return! along with White’s Reality Check p-value and the nominal
p-value. The nominal p-value results from applying the Reality Check methodology to the best trading rule only, thereby ignoring the effects of
the data-snooping.

BLL Universe of Trading Rules Full Universe of Trading Rules

Sample Mean Return White’s p-Value Nominal p-Value Mean Return White’s p-Value Nominal p-Value

In-sample
Subperiod 1 ~1897–1914! 9.52 0.021 0.000 16.48 0.000 0.000
Subperiod 2 ~1915–1938! 13.90 0.000 0.000 20.12 0.000 0.000
Subperiod 3 ~1939–1962! 9.46 0.000 0.000 25.51 0.000 0.000
Subperiod 4 ~1962–1986! 7.87 0.004 0.000 23.82 0.000 0.000
90 years ~1897–1986! 10.11 0.000 0.000 18.65 0.000 0.000
100 years ~1897–1996! 9.39 0.000 0.000 17.17 0.000 0.000

Out-of-sample
Subperiod 5 ~1987–1996! 8.63 0.154 0.055 14.41 0.341 0.004
S&P 500 Futures ~1984–1996! 4.25 0.421 0.204 9.43 0.908 0.042
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cating that trading with the five-day moving average is superior to being out
of the market. In all four subperiods we find again that the best trading rule
outperforms the benchmark strategy generating data-snooping adjusted
p-values less than 0.002. Furthermore, the mean return of the best trading
rule in the full universe tends to be much higher than the mean return of
the best trading rule considered by BLL.

Considering next the full universe of trading rules from which, over time,
the BLL rules are more likely to have originated, notice that two possible
outcomes can occur when an additional trading rule is inspected. If the mar-
ginal trading rule does not lead to an improvement over the previously best-
performing trading rule, then the p-value for the null hypothesis that the
best model does not outperform will increase, effectively accounting for the
fact that the best trading rule has been selected from a larger set of rules.
On the other hand, if the additional trading rule improves on the maximum
performance statistic, then the p-value may decrease because better perfor-
mance increases the probability that the optimal model genuinely contains
valuable economic information.15

Figure 2 provides a fascinating picture of these effects operating sequen-
tially across the full universe of trading rules. For the first subperiod, 1897–
1914, the figure plots the number identifying each trading rule against its
mean return.16 We have also drawn a line tracking the highest annualized
mean return ~measured on the left y-axis! up to and including a given num-
ber of trading rules ~indicated on the x-axis!, and the Reality Check p-value
for the maximum mean return performance statistic ~measured on the right
y-axis!. The maximum mean return performance begins at approximately 11
percent and quickly increases to 15 percent, yielding a p-value of 0.002 after
the first 200 trading rules have been considered. Adding another 300 trad-
ing rules does not improve on the best-performing trading rule, and the
likelihood of no superior performance, as measured by the p-value, remains
unchanged between rules 200 and 500. After approximately 550 trading rules
have been considered, the best performance is improved to about 17 percent
and the p-value is kept to a level less than 0.002. After this, only a very
small additional improvement in the performance statistic occurs near trad-
ing rule number 2,700. Note that this evolution illustrates how the p-values
adjust as our particular exercise proceeds. Ultimately, the only numbers that
matter are those at the extreme right of the graph, as the order of experi-
ments is arbitrary. Still, this evolution is informative because it suggests
how the effects of data-snooping may propagate in the real world.

An even sharper picture of the operation of data-snooping effects emerges
from the corresponding graph ~Figure 3! for the second subperiod, 1915–

15 Notice, however, that if the improvement is sufficiently small, then it is possible that the
data-snooping effect of searching for an improved model from a larger universe will dominate
the improved performance and hence will lead to a net increase in the p-value.

16 What appear to be vertical clusters of mean return points simply ref lect the performance
of neighbor trading rules in a similar class as the parameters of the trading rules are varied.
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Figure 2. Economic and statistical performance of the best model chosen from the full universe according to the mean return
criterion: Subperiod 1 (1897–1914). For a given trading rule, n, indexed on the x-axis, the scattered points plot the mean annualized returns
experienced during the sample period. The thin line measures the best mean annualized return among the set of trading rules i 5 1, . . . , n, and
the thick line measures the associated data-snooping adjusted p-value.
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Figure 3. Economic and statistical performance of the best model chosen from the full universe according to the mean return
criterion: Subperiod 2 (1915–1938). For a given trading rule, n, indexed on the x-axis, the scattered points plot the mean annualized
returns experienced during the sample period. The thin line measures the best mean annualized return among the set of trading rules i 5
1, . . . , n, and the thick line measures the associated data-snooping adjusted p-value.
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1938. For this period, the best performing model is selected early on and
remains in effect across the first 500 models. As a result, its p-value in-
creases from 0.01 to 0.097 as more models are considered. After this, the
addition of a model that improves the mean performance to 20 percent causes
the p-value to drop to less than 0.002. Only at approximately rule 4,250 does
the p-value increase marginally as no more improvements occur and the
effective span of trading rules is increased.

A further issue at stake is how a trader could have possibly determined
the best technical trading rule prior to committing money to a given rule.
Although it may be the case that we are able to find the historically best-
performing rule in our universe, there is no indication that it is possible to
find ex ante the trading rule that will perform best in the future. To address
this issue we consider a new trading strategy whereby on each day of the
experiment we first determine the best-performing trading rule to date. That
is, we find the rule with the greatest cumulative wealth for each day in the
100-year sample, and then follow the signal of that rule on the following day.
At each point in time only historically available information is exploited so
this trading rule could have been implemented by an investor.

The results of this experiment are provided in Table IV, along with sum-
mary statistics for the best-performing technical trading rule chosen with
respect to the mean return criterion, the five-day simple moving average.
Table IV shows that the recursive cumulative wealth trading rule described
above outperforms the benchmark with a 14.9 percent annualized average
return, but lags behind the five-day moving average by more than two per-
centage points, ref lecting the fact that investors could not have known ex
ante the identity of the ex post best-performing trading rule. It is interesting
to see that the number of short and long trades is roughly balanced out and
that the winning percentage is much higher for the long than for the short
trades. Long trades are also associated with average profits that are more
than twice as large as those on the short trades.

