
Edit distance of run-length coded strings

*H. Bunke, tJ. Csirik

“Institut fiir Informatik, Universit5t Bern, Switzerland
tDepartment of Applied Computer Science, University of Szeged, Hungary

Abstract

We give an algorithm for measuring the similarity of run-
length coded strings. In run-length coding, not all indi-
vidual symbols in a string are listed. Instead, one run
of identical consecutive symbols is coded by giving one
representative symbol together with its multiplicity. If
the strings under consideration consist of long runs of
identical symbols, significant reductions in memory and
access time can be achieved by run-length coding. Our
algorithm determines the minimum coat sequence of edit
operations needed to transform one string into another.
It uses as basic data structure an edit matrix similar to
the classical algorithm of Wagner and Fischer [1]. How-

ever, dependh-ig on the particular pair of strings to be
compared, only a part of this edit matrix usually needs
to be computed. In the worst case, our algorithm has
a time complexity of O(n . m), where n and m give the
lengths of the strings to be compared. In the best case,
the time complexity is O(k. /), where k and/ are the num-
bers of runs of identical symbols in the two strings under
comparison,

Introduction

String matching is a problem that constantly receives at-
tention in different areas of science and engineering. In
information processing, for example, there are applica-
tions such as text editing, text retrieval or file difference
checking that require the comparison of stringa of sym-
bols. In biology, there is a need to compare sequencer
of acids and proteins in order to answer questions re-
garding the evolution of organisms. Other applications
of string matching include the analysis of human speech,
or object recognition in images. Besides practical appli-
cations, string matching has been intensively studied in
the context of theoretical computer science.

Permission to copy without fee aii or part of this matariai is
grantad protided that the copias ara not mada or distributed for
diract commaroial advantage, the ACM copyright notioe and tha
titia of the publication and its date appear, and notice is given
that oopying is by permission of tha Association for Computing
Machhte~. To copy otharwise, or to rapubiish, requiras a fee
andlor epecifio permhion.
01992 AcM 0.8 Q791-502-X~2~002 /0137,..$l ,50

There aremany differentclasses of string matchingprob-
lems. In this paper we focus on approximate string
matching, i.e. on string distance computation baaed on
a set of edit operations. We are interested in measur-
ing the similarity of pairs of strings via the minimum
cost sequence of edit operations needed to transform one
string into the other. The first reference for this type
of string matching problem is [2]. Later the edit distance
was extensively studied and a close reiation to the longest
common subsequence problem was given. The method of
Wagner and Fischer is regarded as the standard reference
for the dynamic programming solution of this problem.
The time complexity of this method is O(n . m). Masek
and Paterson improved this bound to 0(n2f log n), using
the “Four Russians” method [3]. Other algorithms for
computing the edit distance of two strings on the basis
of their longest common subsequence have been given in
[4]-[6].

Depending on the particular application, it can be an
advantage to use a particular representation or cod-
ing method for the strings to be compared. One well
known and widely used method is run-length coding.
Here, one does not explicitly list all individual sym-
bols in a string, but considers mns of identical consec-
utive symbols and gives only one representative sym-
bol, together with its multiplicity, for each run. For
example, the run-length coding representation of the
string alalalalalazaaazuaasasa$ is a~a~a$ or, equiva-
lently, (al, 5)(az, 3)(as, 4). This coding scheme can re-
sult in significant memory and access time savings if the
strings under consideration consist of long runs of iden-
tical consecutive symbols. On the other hand, for a run
of length one, run-length coding requir- more memory
than the standard representation.

In this paper we consider the problem of distance compu-
tation of run-length coded strings. A brute force method
to solve this problem is to first reconstruct the standard,
full-length representation of the strings under considera-
tion from the run-length code, and then to apply one of
the known distance computation algorithms. However,

this approach needs additional effort for string decoding.

137

Also, it does not utilize the lower data rate of the run-
length code that may potentially lead to a speed-up of
the distance computation. In this paper we give a string
distance computation algorithm that operates directly on
the run-length representations of the strings under con-
sideration.

An extensive survey on string matching, including string
distance computation algorithms, has recently been given
[7]. An earlier reference that includes various applications
in molecular biology and human speech understanding is
[8]. Applications of string matching in computer vision
and pattern recognition have been reported in [9]-[10]. An
experimental study in the reduction of the computational
cost in template matching that results from run-length
coding has been described in [11],

Basic definitions

We are given two strings A = alaz... an and B =
blb2 . . . bm over a finite alphabet V. The problem we
would like to solve is the computation of the edit dis-
tance of A and B when A and B are given in run-length
coded form.

