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Abstract. The problems of sorting by reversals and sorting by transpositions have been studied
because of their applications to genome comparison. Prior studies of both problems have assumed
that the sequences to be compared (or sorted) contain no duplicates, but there is a natural gener-
alization in which the sequences are allowed to contain repeated characters. In this paper we study
primarily the versions of these problems in which the strings to be compared are drawn from a binary
alphabet. We obtain upper and lower bounds for reversal and transposition distance and show that
the problem of finding reversal distance between binary strings, and therefore between strings over
an arbitrary fixed-size alphabet, is NP-hard.
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1. Introduction.

1.1. Reversals and transpositions over permutations. The reversal dis-
tance and the transposition distance between two permutations (and the related prob-
lems of sorting by reversals and sorting by transpositions) are used to estimate the
number of global mutations between genomes and can be used by molecular biologists
to infer evolutionary and functional relationships between genomes. A reversal (or
inversion) involves reversing the order of elements in a substring of the permutation.
More formally, the reversal ρ(i, j) (1 ≤ i < j ≤ n) transforms the permutation π of
{1, 2, . . . , n} into π′, where

π′(k) =
{

π(i+ j − k) if i ≤ k ≤ j,
π(k) otherwise.

A transposition involves swapping two adjacent substrings of the permutation. More
formally, the transposition τ(i, j, k) (1 ≤ i < j < k ≤ n+ 1) transforms the permuta-
tion π of {1, 2, . . . , n} into π′, where

π′(m) =




π(m+ j − i) if i ≤ m < i+ k − j,
π(m− k + j) if i+ k − j ≤ m < k,
π(m) otherwise.

Sorting by reversals is the problem of finding the minimum number dr(π) of reversals
needed to transform a given permutation π into the identity permutation ı. Sorting by
transpositions is the analogous problem of determining dt(π), the minimum number
of transpositions needed to transform π into ı. The functions dr(π) and dt(π) are
known as the reversal distance and transposition distance, respectively, of π.

In the context of sorting by reversals, Kececioglu and Sankoff [14] introduced the
concept of a breakpoint. A permutation π of {1, 2, . . . , n} has a breakpoint at position
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194 DAVID A. CHRISTIE AND ROBERT W. IRVING

i if |π(i)− π(i− 1)| �= 1. (Special elements π(0) = 0 and π(n+ 1) = n+ 1 are added
so that breakpoints at the ends of the permutation are included.) Consideration of
breakpoints leads to simple lower and upper bounds for reversal distance [14]. The
reversal diameter of the symmetric group Sn is the maximum value of dr(π) over
all permutations of length n. Bafna and Pevzner [1] have proved that the reversal
diameter of Sn is n− 1 and is achieved by only two permutations of length n.

In the transposition case, Bafna and Pevzner [2] defined breakpoints slightly dif-
ferently. Here, π has a breakpoint at position i if π(i)− π(i− 1) �= 1, and once again,
consideration of breakpoints leads to simple lower and upper bounds for transposition
distance [2]. The transposition diameter of Sn is the maximum value of dt(π) over all
permutations of length n. The transposition diameter of Sn has not been resolved,
but Bafna and Pevzner [2] have shown that it lies somewhere between n/2 + 1 and
3n/4.

Caprara [4] (see also [5]) has shown that sorting by reversals is NP-hard. Earlier,
Kececioglu and Sankoff [14] had found a simple 2-approximation algorithm and Bafna
and Pevzner [1] a 7/4-approximation algorithm. Christie [7] has obtained a 3/2-
approximation algorithm, which is the best currently known for this problem.

There is a variation of sorting by reversals in which each element of the permu-
tation is given a sign “+” or “−” that is flipped when the element is involved in a
reversal. Perhaps surprisingly, this version of the problem is solvable in polynomial
time, as was proved by Hannenhalli and Pevzner [11] (see also [12]). Their algorithm
to find signed reversal distance has been improved and simplified by Berman and
Hannenhalli [3] and also by Kaplan, Shamir, and Tarjan [13].

Sorting by transpositions is less well understood than sorting by reversals, and in
particular, the complexity of sorting by transpositions remains open. However, Bafna
and Pevzner [2] have described a 3/2-approximation algorithm for the problem.

1.2. Reversals and transpositions over strings. In the context of genome
comparisons, duplicate genes can occur, so that the permutation model is not always
the appropriate one. In this paper, we define reversal distance and transposition dis-
tance on strings and investigate these new problems, which are of interest in their
own right, focusing primarily on the case of a binary alphabet. However, some of the
bounds that we establish can be extended to arbitrary fixed-size alphabets, and our
main NP-hardness result—for reversal distance over a binary alphabet—immediately
implies NP-hardness of the corresponding problem over an arbitrary fixed-size alpha-
bet.

For permutations, transforming π into ρ is equivalent to transforming ρ−1·π into
ı. However, there is no direct analogue of this result for strings. Therefore in this
context the problems are expressed in terms of the distance between two strings.

For strings S and T , the reversal distance dr(S, T ) between S and T is the min-
imum number of reversals required to transform S into T ; and the transposition
distance dt(S, T ) is the minimum number of transpositions required to transform S
into T . It is impossible to insert or delete characters using reversals or transpositions,
so in each case T must be a rearrangement of S. We say that S and T are related if
T is a rearrangement of S.