B. Results for the Sharpe Ratio Criterion

Proper construction of the Sharpe ratio requires excess returns to be mea-
sured, where excess returns are the returns from the technical trading rule
less the risk-free interest rate. The available data on daily risk-free interest
rates is limited so we employ data from three separate sources for three
overlapping periods. From 1897 to 1925, we use the interest rate for 90-day
stock exchange time loans as reported in Banking and Monetary Statistics,
1914–1941 ~1943!. These rates are reported on a monthly basis and we con-
vert them into a daily series by simply applying the interest rate reported
for a given month to each day of that month. From 1926 to June 1954, we
use the one-month T-bill rates reported by the Center for Research in Secu-
rity Prices at the University of Chicago in their risk-free rates file. As these
are also reported on a monthly basis, we convert them in the same way.
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Finally, from July 1954 to 1996, we use the daily Federal funds rate.17 These
three sets of interest rates are concatenated to form one series, where the
annualized rates reported are converted into daily rates using the following
formula:

rd 5
ln~1 1 rann!

252
, ~16!

17 The Federal funds rate is the cost of borrowing immediately available funds, primarily for
one day. The effective rate is a weighted average of the reported rates at which different amounts
of the day’s trading occurs through New York brokers.

Table IV

Technical Trading Rule Summary Statistics:
100-Year Dow Jones Industrial Average Sample (1897–1996)

with the Mean Return Criterion
This table provides summary statistics, White’s Reality Check p-value, and the nominal p-value
for the best-performing rule ~the simple five-day moving average!, chosen with respect to the
mean return criterion, and the recursive cumulative wealth rule, over the full 100-year sample
of the Dow Jones Industrial Average. The nominal p-value results from applying the Reality
Check methodology to the best trading rule only, thereby ignoring the effects of the data-
snooping. The cumulative wealth trading rule bases today’s signal on the best trading rule as
of yesterday, according to total accumulated wealth. The recursive cumulative wealth rule is not
the best trading rule ex post, thus the Reality Check p-value does not apply.

Summary Statistics Best Rule
Cumulative
Wealth Rule

Annualized average return 17.2% 14.9%
Nominal p-value 0.000 0.000
White’s Reality Check p-value 0.000 n0a
Total number of trades 6,310 6,160
Number of winning trades 2,501 2,476
Number of losing trades 3,809 3,684
Average number of days per trade 4.3 4.2
Average return per trade 0.29% 0.26%

Number of long trades 3,155 3,103
Number of long winning trades 1,389 1,372
Number of long losing trades 1,766 1,731
Average number of days per long trade 4.7 4.6
Average return per long trade 0.39% 0.35%

Number of short trades 3,155 3,057
Number of short winning trades 1,112 1,104
Number of short losing trades 2,043 1,953
Average number of days per short trade 3.9 3.8
Average return per short trade 0.19% 0.16%
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where rd is the daily interest rate, rann is the reported annualized rate, and
252 represents the average number of trading days in a year.18

Since the volatility of daily interest rates is substantially smaller than
that of daily stock returns, the main effect of including the risk-free rate in
the Sharpe ratio is that of a ~time-varying! drift-adjustment. For this rea-
son, our use of monthly interest rates in the earlier samples is unlikely to
affect the results in any important way.

Similar to Table III, Table V presents the performance results of the best
technical trading rule in each of the sample periods. The table reports the
performance measure ~i.e., Sharpe ratio! along with White’s Reality Check
p-value and the nominal p-value.19

It is clear from Table II that the trading rules selected from the full uni-
verse by the Sharpe ratio criterion again tend to be based on a relatively
short sample using two to 20 days of price information. Table V shows that
the best model according to the Sharpe ratio criterion generates a p-value
below 0.002 in all but one of the samples for the full universe of trading
rules. Interestingly, the best model chosen from the BLL universe does not
appear to be significant in several of the sample periods. Also, the perfor-
mance of the best rule in the full universe increases substantially relative to
the best rule considered by BLL. Over the full 100-year sample on the DJIA,
the Sharpe ratio for the buy-and-hold strategy is a mere 0.034, but the best-
performing trading rule in the BLL and full universe produces Sharpe ratios
of 0.39 and 0.82, respectively.

For the first two subperiods, Figure 4 and Figure 5 plot the sequence of
Sharpe ratios based on the full set of models in contention alongside the
p-value for the null that the highest Sharpe ratio equals zero. The most
interesting graph appears for the second subperiod ~Figure 5!. The maxi-
mum Sharpe ratio is initially about 0.44. As the first 500 models get in-
spected, the p-value increases from 0.05 to above 0.60, only to fall well below
0.01 after a superior trading rule is introduced around model number 500.
The p-value then increases from close to zero to a level around 0.056, thus
displaying the effects of data-snooping as no improvements occur in the Sharpe
ratio despite a widening of the span of trading rules.

These experiments also suggest why the alternative procedure of using a
simple Bonferroni bound to assess the significance of the best-performing
trading rule would give misleading results. Since the performance of the
best trading rule drawn from the full universe is not known when consid-
ering only a subset of trading rules, the Bonferroni bound on the p-value

18 Examining the behavior of our interest rates in the first overlapping period ~1925–1941,
193 observations!, we find that monthly values for the stock exchange 90-day time loans and
the Fama0Bliss risk-free rates have a correlation of 0.964. To compare the Fama0Bliss risk-free
rates ~monthly! to the Federal funds rates ~daily!, we convert the risk-free rates to daily rates
by applying the Fama0Bliss rate for a given month to all days in that month. The overlap
period of 1954–1996 ~15,525 observations! produces a correlation of 0.963.

19 The Sharpe ratio values are based on annualized returns that are calculated as the con-
tinuously compounded daily return multiplied by 252.
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Table V

Performance of the Best Technical Trading Rules under the Sharpe Ratio Criterion
This table presents the performance results of the best technical trading rule, chosen with respect to the Sharpe ratio criterion, in each of the
sample periods. Results are provided for both the Brock, Lakonishok, and LeBaron ~1992! ~BLL! universe of technical trading rules and our full
universe of rules. The table reports the performance measure ~i.e., the Sharpe ratio! along with White’s Reality Check p-value and the nominal
p-value. The nominal p-value results from applying the Reality Check methodology to the best trading rule only, thereby ignoring the effects of
the data-snooping.