Let us denote the empty string by c. An edit opera-
tion is a pair (ci, cj) # (c, c), cil cj E V u {.s}. String B
results from string A through the edit operation (ci, cj)
(our notation for this will be A - B via (ci, Cj)) if
A = D1ciD21B = Ill cj Dz for some strings DI, DZ over
V. We call (ci, cj) a replacement if ci # c, Cj #C, a delete
if Cj = E and an insert if ci = c.

A sequence E of edit operations wiIl be called an edit
sequence. Let E = el, ez,..., ek be an edit sequence.
We will say that B is derivable from A via E if there
is a sequence of strings DO, DI, ..., Dk such that A =
Do, B = Dk and for 1 ~ i < k ~J-l + Di via ei.
Naturally, B is always derivable from A via a sequence
consisting of n deletes and m inserts.

A cost function 6 is a function assigning a non-negative
real number to each edit operation (ci, Cj). we can define
the cost of a sequence E = el, ez,. ... ek by

c5(E) = ~J(ei).
i=l

Now, the edit distance 8 of strings A and B can be defined
by

c$(A, B) = min{8(E)lB is derivable from A via E},

An algorithm for computing the edit distance 6(A, B) was
given by Wagner and Fischer [1]; their solution uses a

simple dynamic programming approach. Next, we briefij-
review this algorithm.

Let A(i, j) = aiai+l . . . aj and B(i, ~) = bibi+l . . .bj. FOI
short, we shall write Ai for a1a2 , , . ai, Bj for b1b2 , . . bj
and diti for t(A{, Bj). Wagner and Fischer’s algorithm
constructs a (n+ 1) x (m+ 1) edit matrix D = (di,j) with
indices running from O to n and from O to m. The first
row and column are simply given by

dO,OG 0, do,j = ~(c, Bj), di,o = 6(Ai, &)

and all others elements di,j are equal to Ji,j. Wagner and
Fischer proved that

d ~%J = min(di-l,j-l + ~(uitbj),

di-l,j + ~(ai,g),di,j-1 + ~(c,~j))

forl~i~n, l~j~m, and used this
to commte the elements in the edit matrix.

(o)

equation
Clearly,

6(A, B) = dm,~ and the algorithm uses O(n . m) elemen-
tary steps and O(n . m) space,

Throughout this paper, we will restrict our considerations
to cost functions where

i$(a, a) = O; f5(a, c) = c5(c,a) = l;a E V

and we will analyse the two most often used sub cases

1) 6(a, b) = 1; a, bEV; a#b (1)

2) 6(a, b)=2; a, b~V; a#b. (2)

General idea and computation of
the first submatrix

Let

A = (al, n1)(a2, n2).. .(ak,nk) and (3)

B = (bl, ml)(b2, m2).. .(bi, ml) with

ai, bi6V; n=n1+n2 +...+ nk; m=ml+~z +...+

w; ai#ai+l; ~j#~j+l; i=l,l.l; j=l, .,., i–l

138

b~’ bma ,.. bml

Do,o ~o,l Do,s ““” DO,I
1 1

a;1 DI,O DI,l D1,2 . . . Dl,l

a~2 D2,0 D2,1 D2,2 . . . D2,1

.

L& Dk,o Dk,l Dk,~ . . . Dk,l

Figure 1: Subdivision of the edit matrix

be two run-length coded strings that are to be compared.
We will call (aJ, ni) and (bj, mj) the i-th run of A and
the j-th run of 13, respectively. Our proposed algorithm
will be based on a subdivision of the edit matrix D into
submatrices D~~, i= 0,1,k. j= 0,1,i as shown
in Fig. 1. Similar to Wagner and Fischer’s algorithm,
the submatrix Di,j holds string distance values that arise
during the computation of the distance between the i-th
run of A and the j-th run of B.

The submatrix DO,O is a 1 x 1 matrix holding the value
O. The submatricea DO,l, Do,z,..., DO, I are of dimension
lxrnl,lx m2,lxrnlwithvaluee

DoJ=(tj +1, tj+2,...1tj+mj);

tj=tlll +?71a+. o.+t71j-l;

J- L...1J.
“- (4)

Similarly, the submatncea D1,o, D2,0,..., Dk,o are of di-
mension nl x I,na x 1,. . .)nk x 1 with values

D~,o=(8i +l)8i+2j . ..)8i+~j)t.