Note that the sorting problem on permutations is a special case of the distance
problem on strings. Therefore, for reversals and transpositions, the distance problem
on strings is at least as hard as the sorting problem on permutations. Thus, finding the
reversal distance between strings is NP-hard since sorting permutations by reversals is
NP-hard. However, if the strings are drawn from a fixed-size alphabet, then minimally

D
ow

nl
oa

de
d 

07
/2

8/
15

 to
 1

40
.1

17
.1

68
.6

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



SORTING STRINGS BY REVERSALS AND BY TRANSPOSITIONS 195

sorting a permutation is no longer a special case of finding the distance between
two strings, and the hardness of sorting permutations by reversals does not imply a
corresponding result for sorting strings by reversals in this case.

The remainder of the paper is organized as follows. Section 2 introduces ap-
propriate terminology and notation. Section 3 is devoted to reversals and section 4
to transpositions. In these two sections lower bounds, upper bounds, and diameter
results are described for each problem, respectively. In section 5 it is proved that
the generalized version of sorting by reversals is NP-hard, even when the strings are
drawn from a binary alphabet. In the final section we compare and contrast the
results obtained for binary strings with the known results for sorting problems over
permutations.

2. Terminology and notation. We denote the ith symbol of a string S by
S(i). A reversal on a string will be represented by enclosing in brackets the substring
to be reversed. For example, 0[1010110]1 = 001101011. A similar notation, in which
two adjacent substrings are bracketed, will be used to describe transpositions—for
instance, 0[10][1011]01 = 010111001.

Let 0k represent a string of zeros of length k, 1k a string of ones of length k, and,
in general, let Sk (or (S)

k
) represent the string obtained by concatenating k copies of

S for any string S. We use S ·T , or simply ST , to denote the concatenation of strings
S and T , and we define a string concatenation operation (

∑
) that can be used in a

similar way to summation. For example,
∑3

i=1(0
i1) = 010010001. We also use the

standard notation S+ to represent the concatenation of one or more copies of S and
S∗ the concatenation of zero or more copies of S.

Let Bn be the set of binary strings of length n. For a particular transformation,
the diameter of Bn is the maximum distance between any two related binary strings
of length n. Define Ek = 0

k1k and Ck = (10)
k
. For example, E4 = 00001111 and

C4 = 10101010. These strings are particularly useful for establishing diameter results
in later sections.

Let S represent the string derived from S by switching ones and zeros, and let SR

represent the string S in reverse order. Therefore, for example, if S = 0100110001,

then S = 1011001110, SR = 1000110010, and S
R
= 0111001101.

Strings X and Y are isomorphic to strings S and T if

(i) X = S and Y = T , or X = T and Y = S, or
(ii) X = S and Y = T , or X = T and Y = S, or
(iii) X = SR and Y = TR, or X = TR and Y = SR, or

(iv) X = S
R
and Y = T

R
, or X = T

R
and Y = S

R
.

In other words, the pairs {X,Y } and {S, T} are isomorphic if one pair can be ob-
tained from the other by a fixed permutation of the alphabet, followed by an optional
complete reversal of both strings in the pair. This version of the definition applies
equally to strings over an arbitrary alphabet. Obviously, if X and Y are isomorphic
to S and T , then dr(X,Y ) = dr(S, T ) and dt(X,Y ) = dt(S, T ).

Define lcp(S, T ) and lcs(S, T ) to be the lengths of the longest common prefix and
the longest common suffix, respectively, of S and T .

A block of zeros is a maximal length substring that consists only of the character
0. A block of ones is defined similarly. Let b(S) denote the total number of blocks
in S and z(S) denote the number of blocks of zeros in S. Therefore, for example,
b(001110101) = 6 and z(001110101) = 3.

Finally, we represent by . . . an arbitrary substring of length ≥ 0. For example,
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196 DAVID A. CHRISTIE AND ROBERT W. IRVING

if S has prefix “01,” a substring “00,” and suffix “11,” then we could write S =
01 . . . 00 . . . 11.

3. Reversal distance between binary strings. In this section, we describe a
lower bound and an upper bound for reversal distance between binary strings. These
bounds are then used to determine the reversal diameter of Bn and also to identify
some strings that achieve this reversal diameter. A restricted version of the problem,
that is in some sense analogous to sorting permutations by reversals, is shown to be
solvable in polynomial time. However, in section 5 the general problem of determining
reversal distance between two (binary) strings is shown to be NP-hard.

3.1. A lower bound. We first adapt the concept of breakpoint from permu-
tation sorting problems for use in the context of string sorting. This new kind of
breakpoint is then used to establish a lower bound for reversal distance. Recall that,
for permutations, two elements form a breakpoint if they are adjacent in π but not
adjacent in the identity permutation. Substrings of length two represent adjacencies
in strings S and T , so our definition of breakpoints on strings will be based on these
substrings.