BLL Universe of Trading Rules Full Universe of Trading Rules

Sample Sharpe Ratio White’s p-Value Nominal p-Value Sharpe Ratio White’s p-Value Nominal p-Value

In-sample
Subperiod 1 ~1897–1914! 0.51 0.147 0.016 1.15 0.000 0.000
Subperiod 2 ~1915–1938! 0.51 0.037 0.000 0.76 0.056 0.000
Subperiod 3 ~1939–1962! 0.79 0.000 0.000 2.18 0.000 0.000
Subperiod 4 ~1962–1986! 0.53 0.051 0.003 1.41 0.000 0.000
90 years ~1897–1986! 0.45 0.000 0.000 0.91 0.000 0.000
100 years ~1897–1996! 0.39 0.000 0.000 0.82 0.000 0.000

Out-of-sample
Subperiod 5 ~1987–1996! 0.28 0.721 0.127 0.87 0.903 0.000
S&P 500 Futures ~1984–1996! 0.23 0.702 0.165 0.66 0.987 0.000
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Figure 4. Economic and statistical performance of the best model chosen from the full universe according to the Sharpe ratio
criterion: Subperiod 1 (1897–1914). For a given trading rule, n, indexed on the x-axis, the scattered points plot the Sharpe ratio experienced
during the sample period. The thin line measures the highest Sharpe ratio among the set of trading rules i 5 1, . . . , n, and the thick line measures
the associated data-snooping adjusted p-value. Note that p-values greater than 0.10 have been truncated at the top of the figure.
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Figure 5. Economic and statistical performance of the best model chosen from the full universe according to the Sharpe ratio
criterion: Subperiod 2 (1915–1938). For a given trading rule, n, indexed on the x-axis, the scattered points plot the Sharpe ratio experienced
during the sample period. The thin line measures the highest Sharpe ratio among the set of trading rules i 5 1, . . . , n, and the thick line measures
the associated data-snooping adjusted p-value. Note that p-values greater than 0.10 have been truncated at the top of the figure.
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cannot possibly be used to account for data-snooping. A researcher might
believe that, say, the BLL trading rules are the result of traders consider-
ing an original set of 8,000 rules, in which case the Bonferroni bound on
the p-value would be obtained as 8,000 times the smallest nominal p-value.
But this leads to meaningless results: In subperiod 4, the Bonferroni bound
simply states that the p-value is less than 1, but in fact the bootstrap
p-value for the best trading rule selected from the full universe is approx-
imately 0.05.

C. Performance of the Bootstrap Snooper

In this subsection we carry out a simple check on the performance of White’s
Reality Check methodology by comparing the actual performance measure Nfk
to the bootstrapped values of the performance measure Nfk, i

* , for k 5 1, . . . , l
trading rules and i 5 1, . . . , B bootstrap samples ~l 5 7,846 and B 5 500!.20

The results are displayed in Figures 6 and 7. For each of the k models and
for both the mean return and Sharpe ratio criteria applied to the 100-year
DJIA sample, these figures provide a histogram of the realized probability
that Nfk, i

* is greater than Nfk across the full universe of trading rules. Note that
the distribution is closely centered around one-half, suggesting that White’s
Reality Check methodology is performing as it should. Also, the results are
very similar for both performance measures.21

Calculation of the overall probability, across all trading rules and boot-
strap samples, that Nfk, i

* exceeds Nfk yields a value of 0.489 for both the mean
return and Sharpe ratio criteria. Omitting outliers caused by infrequent trad-
ing yields a probability of 0.508 for both performance measures.

D. The Effects of Nonsynchronous Trading

Another issue to consider is nonsynchronous trading. If some of the closing
prices on the DJIA are stale, they may not ref lect the latest information. In
such a case, the technical trading rules and the cumulative wealth rule would
not be able to obtain the closing price when the markets open the following
day. Although nonsynchronous trading effects are likely to be relatively small
for the stocks included in the DJIA, it is possible that some do exist, espe-
cially on low volume days.22 To address this issue, we follow Ready ~1997!

20 We thank an anonymous referee for suggesting this analysis.
21 There is a set of outlier models, about 300 trading rules, that have a probability at, or

near, zero that Nfk, i
* will exceed Nfk. This is a result of a trading rule having very few nonzero

trading signals. In such a case, it is entirely possible that none of the 500 bootstrap samples
will include any nonzero signals, thereby leading to a bootstrapped performance measure that
is always less than the actual performance measure that does contain some nonzero trading
signals. This is clearly not a problem for the results reported in Tables I–VI because the se-
lected trading rules generate multiple signals.

22 For example, Campbell, Grossman, and Wang ~1993! find that the first-order autocorre-
lation in daily stock returns is higher when volume is low.
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and let a trading signal observed on day t be implemented on the following
day, t 1 1. We then perform the bootstrap experiment on the full universe of
trading rules and the 100-year DJIA sample using the delayed signals.

The results are quite interesting. The best rule according to the mean
return criterion is a variable moving average with a band filter where the
fast moving average is calculated over two days, the slow moving average is
calculated over 75 days, and a 0.001 band is applied. For the Sharpe ratio
criterion, the best rule is a fixed moving average with a fast MA of 20 days,
a slow MA of 75 days, and a fixed holding period of five days. Not surpris-
ingly, the best rules in this experiment are of a longer duration than those
where the trading signals are implemented immediately.

The mean return of the best rule is 7.8 percent with a Reality Check p-value
of nearly zero ~i.e., less than 0.002!, indicating that the best rule is still highly
significant. Note that this is true even though the performance is far less than
the best from the standard experiment of 17.2 percent. The Sharpe ratio of the
best rule is 0.34 with a Reality Check p-value of 0.26, suggesting that the best
rule, according to the Sharpe ratio criterion, is no longer significant.23

23 Ready ~1997! also finds that what he refers to as “price slippage” effects can account for a
substantial part of the profits generated by technical trading rules.