8i =?ll+?12+ . ..+?ll.l;

i=l,k. (5)

These submatrices Do,o, Do,j and Di,o hold the initial val-
ues similar to Wagner and Fischer’s algorithm.

For a concrete example, let V = {a, b, c},

A = (a, S)(b, 6)(a, 3)(c, 4)(b, 5),

B = (a, 12)(b, 4)(c, 7)(b, 9).

Then, the decomposition of the edit matrix into subma-
tricea and the initial values are shown in Fig. 2.

all b4 C7 bg
o 1 .,.12 13...16 17...23 24,..32
1

aa { Dl,l DI,2 D1,4
8
9

b6 ; D2,1
14

15

as ;
17

C4 ;
21

22

bs ; DK,I D5,4
26

Figure 2: An example of the subdivision of the edit matrix

Foranysubmatrix Di,j, i= 1,. ... k; j = 1,. ..iofan edit
matrix D we will call the element at the right lower corner
the final element of DiJ. The last row and laat column
of Di,j will be called the output row and output column
of DiJ, respectively. Furthermore, the final element of
Di-ld -1 together with the output (last) row of Di-l,j
will be called the input row of Di ~, and the final element
of Di _ lJ -1 together with the output (hat) column of
DiJ -1 will be called the input column of Dij. Formally,
with the notations of (4) and (5) the input row, input
column, output row and output column of Did are given
by

(d,i+ni,tj+l; d,i+tti)tj+a, . . . ,d,i+fiittj+mj)

(d#i+l,tj+mj,d#,+2,tj+mj, d,i+ni,,j+mj), respectively,

where i=l,k. j== l,. ... /.

For example, the matrix D1,1 in Fig. 2 has the input row

(0,1,2,..., 12) and the input column {0, 1,2,..., 8).

The overall goal of our computation ia the final element
of D, i.e. ~,m, as it is equal to the desired distance
4(A, B). An important observation for our algorithm is
that under certain circumstances to be analysed in more
detail below, it is poaaible to calculate the output row
and output column of any submatrix Di,j directly from

139

al al al .,. al

01 2 3 . . . ml
al 1 0 1 2 . . . ml-l

al 2 ..
.

al rq nl –1 nl-2 nl–3 . ..101 . . . ml-nl

Figure 3: Computation of submatrix ll,l; al = bl; cost
functions (1) and (2), ml ~ nl

bl bl bl . . . bl

o 1 2 3 . . . ml

all 123... ml
a12223 . . . ml

.
al nl nl nl nl . ..nl nl+ l.., ml

Figure 4: Computation of submatrix Dl,l; al # bl; cost
function (1)

its input row and input column, without the need for
an explicit computation of the interior elements of D{,j.
First, we consider the computation of the submatrix Dl,l.
The input row of this submatrix is DO,O together with
DO,l, and the input column is DO,O together with Dl,o.

Knowing the input row and input column, the output
row and output column of Dl,l can be given directly. It
depends only on the lengths nl and ml of the first runs
in A and B, respectively, and on whether al = bl or
al # bl. This can readily be seen in Figs 3 and 4. Figure
3 corresponds to the case where al = bl, and in Fig. 4, we
have al # bl. The values in Figs 3 and 4 are based on the
cost function (1). In Figs 3 and 4, we assume nl ~ ml.
The case nl > ml is similar.

For cost function (2) and al = 61, we get the same result

bl bl bl bl
O 1 2 3 . . . ml

al 1 2 3 4 . . . ml+l

al 2 3

al nl nl+l . . . nl + ml

Figure 5: Computation of submatrix DI,I; al # bl; cost
function (2)

as in Fig. 3. The submatrix D1,l for cost function (2)
and al # bl is shown in Fig. 5, again assuming nl ~ ml.
We conclude that in any case the output row and output
column of D1,l can be inferred directly from the input
row and input column, without the necessity to compute
any interior element of Dl,l.

Computation of the other subma-
trices

Under the two cost functions considered in this paper, any
element in an edit matrix will be a non-negative integer,
For the first submatrix Dl,l, both the input row and input
column are strictly monotonically increasing sequences of

integers of the form (O, 1,..., ml) and (0, 1,..., nl) , re-
spectively. In general, however, the input row and input
column of any of the other submatrices can be of different
form. For example, the output row and output column
in Fig. 3, which are of different form, correspond to the
input row of Dz,l and input column of D1,2.