If S contains more “00” substrings than T , then each extra “00” must be broken,
by a reversal, at some time in the transformation from S into T . Each extra “00” in S
is an example of a reversal breakpoint. An obvious difference between breakpoints on
strings and on permutations is that, on strings, the specific location of a breakpoint
may not necessarily be identified. For instance, if S contains three “00” substrings
and T contains only two “00” substrings, then one of the “00” substrings in S is
a breakpoint, but no particular “00” substring of S is identified as the breakpoint.
Breakpoints also occur for “01,” “10,” and “11” substrings as well. However, be-
cause reversals can convert “01” substrings into “10” substrings and vice versa, these
substrings must be counted together when considering reversal breakpoints.

Breakpoints can also be contributed from the beginning and end of the strings.
For example, if S(1) �= T (1), then position one contributes a breakpoint. In order
to deal with these breakpoints, S and T are extended by adding special characters
α at the beginning and ω at the end of both strings. These breakpoints can then be
counted by comparing the number of occurrences of the substrings “α0,” “α1,” “0ω,”
and “1ω” in both strings. Adding α and ω to S and T is similar to adding 0 and n+1
to π when dealing with permutations.

The number of times the substring “ab” occurs in S, i.e., the frequency count
for “ab” in S, is denoted by fab(S), where a, b ∈ {α, 0, 1, ω}. We also assume, for
convenience, α < 0 < 1 < ω.

We now define the number of reversal breakpoints between S and T , br(S, T ) to
be

br(S, T ) =
∑

α≤a<b≤ω

δ(fab(S) + fba(S)− fab(T )− fba(T )) +
∑

0≤a≤1

δ(faa(S)− faa(T )),

where

δ(x) = x if x > 0 and 0 otherwise.

Clearly, if S = T , then br(S, T ) = 0. However, it is possible to have br(S, T ) = 0,
even when S �= T , for example, if S = 100101 and T = 101001.

Note that, although the definition of the number of breakpoints is not symmetric
with respect to the two strings S and T , it is easy to see that br(S, T ) = br(T, S).
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SORTING STRINGS BY REVERSALS AND BY TRANSPOSITIONS 197

We now derive a lower bound for reversal distance based on these breakpoints.
Lemma 3.1. Suppose that S′ is obtained from S by a single reversal. Then

br(S
′, T ) ≥ br(S, T )− 2.

Proof. A reversal on S cuts two substrings of length two in the extended version
of S. Hence the number of breakpoints can be reduced by at most two as a result of
such a reversal, and the result follows.

This lemma can be used to easily deduce the following lower bound for reversal
distance.

Theorem 3.2. Let S and T be related binary strings. Then

dr(S, T ) ≥ �br(S, T )/2�.
It is easy to find examples for which this lower bound is not tight; e.g., if S =

0011000111 and T = 1110011000, then br(S, T ) = 2 and dr(S, T ) = 2 �= �br(S, T )/2�.
The definition of a reversal breakpoint for binary strings, together with the bound

of Theorem 3.2, can be generalized in a straightforward way to strings over larger
alphabets.

3.2. An upper bound. In this section we derive a simple upper bound on
reversal distance for binary strings.

Lemma 3.3. Let S and T be related strings of length n such that S �= T . Then it
is possible either

(a) to apply a reversal on S resulting in the string S′, such that
lcp(S′, T ) + lcs(S′, T ) ≥ lcp(S, T ) + lcs(S, T ) + 2, or
(b) to apply a reversal on T resulting in the string T ′ such that
lcp(S, T ′) + lcs(S, T ′) ≥ lcp(S, T ) + lcs(S, T ) + 2.

Proof. Without loss of generality, it can be assumed that S(1) = 0, since otherwise
we could consider S and T and apply the resulting reversal to S or T . Further, it can
be assumed that S(1) �= T (1), and S(n) �= T (n), because otherwise we could reduce
n by removing any common prefix or suffix from both strings.

The reversal applied to S or T depends on S and T . We describe seven cases and
show a reversal with the required property in each case. (Each case is considered only
if S and T fail to meet the conditions of any of the earlier cases, and the cases are
thereby mutually exclusive.)

Case (i). S(n) = 1: then S = 0 . . . 1 and T = 1 . . . 0, so take S′ = [0 . . . 1].
Case (ii). T (2) = 0: then S = 0 . . . 0 and T = 10 . . . 1, so take S′ = [0+1] . . . 0.
Case (iii). T (n − 1) = 0: then S = 0 . . . 0 and T = 11 . . . 01, so, by considering

SR and TR, this case can be dealt with in a similar way to Case (ii).
Case (iv). f11(S) > 0: then S = 0 . . . 11 . . . 0 and T = 11 . . . 11, so take S′ =

[0+(10+)∗11] . . . 0.
Case (v). S(2) = 1: then S = 01 . . . 0 and T = 11 . . . 11, so, by considering T and

S, this case can be dealt with in a similar way to Case (ii).
Case (vi). S(n− 1) = 1: then S = 00 . . . 10 and T = 11 . . . 11, so, by considering

T
R
and S

R
, this case can be dealt with in a similar way to Case (ii).

Case (vii). f00(T ) > 0: then S = 00 . . . 00 and T = 11 . . . 00 . . . 11, so, by
considering T and S, this case can be dealt with in a similar way to Case (iv).