Figure 6. Histogram of the observed probability that the bootstrapped performance
measure is greater than the actual performance measure, according to the mean re-
turn criterion: 100-year sample (1897–1996). The observed probability is the number of
bootstrap samples yielding a performance measure greater than the actual performance mea-
sure, divided by the number of bootstrap samples ~500!. For a given probability range, the
y-axis measures the number of models ~trading rules! from the full universe of 7,846 rules that
have a calculated probability within that range. The x-axis value, the probability range, indi-
cates the upper bound on the range of probability values, where the lower bound is provided by
the next smaller upper bound.

1674 The Journal of Finance



One further item of interest is the performance of the cumulative wealth
rule under this regime. The cumulative wealth rule manages to outperform
the benchmark with a mean return of 4.6 percent. The nominal p-value is
nearly zero ~i.e., less than 0.002!.

V. Out-of-Sample Results

The data used in the study by BLL finish in 1986. This leaves us with a
10-year postsample period in which a genuine out-of-sample performance
experiment can be conducted. We do so using the Dow Jones portfolio orig-
inally studied by BLL, and we also use prices on the S&P 500 Futures con-
tract that has traded since 1984 and hence covers a commensurate period.
Lo and MacKinlay ~1990! recommend just such a 10-year out-of-sample ex-
periment as a way of purging the effects of data-snooping biases from the
analysis.

There is a distinct advantage associated with using the futures data set:
The experiment on the DJIA data ignores dividends ~which are not available
on a daily basis for the full 100-year period!, but these are not a concern for
the futures contract. Furthermore, although the assumption that investors

Figure 7. Histogram of the observed probability that the bootstrapped performance
measure is greater than the actual performance measure, according to the Sharpe
ratio criterion: 100-year sample (1897–1996). The observed probability is the number of
bootstrap samples yielding a performance measure greater than the actual performance mea-
sure, divided by the number of bootstrap samples ~500!. For a given probability range, the
y-axis measures the number of models ~trading rules! from the full universe of 7,846 rules that
have a calculated probability within that range. The x-axis value, the probability range, indi-
cates the upper bound on the range of probability values, where the lower bound is provided by
the next smaller upper bound.
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could have taken short positions in the DJIA contract throughout the entire
period 1897–1996 may not be realistic, it would have been very easy for an
investor to have gone short in the S&P 500 Futures contract. Finally, it is
possible that the technical trading rules considered by BLL generated prof-
its before transaction costs, but accounting for such costs and data-snooping
effects could change their findings.24 In the full universe and over the 100-
year period 1897–1996, the best-performing trading rule for the DJIA earned
a mean annualized return of 17.17 percent resulting from 6,310 trades ~63.1
per year!, giving a break-even transaction cost level of 0.27 percent per trade.
We do not have historical series on transaction costs, and these would also
seem to depend on the size of the trade, so it seems difficult to assess this
number. Transaction costs are likely to have been higher than 0.27 percent
at the beginning of the sample, but lower by the end of the sample. Ulti-
mately, the transaction cost argument is best evaluated using a trading strat-
egy in a futures contract, such as the S&P 500, where transactions costs are
quite modest.

The S&P 500 Futures data are provided by Pinnacle Data Corporation.
The prices from the nearest futures contract are employed with a rollover
date of the 9th of the delivery month for the contract. That is, any position
maintained in the current contract is closed out, and a new position is opened,
according to the trading rule, on the 9th of March, June, September, and
December. A series of returns is created from each of the contracts and is
linked together at the rollover dates. Starting with the price of the S&P 500
Futures contract at the beginning of the series, a new price series is gener-
ated from the returns.

A quick first way of testing the merits of technical trading rules is by
considering the performance of the best trading rule, selected by the end of
1986, in the subsequent 10-year trading period. The five-day moving aver-
age rule selected from the full universe produces a mean return of 2.8 per-
cent with a nominal p-value of 0.322 for the period 1987 to 1996, indicating
that the best trading rule, as of the end of 1986, did not continue to generate
valuable economic signals in the subsequent 10-year period.

Figure 8 presents graphs for the evolution in the maximum performance
statistic and the Reality Check p-value across the 26 trading rules consid-
ered by BLL applied to the out-of-sample period. The third and fourth trad-
ing rules improve substantially on the maximum mean return statistic and
the addition of these rules leads to decreases in the p-value. By the end of
the sample, the maximum mean return statistic is approximately 8.5 per-
cent per year. The p-value starts out near 0.3, decreases to about 0.13, but
then slowly increases to 0.15. Such increases in the p-value, in the absence
of improvements over the best performing trading rule, vividly illustrate the

24 In the conclusion to their paper, BLL call for careful consideration of transaction costs and
explicitly recommend using futures data as a way of dealing with this issue. This is particularly
important for some of the rules selected from the full universe which use very short windows
of the data, generate very frequent trading signals, and hence are likely to generate substantial
transaction costs.
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Figure 8. Economic and statistical performance of the best model chosen from the Brock, Lakonishok, and LeBaron (1992) universe
according to the mean return criterion: Out-of-sample, subperiod 5 (1987–1996). For a given trading rule, n, indexed on the x-axis, the
scattered points plot the mean annualized returns experienced during the sample period. The thin line measures the best mean annualized return
among the set of trading rules i 5 1, . . . , n, and the thick line measures the associated data-snooping adjusted p-value.
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importance of jointly considering all the trading rules when drawing conclu-
sions about the performance of the best-performing trading rule. The p-value
for the best-performing trading rule, considered in isolation, is 0.05. The
evidence that the best trading rule can produce superior performance is even
weaker when the Sharpe ratio criterion is used to measure performance. For
this criterion, the p-value of the best model chosen from the BLL universe
terminates at 0.72 when data-snooping is accounted for ~see Figure 9! and is
0.12 when the trading rule is naively considered in isolation.