For our algorithm, we split up the input rows and in-
put columns of any submatrix into sequences of integers
according to the following three different basic types:

●

●

●

A monotonically increasing coat sequence of the form
(s, s+1,..., s + t); s ~ O; t ~ 1. Such a sequence
will be denoted by (kc, t), where kc indicates the
type increasing and t is the length of the considered
sequence. The starting values of the sequence is not
important for our considerations.

A monotonically decreasing cost sequence of the form
(8,8 -l,..., s- t); s,t ~ 1;s ~ t. A sequence of
this form will be denoted by (dec, t), similarly to an
increasing sequence.

A sequence of constant cost vahea (8, 8,...,8) with

t + 1-~ 1 occurrences of the value”s ~ O. Such a
sequence will be represented by (eq, t).

Given these basic types, any input or output row or col-
umnofasubmatrix Di,j, i= 1,. ... k; j = 1, ...,/ will
be represented by the sequence of ita basic typea

(typel, tI), (type2, tz),..., (typeIV, tN) (6)

where typei E {inc, dec, eg}; ti ~ 1; i = 1, ..., N.

For example, the last row of the matrix in Fig. 3 will be
represented by

((dec, nl), (inc, ml - nl))

140

and the last row in Fig. 4 by

((eg, n~), (hat, ml - n~)).

As a possible generalization of the procedure for the cal-
culation of D1,l, one could think of giving rules for di-
rectly computing the output row and output column of
any of the other submatrices DJJ, i = 1, ..,, k; j =
1,..., 1; (i, j) # (1, 1). However, this is not feasible as
many such rules may be necessary. Instead, we further
subdivide each submatrix Did into a number of smaller
submatricea according to the subsequences of bssic type
of its input row and input column. Below, we give rules
for the processing of these smaller submatrices. Similarly
as in Section 3, the output row and output column of
each of these smaller submatricee can be immediately d+
termined from its input row and input column without
computing any of the interior elements, given the corre
spending parts of the stnng8 A and B. Since there are
three basic typea of sequences of cost values, we have to
consider a total of nine different cases for both ai = bj
and ai # bj. Firat, we assume a cost function according

to (l). Let a: and by be two subsequences of A and B,
respectively, that are to be compared. We analyse only
the first subcaaes in details.

Case A: ai = bj

All. Input column: ((inc, /1))
Input row: ((inc, /2))
H 11< [2, then

output column: ((dec, /1))
output row: ((dec, /1), (inc, il - /1))

If/1 > /2, then
output column: ((dec, Iz), (inc, II - Iz))
output row: ((dec, iz))

In either case, the element in the left upper corner of the
submatrix Di+l,j+l is given by di+lJ+l = did + Iil - ~21.

B1l. Input column: ((inc, /1))
Input row: ((inc, /z))
If 11 ~ 12, then

output column: ((eq, /1))
output row: ((eq, 11), (inc, la - /1))

If 11>12, then
output column: ((eq, /2), (inc, /1 - /2))
output row: ((eg, /2))

A similar case analysis can be made for the cost function
(2). Here, any input or output row or column consists of
only increasing or decreasing basic cost sequences. Equal
cost runs do not occur. We give the full analysis in Case
C and omit it in Case D.

Case C: ai = bj

Clld

C12.

C21,

C22.

Input column: ((inc, r~))
Input row: ((inc, /z))
If 11 ~ 12, then

output column: ((dec, ii))
output row: ((dec, /1), (inc, 12 – /1))

If 11> /2, then
output column: ((dec, 12),(inc, 11- /2))
output row: ((dec, /2))

Input column: ((inc, /1))
Input row: ((dec, /2))
Output column: ((inc, /1))
Output row: ((dec, /2))

Input column: ((dec, /1))
Input row: ((inc, /z))
Output column: ((dec, /1))
Output row: ((inc, /2))

Input column: ((dec, Zl))
Input row: ((dec, /2))
If/1 ~ /2, then

output column: ((inc, 11))
output row: ((inc, /1), (dec, /2 - 11))

If 11>12, then
output column: ((inc, /2), (dec, 11— [z))
output row: ((inc, /2))

Case D: ai # bj

We can see that in all cases the output vectors contain
only increasing or decreasing parts; equal runs do not
occur. Thus, we really have only the subcasea discussed
above.