This completes the proof because Cases (i)–(iv) can fail to apply only if S contains
more zeros than ones, whereas Cases (i) and (v)–(vii) can fail to apply only if T
contains more ones than zeros.
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198 DAVID A. CHRISTIE AND ROBERT W. IRVING

Theorem 3.4. Let S and T be related binary strings of length n. Then

dr(S, T ) ≤ 
n/2�.

Proof. Lemma 3.3 describes a way to increase the combined length of the common
prefix and suffix of S and T by at least two using a single reversal. Therefore a
sequence of 
n/2� such reversals will be enough to transform S into T .

For example, if S = 010101010 and T = 110000011, then applying reversals as
described in the proof of Lemma 3.3 results in the following sequence of strings:

0 1 [ 0 1 ] 0 1 0 1 0
0 1 1 0 0 [ 1 0 1 0 ]
0 1 1 0 0 0 [ 1 0 ] 1
[ 0 1 1 ] 0 0 0 0 1 1
1 1 0 0 0 0 0 1 1

Note that the first reversal found by the proof of Lemma 3.3 is the one that
reverses the first three symbols of T , and so it is the last reversal shown in the
illustration.

3.3. Reversal diameter of Bn. The reversal diameter, Dr(n), of Bn is defined
to be the maximum value of dr(S, T ) over all related binary strings S and T of length
n. More formally

Dr(n) = max{dr(S, T ) : S, T are related binary strings of length n}.

Lemma 3.5. ∀k ≥ 1, dr(Ek, Ck) = k and dr(0 · Ek, 0 · Ck) = k.
Proof. This follows at once by application of Theorems 3.2 and 3.4 to these

strings.
Theorem 3.6. ∀n ≥ 1, Dr(n) = 
n/2�.
Proof. This is an immediate consequence of Theorem 3.4 and Lemma 3.5.
Theorem 3.7. Let S and T be related binary strings of length 2n ≥ 6. Then

dr(S, T ) = n if and only if S and T are isomorphic to Cn and En.
Proof. We prove this theorem by induction. The base case is when n = 3. Then,

by complete search, it may be verified that dr(S, T ) = 3 if and only if S and T are
isomorphic to E3 and C3. Now suppose that the theorem holds when n ≤ k. Let S
and T be strings of length 2k + 2 such that dr(S, T ) = k + 1. We show that S and T
are isomorphic to Ck+1 and Ek+1.

By Lemma 3.3, we can apply a reversal to S or T that increases the combined
length of the common prefix and suffix by at least two. Without loss of generality, we
can relabel S and T so that the reversal found in the proof of Lemma 3.3 is applied to
S resulting in the string S′. Furthermore, we can assume, without loss of generality,
that S(1) = 0.

It must be that lcp(S′, T )+ lcs(S′, T ) = 2 and dr(S′, T ) = k, since any alternative
would contradict dr(S, T ) = k+1. Let S′

e and Te be the strings S
′ and T excluding any

common prefix and suffix. By the induction hypothesis, S′
e and Te must be isomorphic

to Ek and Ck. Therefore, since Ek = Ek
R and Ck = Ck

R, either (a) S′
e = Ek and

Te = Ck, or (b) S
′
e = Ck and Te = Ek, or (c) S

′
e = Ek

R and Te = Ck
R, or (d)

S′
e = Ck

R and Te = Ek
R.

By the proof of Lemma 3.3 there are essentially three ways that the reversal can
be applied to S, as typified by Cases (i), (ii), and (iv) in that proof. We take each
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SORTING STRINGS BY REVERSALS AND BY TRANSPOSITIONS 199

of these three cases in turn and show that for the four possible values of S′
e and Te,

dr(S, T ) = k + 1 if and only if S and T are isomorphic to Ek+1 and Ck+1.

Case (i). S = 0 . . . 1, T = 1 . . . 0. In this case the whole of S is reversed. We show
that cases (a) and (b) for S′

e and Te lead to contradictions, whereas cases (c) and (d)
establish the induction step.

(a) S = 0·Ek
R ·1 = 0·1k ·0k ·1 and T = 1·Ck ·0 = 1·(10)k ·0. Suppose that instead

of applying the reversal of Lemma 3.3 we apply the reversal [011]1k−2 ·0k ·1 to obtain
S′′. This reversal extends the common prefix by three characters, so dr(S′′, T ) < k.
Therefore dr(S, T ) < k + 1, a contradiction.

(b) S = 0 · Ck
R · 1 = 0 · (01)k · 1 and T = 1 · Ek · 0 = 1 · 0k · 1k · 0. These strings

are isomorphic to the strings in (a), so dr(S, T ) < k + 1, a contradiction.

(c) S = 0 · Ek · 1 = Ek+1 and T = 1 · Ck
R · 0 = Ck+1.

(d) S = 0 · Ck · 1 = Ck+1
R and T = 1 · Ek

R · 0 = Ek+1
R.

Case (ii). S = 0 . . . 0 and T = 10 . . . 1. In this case the reversal results in a string
S′ that has prefix “10.” Therefore S′

e and Te must be suffixes of S
′ and T . Now since

T ends with a 1, only cases (b) and (c) need to be considered. Both cases lead to a
contradiction.