Consider next the full universe of 7,846 trading rules for the S&P 500
Futures data over the period 1984–1996. For models selected by the mean
return criterion, Figure 10 demonstrates perhaps more clearly than any other
graph the importance of controlling for data-snooping. After the first few
trading rules are considered, the p-value falls to around 0.3, but it quickly
increases to around 0.6 as no improvement over the best-performing trading
rule occurs until after approximately 400 trading rules. Then the p-value
drops back below 0.4 only to increase to a level around 0.9 by the point the
final trading rule has been evaluated. As is clear from Figure 11, a very
similar picture emerges for the Sharpe ratio criterion, where the terminal
data-snooping-adjusted p-value is 0.99.

Notice the very strong conclusion we can draw from this finding. Even
though a particular trading rule is capable of producing superior perfor-
mance of almost 10 percent per year during this sample period and has a
p-value of 0.04 when considered in isolation, the fact that this trading rule
is drawn from a wide universe of rules means that its effective data-snooping-
adjusted p-value is actually 0.90. An even bigger contrast occurs from using
the Sharpe ratio criterion: here the snooping-adjusted and unadjusted p-values
are 0.99 and 0.000 ~below 0.002!, respectively. Indeed, data-snooping effects
are very important in assessing economic performance.

As a final exercise, we compute the out-of-sample performance of the re-
cursive decision rule described in Section IV. This rule follows the trading
signal generated by the rule that has produced the highest cumulative wealth
as of the previous trading day. Table VI provides summary statistics for the
best-performing rule and the cumulative wealth rule, for both the out-of-
sample DJIA ~1987–1996! and the Standard and Poor’s 500 Futures ~1984–
1996!. These rules are chosen with respect to the mean return criterion. It is
interesting to note that in both of these out-of-sample periods the cumula-
tive wealth rule does not perform well. In fact, the cumulative wealth rule
applied to the S&P 500 Futures generates negative returns. Also, note that
the best rule for the DJIA results in only six trades, where each trade av-
erages over 400 days. This is considerably greater than the average of
4.3 days per trade resulting from the best rule over the full 100-year sample.

VI. Conclusion

This paper applies a new methodology that allows researchers to control
for data-snooping biases to compute the statistical significance of invest-
ment performance while accounting for the dependencies resulting from in-
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Figure 9. Economic and statistical performance of the best model chosen from the Brock, Lakonishok, and LeBaron (1992) universe
according to the Sharpe ratio criterion: Out-of-sample, subperiod 5 (1987–1996). For a given trading rule, n, indexed on the x-axis, the
scattered points plot the Sharpe ratio experienced during the sample period. The thin line measures the highest Sharpe ratio among the set of
trading rules i 5 1, . . . , n, and the thick line measures the associated data-snooping adjusted p-value.
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Figure 10. Economic and statistical performance of the best model chosen from the full universe according to the mean return
criterion: S&P 500 Futures (1984–1996). For a given trading rule, n, indexed on the x-axis, the scattered points plot the mean annualized returns
experienced during the sample period. The thin line measures the best mean annualized return among the set of trading rules i 5 1, . . . , n, and the
thick line measures the associated data-snooping adjusted p-value.
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Figure 11. Economic and statistical performance of the best model chosen from the full universe according to the Sharpe ratio
criterion: S&P 500 Futures (1984–1996). For a given trading rule, n, indexed on the x-axis, the scattered points plot the Sharpe ratio experienced
during the sample period. The thin line measures the highest Sharpe ratio among the set of trading rules i 5 1, . . . , n, and the thick line measures
the associated data-snooping adjusted p-value.
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Table VI

Technical Trading Rule Summary Statistics: Out-of-Sample Dow Jones Industrial Average (1987–1996)
and the Standard and Poor’s 500 Futures (1984–1996) with the Mean Return Criterion

This table provides summary statistics, White’s Reality Check p-value, and the nominal p-value for the best-performing rule, chosen with respect
to the mean return criterion, and the recursive cumulative wealth rule, for both the out-of-sample Dow Jones Industrial Average ~1987–1996! and
the Standard and Poor’s 500 Futures ~1984–1996!. The nominal p-value is that which results from applying the Reality Check methodology to
the best trading rule only, thereby ignoring the effects of the data-snooping. The cumulative wealth trading rule bases today’s signal on the best
trading rule as of yesterday, according to total accumulated wealth. The recursive cumulative wealth rule is not the best trading rule ex post,
thus the Reality Check p-value does not apply.

Dow Jones Industrial Average S&P 500 Futures

Summary Statistics Best Rule
Cumulative
Wealth Rule Best Rule

Cumulative
Wealth Rule

Annualized average return 14.4% 2.8% 9.4% 25.5%
Nominal p-value 0.000 0.322 0.042 0.895
White’s Reality Check p-value 0.341 n0a 0.908 n0a
Total number of trades 6 676 43 210
Number of winning trades 4 234 22 56
Number of losing trades 2 442 21 154
Average number of days per trade 411.7 3.7 76.5 14.3
Average return per trade 34.38% 0.04% 3.00% 20.33%

Number of long trades 4 338 22 104
Number of long winning trades 3 140 12 31
Number of long losing trades 1 198 10 73
Average number of days per long trade 598.0 4.3 98.6 17.1
Average return per long trade 48.16% 0.24% 5.76% 0.16%

Number of short trades 2 338 21 106
Number of short winning trades 1 94 10 25
Number of short losing trades 1 244 11 81
Average number of days per short trade 39.0 3.2 53.4 11.6
Average return per short trade 6.82% 20.16% 0.12% 20.82%
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vestigating several investment rules. We believe that this methodology deserves
to be widely used in finance: There is an obvious focus in finance on infor-
mation and decision rules that can be used to predict financial returns, but
it is often forgotten that this predictability may be the result of a large
number of researchers’ joint search for a successful model specification with
predictive power. Many researchers, such as Merton ~1987!, have called for
a remedy to control for data-snooping biases, and the methodology in this
paper provides just such a tool. It summarizes in a single statistic the sig-
nificance of the best-performing model after accounting for data-snooping.