Overall algorithm

We are now ready to give the overall algorithm
for distance computation of run-length coded strings.
Given A and B according to (3), the initial matrices
Dojo, Do)l, D0,2, Do,l and DI,o, D2,0, . . . Dk,o can be

141

computed according to (4,5). Then, we compute the out-
put row and output column of D1,l aa described in section
3. Next, we continue with the computation of D1,2. Its
input row and input column are known from the com-
putation of DO,l, D0,2 and D1,I. The input row of D1,2
consists of only one sequence of cost values of basic type,
If its input column also consists of only one sequence of
basic type (this is the case, for example, if nl ~ ml; see
case Al 1 in Section 4), then we can immediately deter-
mine the output row and output column of DI, z according
to the case analysis given is Section 4. If the input col-
umn of D1,2 consists of more than one basic cost sequence,
then we subdivide D1,2 into submatrices, each of which
will be handled in exactly the same way as D1,2. Having
determined the output row and output column of Dl,z,
we continue with D1,3, D1,4, . . ., Dl,l.

After the computation of the output rows and output
columns of these matrices, we know the input rows for
each of D2,1, D2,2, D2,1 and we also know the input
column for D2,1. Thusj we proceed with D2,1 and then
with D2,2, D2,3, D2,1 splitting each submatrix that is

encountered into smaller submatricea depending on the
number of cost sequences of basic type occurring at any of
the input rows or input columns. This process is repeated
until the output row and column of Dk,l are known.

Let us turn to our example in Fig. 2, using the coat func-
tion according to (l). Here, the input row for Dl,l is of
type ((inc, 12)) and the input column is of type ((inc, 8)).
As both letters are the same, we have to use Al 1, subcase
II ~ 12. Hence, the last row is of type ((dec, 8)(inc, 4)),

and the last column is ((dec, 8)). Now the input column of
D1,2 is ((dec, 8)), and the input row is ((inc, 4)). The let-
ters are different, so we have to use B31. Hence, the out-
put column is ((dec, 8)) (=input column of D1,3), and the
output row is ((inc, 4)). Accordingly, the output columns
of D1,3 and D1,4 are the same, while the output row of
Dl,s is ((inc, 7)) and that of D1,4 is ((inc, 9)).

We continue now with submatricea D2,1, D2,2 D2,4.
The input column of D2,1, is ((inc, 6)), and the input
row is ((dec, 8), (inc, 4)). The letters are different. To
get the outputs, we have determine the intermediate col-
umn where the basic parts of the sequence of the input

row meet. Hence, the input column in the next step is
((inc, 6)) and the input row is (dec, 8). We have to use
B13. The output row will be ((dec, 8)) and the output
column ((inc, 6)). The latter is the input column of the
second part of D2,1. The input row is ((inc, 4)). We have
to use B11, sub case 11 > 12. Then, the last column is
((eq, 4), (inc, 2)) and the last row is ((eq, 4)). Thus, the
output row of D2,1 is ((dec, 8), (eq, 4)), and the output
column is ((eq, 4), (inc, 2)).

Now we should continue with Dz,a. Here the input col-

umn has two basic parts, and so we have to divide up

the computation. So far we have used a row-by-row al-

gorithm. However, the algorithm is much easier to pro-
gram if we compute the upper part of D2,2 and then con-
tinue with the upper parts of further submatrices D2,3
and D2,4. The computation of the remaining submatri-
ces is done in a similar way.

Computational complexity, re-
marks, and summary

The algorithm is easy to program if we use pointers show-
ing the border rows and columns of all submatrices,. and
add further pointers if an output vector is divided up into
more than one basic part.

We have to consider all submatrices D ~,,J, and so a lower
bound of the computational complexity is fl(k. l). In the
worst case, we end up, after processing some submatri-
cea, with a subdivision of the complete edit matrix into
subblocks of size 1 x 1. This results in a worst time com-
plexity of O(n . m). Generally, the actual runtime of the
algorithm depends on the lengths of the runs. The longer
the runs in A and B, the faster the algorithm.

However, for cost function (2) and the special case where
all runs in A and B are of equal length, i.e. nl = n2 =
. . . =nk=ml=mz =...= ml, the actual time com-
plexity reaches the lower bound. This can easily be seen
from cases C and D in Section 4, as only non-quadratic
matrices will be split into smaller submatrices. In order
to obtain the final element of Dk,1 holding the string dis-
tance 6(A, B) we actually have to compute only the final
element and the basic type of the output row and output
column of each submatrix Di,j; i = 1, . . .,k; ~ = 1,1.