(b) S′ = 10 · Ck = 10 · (10)k and T = 10 · Ek = 10 · 0k · 1k. The reversal on S

ends with the first “1” in S, so S = 01 · (10)k. Then the reversal [01101]0 · (10)k−2

produces string S′′ that has dr(S′′, T ) < k by the induction hypothesis. Therefore
dr(S, T ) < k + 1, a contradiction.

(c) S′ = 10 · Ek
R = 10 · 1k · 0k and T = 10 · Ck

R = 10 · (01)k. Therefore
S = 01 · 1k · 0k, because the reversal on S ends with the first “1.” Then the reversal
01·1k−1[10k] results in a string S′′ that has dr(S′′, T ) < k by the induction hypothesis.
Therefore dr(S, T ) < k + 1, a contradiction.

Case (iv). S = 0 . . . 11 . . . 0 and T = 11 . . . 11. In this case the reversal is applied
to S to obtain a string S′ that has prefix 11. Therefore S′

e and Te must be suffixes of
S′ and T . Now, since T ends with “11” only case (b) need be considered. However,
in fact, even this case cannot occur.

(b) S′ = 11 · Ck = 11 · (10)k and T = 11 · Ek = 11 · 0k · 1k. However, then the
reversal on S could not have moved the first “11” substring in S. Therefore this case
cannot occur.

Therefore dr(S, T ) = k + 1 if and only if S and T are isomorphic to Ek+1 and
Ck+1. Therefore, by induction, we have proved the theorem.

Theorem 3.7 describes the strings of length n that achieve the reversal diameter
when n is even. When n is odd, significantly more pairs of strings achieve the reversal
diameter.

We note in passing that there appears to be no simple analogue of Lemma 3.3 in
the case of alphabet size > 2 and therefore no easy generalization of Theorem 3.6.

3.4. Sorting by reversals. Let Sı denote the string that is related to S and con-
sists only of a block of zeros, followed by a block of ones. For example, if S = 01100110,
then Sı = 00001111. Then determining dr(S, Sı) is an analogue of determining the
reversal distance of a permutation. We show that dr(S, Sı) can be determined in
polynomial time.

Recall that z(S) denotes the number of blocks of zeros contained in S. Obviously,
z(Sı) = 1 (unless S does not contain any zeros). The following lemma can be verified
easily.
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200 DAVID A. CHRISTIE AND ROBERT W. IRVING

Lemma 3.8. Let S′ be a string obtained from S by a single reversal. Then

z(S′) ≥ z(S)− 1.
With this lemma we can determine dr(S, Sı).
Theorem 3.9. For any binary string S,

dr(S, Sı) =

{
z(S)− 1 if S(1) = 0,
z(S) otherwise.

Proof. By Lemma 3.8, dr(S, Sı) ≥ z(S)− 1. If S(1) = 0, then z(S)− 1 reversals
of the form 0+[1+0+]1 . . . or 0+[1+0+] transform S into Sı. If S(1) = 1, then an
extra reversal is required because it is impossible to change the first symbol to a 0
and also reduce the value of z. This bound can be achieved by performing a reversal
[1 . . . 0]1 . . . or [1 . . . 0] before performing z(S) − 1 reversals as described for the case
S(1) = 0.

The distance described in Theorem 3.9 can be calculated easily in polynomial
time. In section 5 it is shown that, in general, determining dr(S, T ) is NP-hard.

4. Transposition distance between binary strings. In this section, we pre-
sent an upper bound and a lower bound for transposition distance between binary
strings. These bounds are used to determine the transposition diameter, and identify
some strings that achieve the diameter. A restricted version of the problem, that
is analogous to the problem of sorting by transpositions, is shown to be solvable in
polynomial time.

4.1. A lower bound. Again, it is the appropriate concept of a breakpoint that
is used to obtain a lower bound for transposition distance.

Transposition breakpoints are defined in a similar way to reversal breakpoints. For
example, if S contains more “11” substrings than T , then each extra “11” substring
contributes a breakpoint. However, a crucial difference between reversal breakpoints
and transposition breakpoints is that “01” and “10” substrings are counted separately,
since a transposition cannot transform one to the other. As before, we prepend α and
append ω to each string.

The number of transposition breakpoints is therefore

bt(S, T ) =
∑

a,b∈A

δ(fab(S)− fab(T )),

where A = {α, 0, 1, ω} and, as before,
δ(x) = x if x > 0 and 0 otherwise.

Clearly, if S = T , then bt(S, T ) = 0. However, it is possible that bt(S, T ) = 0,
even when S �= T , for example, if S = 101001 and T = 100101.

Lemma 4.1. Suppose that S′ is obtained from S by a single transposition. Then

bt(S
′, T ) ≥

{
bt(S, T )− 3 if S(1) �= S′(1) and S(n) �= S′(n),
bt(S, T )− 2 otherwise.