Aside from being important in assessing the inf luence of data-snooping
bias in performance measurement studies, the approach of this paper also
has substantial value to investors who are searching for successful invest-
ment strategies. Suppose that, after experimenting with a large number of
decision rules, an investor comes up with what appears to be a highly suc-
cessful rule that outperforms the benchmark strategy. The investor is then
left with the task of assessing just how much of the performance is a result
of data-snooping, and how much is due to genuine superior performance. In
the presence of complicated dependencies across the rules being evaluated,
this is a very difficult question to answer, and only a bootstrap methodology
such as the one offered in this paper appears to be feasible. Furthermore,
since the investor would know the exact identity of the universe of invest-
ment rules from which the optimal rule is drawn, the approach of this paper
is eminently suited for such an assessment.

Our analysis allows us to reassess previous results on the performance of
technical trading rules. We find that the results of BLL appear to be robust
to data-snooping, and indeed there are trading rules that perform even bet-
ter than the ones considered by BLL. Hence their result that the best per-
forming technical trading rule is capable of generating profits when applied
to the DJIA stands up to inspection for data-snooping effects. This finding is
valid in all four subperiods considered by BLL. However, we also find that
the superior performance of the best technical trading rule is not repeated in
the out-of-sample experiment covering the 10-year period 1987–1996. In this
sample the results are completely reversed and the best-performing trading
rule is not even statistically significant at standard critical levels. This re-
sult is also borne out when data on a more readily tradable futures contract
on the S&P 500 index are considered: Again there is no evidence that any
trading rule outperforms over the sample period.

Three conclusions appear to be possible from these findings. First, the
out-of-sample results may simply not be representative, possibly because of
the unusually large one-day movement occurring on October 19, 1987. Al-
though this argument can never be rejected outright, we want to emphasize
that the out-of-sample trading period is rather long ~3,291 days!, which would
seem to lend support to the claim that we can evaluate the trading rules’
performance reasonably precisely in the postsample period. Also, the out-of-
sample results are robust to whether or not data on 1987 are included in the
sample. In a finite sample, very large movements in stock prices such as
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those occurring on October 19, 1987 would, if anything, actually tend to
improve the performance of the best trading rule because some of the rules
inevitably would have been short in the index on that date and hence would
have earned returns of 22 percent in a single day.25

Second, the 7,846 trading rules that we consider may of course have been
selected from an even larger universe of rules. If this is the case, then the
p-value adjusted for data-snooping is biased toward zero under the assump-
tion that the included rules are also the ones that performed quite well
during the historical sample period. This explanation is a logical possibility,
but the experiments reported in this paper also show that it can have merit
only as long as two conditions are both satisfied: The omitted trading rules
cannot improve substantially on the best-performing trading rule drawn from
the current universe, and the omitted trading rules should generate payoffs
that are largely orthogonal to the payoffs of the included trading rules so
that they will increase the effective span. We think that we have been suf-
ficiently careful in choosing the number and types of trading rules included
in the adopted universe so that it is unlikely that these conditions are si-
multaneously satisfied.

Third, it is possible that, historically, the best technical trading rule did
indeed produce superior performance, but that, more recently, the markets
have become more eff icient and hence such opportunities have disap-
peared.26 This conclusion certainly seems to match up well with the cheaper
computing power, the lower transaction costs and increased liquidity in the
stock market that may have helped to remove possible short-term patterns
in stock returns.

Appendix A. Trading Rule Parameters

This appendix describes the parameterizations of the 7,846 trading rules
used to generate the full universe of rules under consideration.

A.1. Filter Rules

x 5 change in security price ~x 3 price! required to initiate a position;
y 5 change in security price ~ y 3 price! required to liquidate a position;
e 5 used for an alternative definition of extrema where a low ~high! can be

defined as the most recent closing price that is less ~greater! than the
n previous closing prices;

25 Indeed, as shown in Table III, the best trading rule from the BLL universe under the
mean return criterion generates a mean return of 8.6 percent in the period from January
1987 through December 1996. However, the best rule ~200-day variable moving average with
a 1 percent band! from the BLL universe in the period January 1988 through December 1996
generates a mean return of only 5.6 percent. Furthermore, the large universe provides a best
rule during subperiod 5 that generates a mean return of 14.4 percent, whereas the best rule
~20-day filter rule of 0.10! during the period beginning in 1988 provides a mean return of
only 13.9 percent.

26 Ready ~1997! also reports a decline in the ability of technical trading rules to predict daily
returns over the period 1990–1995.
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c 5 number of days a position is held, ignoring all other signals during
that time;

x 5 0.005, 0.01, 0.015, 0.02, 0.025, 0.03, 0.035, 0.04, 0.045, 0.05, 0.06, 0.07,
0.08, 0.09, 0.1, 0.12, 0.14, 0.16, 0.18, 0.2, 0.25, 0.3, 0.4, 0.5 @24 values#;

y 5 0.005, 0.01, 0.015, 0.02, 0.025, 0.03, 0.04, 0.05, 0.075, 0.1, 0.15, 0.2 @12
values#;

e 5 1, 2, 3, 4, 5, 10, 15, 20 @8 values#;
c 5 5, 10, 25, 50 @4 values# .
Noting that y must be less than x, there are 185 x-y combinations.
Number of filter rules 5 x 1 ~x * e! 1 ~x * c! 1 ~x-y combinations!

5 24 1 192 1 96 1 185 5 497.

A.2. Moving Averages

n 5 number of days in a moving average;
m 5 number of fast-slow combinations of n;
b 5 fixed band multiplicative value;
d 5 number of days for the time delay filter;
c 5 number of days a position is held, ignoring all other signals during

that time;
n 5 2, 5, 10, 15, 20, 25, 30, 40, 50, 75, 100, 125, 150, 200, 250 @15 values#;

m 5 (
i51

n21
i 5 105;

b 5 0.001, 0.005, 0.01, 0.015, 0.02, 0.03, 0.04, 0.05 @8 values#;
d 5 2, 3, 4, 5 @4 values#;
c 5 5, 10, 25, 50 @4 values# .

Note that a 1 percent band filter and a 10-day holding period are applied
to all combinations of moving averages with a fast MA of one, two, and five
days and a slow MA of 50, 150, and 200 days. This addition of nine rules
allows our universe of trading rules to encompass all of BLL’s trading
rules.