However, these entities can be immediately inferred from
the final element of Di-l,j-l and the input row and input
column of DiJ. Hence, there is no need to explicitly com-
pute all values in the input and output rows and columns,
and the total number of operations to obtain 6(A, B) is
O(k . l),

One can naturally ask whether an essier computation is
possible without the restriction that all runs in A and
B are of equal length. The first idea would be to use
a dynamic programming-type approach for submatrices,
similarly to the basic algorithm of Wagner and Fisher,
More precisely, let DiJ be some submatrix in D with
input vectors of lengths /1 (column) and /2 (row). Let di,j
and di+l,j+l be the final elements of Di-l,j -: and Di,j ,

respectively, and let diti+l and di+l,~ be the last elements
of input row and input column of the Di ,j, respectively.

Then, a simple generalization of (0) would give

142

References

di+l,j+l = min(dij + max(~l, ~z), di~+l + ~1,~i+l,j + h)

(7)

if the letters are different, and

otherwise.

Now, we can see that this approach can not be used even
for the easier cost function (2). It can be proved in a
somewhat tiresome way that formula (7) is valid, i.e. we
could use the classical dynamic programming approach
for different letters. However, (8) does not hold. We can
see this in our example, at submatrix DS,l. This is as
follows (using full notation)

14 13 12 11 10 : 8766666

1514131211109876 666
a 1615141312111098 7666

171615141312111098 766

Here, formula (8) is clearly not valid. The reason for this
is simply the fact that the input row consists of different
basic types of cost sequences, and this will influence the
right bottom comer of the matrix. Naturally, we can-
not use only (7) aa a speeding-up method, because this
formula does not give us the basic parts necessary for
computations at the submatricea with the same letters,
as we have seen.

In summary, we have given an algorithm for edit distance
computation of run-length coded strings. It determines
the minimum cost sequence of edit operations needed to
transform one string into another. The algorithm uses
as basic data structure an edit matrix similar to the one
of the algorithm by Wagner and Fisher [1]. However,
depending on the particular strings to be compared, on!y
a part of this edit matrix needs to be computed. We have
discussed two special cases of the cost function where (1)
all deletions, insertions, and substitutions have cost equal
to one, and (2) deletions and insertions have cost equal
to one while substitutions have cost equal to two. In
the worst case, our algorithm has a time complexity of
O(rI -m), where n and m give the lengths of the two strings
to be compared. In the beat case, the time complexity is
O(k. 1) where k and 1 are the numbers of runs of identical
symbols in the two strings under comparison.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

Wagner, R. A./Fischer, M. J.: The string-to-string
correction problem. Journal of the ACM, Vol. 21, No.
1, 1974, 168-173.

Levensthtein, V. I.: Binary codes capable of correct-
ing deletions, insertions, and reversals. Cybernetics
and Control Theory, Vol. 10, No. 8, 1966, 707-710.

Masek, W. J./Paterson, M. S.: A faster algorithm
for comparing string-edit distances. Journal of Com-
puter and System Scienca, Vol. 20, No 1, 1980, 18-
31.

Hunt, J.W./Szymanski, T. G.: A fast algorithm for
computing longest common subsequences. CACM,
Vol. 20, No. 5, 1977, 350-353.

Myers, E.W.: An O(IVD) difference algorithm and
its variations. Algorithmic, Vol. 1, 1986, 251-266.

Ukkonen, E.: Algorithms for approximate string
matching. Inform. and Control, Vol. 64, 1985, 100-
118.

Aho, A.V.: Algorithms for finding patterns in
strings. In J. van Leeuwen (cd.): Handbook of theo-
retical computer science. Elzevier Science Publishers
B. V., 1990, 255-300.

Sankoff, D./Kruskal, J.B, (eds.): Time warps, string
edits, and macromolecules; the theory and practice
of sequence compassion. Addison Wesley Publ. Co.,
Reading, Ma., 1983.

Maes, M.: Polygonal shape recognition using string
matching techniques. Pattern Recognition, Vol. 24,
No. 5, 1991,433-440.

Wang, Y. P./Pavlidis, T.: Optimal correspondences
of string subsequences. In Baird, H. (cd.): SSPR 90,
Preproceedings International Association for Pattern
Recognition Workshop on Syntactic and Structural
Pattern Recognition, Murray Hill, New Jersey, 1990,
460-479.

Margalit, A./Rozenfeld, A.: Reducing the expected
computational cost of template matching using run
length representation. Pattern Recognition Letters
11, 1990, 255-265.

143