Proof. The transposition must have the form . . . a[b . . . c][d . . . e]f . . ., where a ∈
{α, 0, 1}, b, c, d, e ∈ {0, 1}, and f ∈ {0, 1, ω}. The transposition results in the string
. . . a[d . . . e][b . . . c]f . . .. Now let us suppose that the none of the substrings “ab,” “cd,”
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SORTING STRINGS BY REVERSALS AND BY TRANSPOSITIONS 201

or “ef” is the same as any of the substrings “ad,” “eb,” or “cf .” Then “cd”�=“cf ,”
so d �= f . Similarly, c �= a, b �= f , and e �= a. Now suppose that a �= α. Then c = e.
However, then “ef”=“cf”, a contradiction. Similarly if f �= ω, then “ab”=“ad.”
Therefore, if a �= α or f �= ω, then at least one of the substrings “ab,” “cd,” or “ef”
is the same as one of the substrings “ad,” “eb,” or “cf .”

If a transposition moves the first and last symbol of S, then at most three sub-
strings of length two may change as a result of the transposition. Given the definition
of bt(S

′, T ), this means that bt(S′, T ) ≥ bt(S, T ) − 3. However, if a transposition
does not move the first and last symbols of S, then at most two substrings of length
two may change as a result of the transposition. In such cases bt(S

′, T ) ≥ bt(S, T )
−2.

Theorem 4.2. Let S and T be related binary strings of length n. Then

dt(S, T ) ≥
{ �bt(S, T )/2� if S(1) = T (1), or S(n) = T (n),

�(bt(S, T )− 1)/2� otherwise.

Proof. A sequence of transpositions that transforms S into T can contain at most
one transposition that reduces the number of breakpoints by 3. Such a transposition
is only possible if S(1) �= T (1) and S(n) �= T (n). Every other transposition can
reduce the number of breakpoints by at most 2. The theorem follows easily from
these observations.

As before, it is easy to find examples for which this lower bound is not exact;
for example, if S = 011100110001 and T = 100011001110, then the bound is 1, but
dt(S, T ) = 2.

Again, the definition of a transposition breakpoint for binary strings together with
the bound of Theorem 4.2 can be directly extended to strings over larger alphabets.
For alphabets of size > 2, however, each transposition can reduce the number of
breakpoints by 3. Hence the extended version of Theorem 4.2 is as follows.

Theorem 4.3. Let S and T be related strings, of length n, over an alphabet of
size > 2. Then

dt(S, T ) ≥ �bt(S, T )/3�.
4.2. An upper bound. In this section a simple upper bound is derived for

transposition distance.
Lemma 4.4. Let S and T be related strings of length n such that S �= T . Then it

is possible either
(a) to apply a transposition to S resulting in a string S′ such that
lcp(S′, T ) + lcs(S′, T ) ≥ lcp(S, T ) + lcs(S, T ) + 2 or
(b) to apply a transposition to T resulting in a string T ′ such that
lcp(S, T ′) + lcs(S, T ′) ≥ lcp(S, T ) + lcs(S, T ) + 2.

Proof. Without loss of generality, it can be assumed that S(1) = 0, S(1) �= T (1),
and S(n) �= T (n). The transposition that is applied to S or T depends on S and
T . Three cases are described, and for each case a transposition is shown with the
required property. (Again, each case is considered only if S and T fail to meet the
conditions of any earlier case, making the cases mutually exclusive.)

Case (i). S(n) = 1: then S = 0 . . . 1 and T = 1 . . . 0, so take S′ = [0+][1 . . .].
Case (ii). f11(S) > 0: then S = 0 . . . 11 . . . 0 and T = 1 . . . 1, so take S′ =

[0+(10+)
∗
1][1 . . . 0].

Case (iii). f11(S) = 0 and f00(T ) > 0: then S = 0 . . . 0 and T = 1 . . . 00 . . . 1, so,
by considering T and S, this case is similar to Case (ii).
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202 DAVID A. CHRISTIE AND ROBERT W. IRVING

This completes the proof because Cases (i) and (ii) can fail to apply only if S
contains more zeros than ones, whereas Cases (i) and (iii) can fail to apply only if T
contains more ones than zeros.

Theorem 4.5. Let S and T be related binary strings of length n. Then

dt(S, T ) ≤ 
n/2�.
Proof. Lemma 4.4 describes a way to increase the combined length of the common

prefix and suffix of S and T by at least two using a single transposition. Therefore a
sequence of 
n/2� such transpositions will be enough to transform S into T .

4.3. Transposition diameter of Bn. The transposition diameter, Dt(n), of
Bn is the maximum value of dt(S, T ) taken over all related binary strings of length n.
More formally

Dt(n) = max{dt(S, T ) : S, T are related binary strings of length n}.
Lemma 4.6. ∀k ≥ 1, dt(Ek, Ck) = k and dt(0 · Ek, 0 · Ck) = k.
Proof. Both cases follow at once by application of Theorems 4.2 and 4.5.
Theorem 4.7. ∀n ≥ 1, Dt(n) = 
n/2�.
Proof. This is an immediate consequence of Theorem 4.5 and Lemma 4.6.
Theorem 4.8. Let S and T be related binary strings of length 2n ≥ 4. Then

dt(S, T ) = n if and only if S and T are isomorphic to Cn and En.
Proof. We prove this theorem by induction. The base case is when n = 2. Then,

by complete search, it may be verified that dt(S, T ) = 2 if and only if S and T are
isomorphic to E2 and C2. Now suppose that the theorem holds when n ≤ k. Let S
and T be strings of length 2k + 2 such that dt(S, T ) = k + 1. We show that S and T
are isomorphic to Ck+1 and Ek+1.