Number of rules 5 n 1 m 1 ~b * ~n 1 m!! 1 ~d * ~n 1 m!! 1 ~c * ~n 1 m!! 1 9
5 15 1 105 1 960 1 480 1 480 1 9 5 2,049.

A.3. Support and Resistance

n 5 number of days in the support and resistance range;
e 5 used for an alternative definition of extrema where a low ~high! can

be defined as the most recent closing price that is less ~greater! than
the n previous closing prices;

b 5 fixed band multiplicative value;
d 5 number of days for the time delay filter;
c 5 number of days a position is held, ignoring all other signals during

that time;
n 5 5, 10, 15, 20, 25, 50, 100, 150, 200, 250 @10 values#;
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e 5 2, 3, 4, 5, 10, 20, 25, 50, 100, 200 @10 values#;
b 5 0.001, 0.005, 0.01, 0.015, 0.02, 0.03, 0.04, 0.05 @8 values#;
d 5 2, 3, 4, 5 @4 values#;
c 5 5, 10, 25, 50 @4 values# .

Number of rules 5 @~1 1 c! * ~n 1 e!# 1 @~b * ~n 1 e!! * ~1 1 c!#
1 @d * c * ~n 1 e!#

5 100 1 800 1 320 5 1,220.

A.4. Channel Breakouts

n 5 number of days for the channel;
x 5 difference between the high price and the low price ~x 3 high price!

required to form a channel;
b 5 fixed band multiplicative value;
c 5 number of days a position is held, ignoring all other signals during

that time;
n 5 5, 10, 15, 20, 25, 50, 100, 150, 200, 250 @10 values#;
x 5 0.005, 0.01, 0.02, 0.03, 0.05, 0.075, 0.10, 0.15 @8 values#;
b 5 0.001, 0.005, 0.01, 0.015, 0.02, 0.03, 0.04, 0.05 @8 values#;
c 5 5, 10, 25, 50 @4 values# .
Noting that b must be less than x, there are 43 x-b combinations.
Number of rules 5 ~n * x * c! 1 @n * b * ~x-b combinations!#

5 320 1 1,720 5 2,040.

A.5. On-Balance Volume Averages

n 5 number of days in a moving average;
m 5 number of fast-slow combinations of n;
b 5 fixed band multiplicative value;
d 5 number of days for the time delay filter;
c 5 number of days a position is held, ignoring all other signals during

that time;
n 5 2, 5, 10, 15, 20, 25, 30, 40, 50, 75, 100, 125, 150, 200, 250 @15 values#;

m 5 (
i51

n21
i 5 105;

b 5 0.001, 0.005, 0.01, 0.015, 0.02, 0.03, 0.04, 0.05 @8 values#;
d 5 2, 3, 4, 5 @4 values#;
c 5 5, 10, 25, 50 @4 values# .

Number of rules 5 n 1 m 1 ~b * ~n 1 m!! 1 ~d * ~n 1 m!! 1 ~c * ~n 1 m!!
5 15 1 105 1 960 1 480 1 480 5 2,040.

Appendix B. Reality Check Technical Results

For the convenience of the reader, we replicate the main results of White
~1997! and brief ly interpret these. In what follows, the notation corresponds
to that of the text unless otherwise noted.
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Let P denote the probability measure governing the behavior of the time
series $Zt% . Also, n denotes convergence in distribution, and

p
&& denotes

convergence in probability. In White’s ~1999! notation, used here, f *5 f ~Z, b* !
where b* 5 plimn ZbT . As no parameters are estimated in our application, we
have written E~ f ! in the text.

PROPOSITION 2.1: Suppose that n102~ Nf 2 E~ f * !! n N~0,V! for V positive semi-
definite. ~a! If E~ fk

* !, . 0 for some 1 # k # l, then for any 0 # c , E~ fk
* !,

P @ Nfk . c# r 1 as T r `. ~b! If l . 1 and E~ f1
*! . E~ fk

*!, for all k 5 2, . . . , l,
then P @ Nf1 . Nfk for all k 5 2, . . . , l# r 1 as T r `.

Part ~a! says that if some model ~e.g., the best model! beats the benchmark,
then this is eventually revealed by a positive estimated relative perfor-
mance. Part ~b! says that the best model eventually has the best estimated
performance relative to the benchmark, with probability approaching one.
The next result provides the basis for hypothesis tests of the null of no
predictive superiority over the benchmark, based on the predictive model
selection criterion.

PROPOSITION 2.2: Suppose that n102~ Nf 2 E~ f * !! n N~0,V! for V positive semi-
definite. Then as t r `

max
k51, . . . , l

n102$ Nfk 2 E~ fk
* !% n Vl [ max

k51, . . . , l
$Zk% ~B1!

and

min
k51, . . . , l

n102$ Nfk 2 E~ fk
* !% n Wl [ min

k51, . . . , l
$Zk%, ~B2!

where Z is an l 3 1 vector with components Zk, k 5 1, . . . , l, distributed as
N~0,V!.

COROLLARY 2.4: Under the conditions of Theorem 2.3 of White (1999), we have
that as t r `

r~L@ QVl
* 6Z1, . . . ,ZT1t# , L@ max

k51, . . . , l
n102~ Nfk 2 E~ fk

* !!# !
p
&& 0 ~B3!

and

r~L@ RWl
* 6Z1, . . . ,ZT1t# , L@ min

k51, . . . , l
n102~ Nfk 2 E~ fk

* !!# !
p
&& 0, ~B4!

where

QVl
* [ max

k51, . . . , l
n102~ Nfk

* 2 Nfk!, ~B5!

RWl
* [ min

k51, . . . , l
n102~ Nfk

* 2 Nfk!, ~B6!
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L denotes the probability law of the indicated random vector, and r is any
distance metric on the space of probability laws.

Thus, by comparing QVl to the quantiles of a large sample of realizations of QVl
* ,

we can compute a p-value appropriate for testing H0 : maxk51, . . . , l E~ fk
* ! # 0,

that is, that the best model has no predictive superiority relative to the bench-
mark. White ~1999! calls this the bootstrap “Reality Check p-value.”

The level of the test can be driven to zero at the same time that the power
approaches one according to the next result, as the test statistic diverges at
a rate n102 under the alternative.