By Lemma 4.4 we can apply a transposition to S or T that increases the combined
length of the common prefix and suffix by at least two. Without loss of generality,
we can relabel S and T so that the transposition found in the proof of Lemma 4.4 is
applied to S resulting in the string S′. Furthermore, we can assume, without loss of
generality, that S(1) = 0.

It must be that lcp(S′, T )+ lcs(S′, T ) = 2 and dt(S′, T ) = k, since any alternative
would contradict dt(S, T ) = k + 1. Let S′

e and Te be the strings S
′ and T excluding

any common prefix and suffix. By the induction hypothesis, S′
e and Te must be

isomorphic to Ek and Ck. Therefore, either (a) S
′
e = Ek and Te = Ck, or (b) S

′
e = Ck

and Te = Ek, or (c) S
′
e = Ek

R and Te = Ck
R, or (d) S′

e = Ck
R and Te = Ek

R.
By the proof of Lemma 4.4, there are essentially two ways that the transposition

can be applied to S, as typified by Cases (i) and (ii) in that proof. We take each case
in turn and show that for the four possible values of S′

e and Te, dt(S, T ) = k + 1 if
and only if S and T are isomorphic to Ek+1 and Ck+1.

Case (i). S = 0 . . . 1, T = 1 . . . 0. In this case the transposition moves the block
of zeros at the front of S to the end. We show that cases (c) and (d) for S′

e and Te

establish the induction step, whereas cases (a) and (b) lead to contradictions.

(a) S′ = 1 · Ek · 0 = 1 · 0k · 1k · 0 and T = 1 · Ck · 0 = 1 · (10)k · 0. Therefore
S = 01 · 0k · 1k. However, then the transposition 0[100][0k−2 · 1k] produces a string
S′′ such that dt(S′′, T ) < k by the induction hypothesis. Therefore dt(S, T ) < k + 1,
giving a contradiction.

(b) S′ = 1 · Ck · 0 = 1 · (10)k · 0 and T = 1 · Ek · 0 = 1 · 0k · 1k · 0. Then
S = 001·(10)k−1 ·1. However, then the transposition [001·(10)k−1

][1] produces a string
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SORTING STRINGS BY REVERSALS AND BY TRANSPOSITIONS 203

S′′ such that dt(S′′, T ) < k by the induction hypothesis. Therefore dt(S, T ) < k + 1,
giving a contradiction.

(c) S′ = 1 · Ek
R · 0 = Ek+1

R and T = 1 · Ck
R · 0 = Ck+1. Therefore S = Ek+1.

(d) S′ = 1 · Ck
R · 0 = Ck+1 and T = 1 · Ek

R · 0 = Ek+1
R. Therefore S = Ck+1

R.
Case (ii). S = 0 . . . 11 . . . 0, T = 1 . . . 1. In this case the transposition applied to S

to obtain S′ is of the form [0+(10+)∗1][1 . . . 0]. Note that this transposition splits the
first occurrence of “11” in S. Note also that S′ must contain “00” and end with “01,”
so only Case (c) needs to be considered. However, this cases leads to contradiction.

(c) S′ = 1 · Ek
R · 1 = 1 · 1k · 0k · 1 and T = 1 · Ck

R · 1 = 1 · (01)k · 1. Then
S = 0+ · 1k+2 · 0+. However, the transposition 0+ · 1k[11][0+] produces a string S′′

such that dt(S
′′, T ) < k by the induction hypothesis. Therefore dt(S, T ) < k + 1,

giving a contradiction.
Therefore dt(S, T ) = k + 1 if and only if S and T are isomorphic to Ek+1 and

Ck+1. Therefore by induction the theorem is true.
Again, we note that there appears to be no direct analogue of Lemma 4.4 when

the alphabet size is > 2 and therefore no easy generalization of Theorem 4.7.

4.4. Sorting by transpositions. We show that dt(S, Sı) can be determined in
polynomial time. The following lemma can be verified easily.

Lemma 4.9. Let S′ be a string obtained from S by a single transposition. Then

z(S′) ≥ z(S)− 1.

With this lemma we can determine dt(S, Sı).
Theorem 4.10. For any binary string S,

dt(S, Sı) =

{
z(S)− 1 if S(1) = 0,
z(S) otherwise.

Proof. By Lemma 4.9, dt(S, Sı) ≥ z(S) − 1. If S(1) = 0, then z(S) − 1 trans-
positions of the form 0+[1+][0+]1 . . . or 0+[1+][0+] transform S into Sı. If S(1) = 1,
an extra transposition is required, because it is impossible to change the letter at the
front of the string to 0 with a transposition and also reduce the value of z. The bound
in this case can be achieved by performing the transposition [1+][0+]1 . . . or [1+][0+],
followed by the sequence of transpositions used when S(1) = 0.

The distance described in Theorem 4.10 can be calculated easily in polynomial
time. The question of whether, in general, the transposition distance between any
two strings can be calculated in polynomial time remains open.