PROPOSITION 2.5: Suppose that conditions A.1(a) or A.1(b) of White’s (1997)
appendix hold, and suppose that E~ f1

* ! . 0 and E~ f1
* ! . E~ fk

* !, for all k 5
2, . . . , l. Then for any 0 , c , E~ f1

* !, P @ QVl . n102c# r 1 as T r `.

COROLLARY 2.6: Let g : U r R~U , Rm ! be continuously differentiable such
that the Jacobian of g, Dg, has full row rank one at E @hk

* # [ U, k 5 0, . . . , l.
Suppose either: (i) Assumptions A9 and B of White (1999) hold and there
are no estimated parameters; or (ii) Assumptions A9, B, and C of White (1999)
hold, and either: (a) H 5 0 and qn 5 cn2g for constants c . 0, 0 , g , 1
such that ~ng1e0R! log log R r 0 as T r ` for some e . 0; or ~b! ~n0R!
log log R r 0 as T r`. Then for Nf * computed using Politis and Romano’s (1994)
stationary bootstrap, as T r `

r~L@n102~ Nf * 2 Nf !6Z1, . . . ,ZT1t# , L@n102~ Nf 2 m*!# !
p
&& 0, ~B7!

where r and L@{# are as previously defined, H is the Jacobian of h, Nf [
~ Nf1, . . . , Nfl!', Nfk [ g~ Nhk

* ! 2 g~ Nh0
* !, m* [ ~m1

* , . . . ,ml
* !, and mk

* [ g~E @hk
* # ! 2

g~E @h0
* # ! and qn is defined in Appendix C.

Maintaining the original definitions of QVl
* and RWl

* in terms of Nfk and Nfk
* , we

have the following corollary.

COROLLARY 2.7: Under the conditions of Corollary 2.6, we have that as t r `

r~L@ QVl
* 6Z1, . . . ,ZT1t# , L@ max

k51, . . . , l
n102~ Nfk 2 mk

* !# !
p
&& 0 ~B8!

and

r~L@ RWl
* 6Z1, . . . ,ZT1t# , L@ min

k51, . . . , l
n102~ Nfk 2 mk

* !# !
p
&& 0. ~B9!

The test is performed by imposing the element of the null least favorable
to the alternative—that is, mk 5 0, k 5 1, . . . , l; thus the Reality Check
p-value is obtained by comparing QVl to the Reality Check order statistics,
obtained as described in Section II. As before, the test statistic diverges to
infinity at the rate n102 under the alternative.
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PROPOSITION 2.8: Let Nf, m*, and V be as defined above. Suppose
n102 ~ Nf1 2 m1

* ! n N~0, v11! for v11 $ 0, and suppose that m1
* . 0 and, if

l . 1, m1
* . mk

* for all k 5 2, . . . , l. Then for any 0 , c , m1
* , P @ QVl . n102c# r 1

as T r `.

Note that it is reasonable to expect the conditions required for the above
results to hold for the data we are examining. As pointed out by BLL, al-
though stock prices do not seem to be drawn from a stationary distribution,
the compounded daily returns ~log-differenced prices! can plausibly be as-
sumed to satisfy the stationarity and dependence conditions sufficient for
the bootstrap to yield valid results. It is possible to imagine time series for
returns with highly persistent dependencies in the higher order moments
that might violate the mixing conditions of White ~1999!, but the standard
models for stock returns do not exhibit such persistence.

Appendix C. The Stationary Bootstrap

Politis and Romano ~1994! present a resampling technique, called the sta-
tionary bootstrap, that can be applied to a strictly stationary and weakly
dependent time series to generate a pseudo-time series that is stationary.
Here we describe our application of the stationary bootstrap and the algo-
rithm used to generate the pseudo-time series of returns. The notation cor-
responds to that of the text.

We use a resampled version of Nf 5 n21 (t5R
T ft11 to deliver the Reality

Check p-value for testing the hypothesis that the selected ~best! model has
no predictive superiority over the benchmark model. The resampled statistic
is computed as

Nf * 5 n21 (
t5R

T

ft11
* , ~C1!

ft11
* [ f ~Zu~t!11, b!, t 5 R, . . . ,T, ~C2!

and u~t! is a random index chosen according to the Politis and Romano sta-
tionary bootstrap algorithm. For this, we choose a priori a “smoothing pa-
rameter” q 5 qn, 0 , qn # 1, qn r 0, nqn r ` as n r `, and proceed as
follows:

1. Set t 5 R. Draw u~t! 5 u~R! at random, independently and uniformly
from $R, . . . ,T % .

2. Increment t by 1. If t . T, stop. Otherwise, draw a standard uniform
random variable U independently of all other random variables.
~a! If U , q, draw u~t! at random, independently and uniformly, from

$R, . . . ,T % .
~b! If U $ q, expand the block by setting u~t! 5 u~t 2 1! 1 1; if

u~t! . T, reset u~t! 5 R.
3. Repeat step 2.
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Thus, the stationary bootstrap resamples blocks of varying length from the
original data, where the block length follows the geometric distribution, with
mean block length 10q. A large value of q is appropriate for data with little
dependence, and a smaller value of q is appropriate for data that exhibit
more dependence.

The value of q chosen in our experiments is 0.1, corresponding to a mean
block length of 10. This value appears to be reasonable given the weak cor-
relation in daily stock returns. Furthermore, we find that the results of the
paper are not sensitive to the choice of q.

Table CI provides White’s Reality Check p-value for several sample and
criterion combinations, along with three separate values of the smoothing
parameter. The values of q correspond to mean block lengths of 100, 10, and
2. We include both ends of the spectrum by reporting White’s p-value for
both the 100-year DJIA sample, where the best rule significantly outper-
forms the benchmark ~i.e., a Reality Check p-value less than 0.002!, and the
S&P 500 Futures sample, where the best rule clearly does not outperform
the benchmark. Note that there is no f luctuation for the p-values that are
near zero, and that the p-values for the S&P 500 Futures f luctuate to a very
small degree. Thus, we can be assured that the results we have obtained are
robust to our choice of the smoothing parameter q.
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