5. NP-completeness of reversal distance. In this section, we prove that the
general problem of finding the reversal distance between two related strings is NP-
hard, even if the strings are drawn from a binary alphabet. We begin with a definition
of the reversal distance problem as a decision problem (RD):

RD
Instance: Related strings S and T of length n, over an alphabet of
size t ≥ 2, and a bound d ∈ Z+.
Question: Is dr(S, T ) ≤ d?

The proof consists of a pseudopolynomial transformation from 3-Partition to RD.
The definition of 3-Partition is as follows:

3-Partition
Instance: A set A of 3m elements, a bound B ∈ Z+, and a size

D
ow

nl
oa

de
d 

07
/2

8/
15

 to
 1

40
.1

17
.1

68
.6

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



204 DAVID A. CHRISTIE AND ROBERT W. IRVING

s(a) ∈ Z+ for each a ∈ A such that B/4 < s(a) < B/2 and such that∑
a∈A s(a) = mB.

Question: Can A be partitioned into m disjoint sets A1, A2, . . . , Am,
such that, for 1 ≤ i ≤ m,

∑
a∈Ai

s(a) = B? (Note that each Ai must
contain exactly three elements from A.)

Garey and Johnson [9] (see also Chapter 4.2 of [10]) have proved that 3-Partition
is NP-complete (in the strong sense). Therefore a pseudopolynomial transformation
from 3-Partition to RD is enough to prove that RD is NP-complete.

Theorem 5.1. RD is NP-complete, even when t = 2.

Proof. RD is in NP because, given a sequence of reversals, it can easily be checked
in polynomial time that the sequence transforms S into T and has length at most d.
We now describe the pseudopolynomial transformation from 3-Partition to RD.

Let I be an instance of 3-Partition. From this instance construct an instance, I ′,
of RD with S = (

∑3m−1
i=1 0s(ai)13) · 0s(a3m), T = (0B1)m · 18m−3, and d = 3m − 1.

Therefore the blocks of zeros in S represent elements of A and the lengths of the
blocks represent the sizes of the elements.

We first show that dr(S, T ) ≥ 3m− 1.
Let U be a string that is related to S and T . Recall that z(U) is the number

of blocks of zeros in the string U . Define o(U) as the number of blocks of ones of
length one in U . Then the function f(U) = z(U) − o(U) − 1 can be viewed as a
kind of distance function between strings U and T , since f(T ) = 0. Furthermore,
f(S) = 3m− 1. We show that, if U ′ is obtained from U by applying a single reversal,
then f(U ′) ≥ f(U)− 1.

Suppose that ρ is a reversal that transforms U into U ′ with f(U ′) < f(U). Then
ρ must reduce the number of blocks of zeros or increase the number of blocks of ones
of length one.

If ρ reduces the number blocks of zeros, then it must have the form . . . 1[0 . . . 1]0 . . .
or . . . 0[1 . . . 0]1 . . ., and therefore f(U) − f(U ′) = 1. Therefore it is impossible for ρ
to increase the number of blocks of ones of length one as well as reduce the number
of blocks of zeros.

If ρ increases the number of blocks of ones of length one, then it must be of
the form . . . 01[10 . . . 0]0 . . ., or . . . 1[10 . . . 11]0 . . ., or . . . 01[1 . . . 0]11 . . ., or the mir-
ror image of one of these three reversals. (Note the reversals . . . 01[11 . . . 0]0 . . . and
. . . 11[10 . . . 0]0 . . . do not reduce the value of f .) In each case f(U) − f(U ′) = 1.
Therefore dr(S, T ) ≥ 3m− 1.

Note that the first reversal in the previous paragraph is special because it increases
the number of blocks of length one by two but also increases the number of blocks of
zeros. We call this kind of reversal a bad reversal.

We now show that the given transformation from 3-Partition to an instance of
RD is a pseudopolynomial transformation. To do so we have to verify four standard
properties of a pseudopolynomial transformation [10, p. 101]. We verify these four
properties in turn.

For property (a), we have to show that I is a yes instance of 3-Partition if and
only if dr(S, T ) ≤ 3m− 1.

We have already shown that dr(S, T ) ≥ 3m− 1. We now show that if dr(S, T ) =
3m−1, then no minimal length sequence of reversals that transforms S into T contains
a bad reversal.

Suppose that dr(S, T ) = 3m−1. Every reversal in a minimal length sequence that
transforms S into T must reduce the value of f by one. For a reversal to be bad the
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SORTING STRINGS BY REVERSALS AND BY TRANSPOSITIONS 205

string must contain 0110 as a substring. However, S contains no such substring, and
no reversal that reduces the value of f by one can create such a substring. Therefore
if dr(S, T ) = 3m− 1, then no minimal length sequence of reversals that transforms S
into T contains a bad reversal.

This means that if dr(S, T ) = 3m − 1, each block of zeros in T is constructed
from three blocks of zeros in S. It follows that I is a yes instance of 3-Partition if
dr(S, T ) = 3m− 1.

Now we show that if I is a yes instance of 3-Partition, then dr(S, T ) ≤ 3m − 1.
Since I is a yes instance, we can partition A into m disjoint sets A1, . . ., Am, each
of which contains three elements and sums to B. For each subset Ai in turn, we
can use two reversals of the form . . . 0[1 . . . 0]a . . ., where a ∈ {1, ω} (where ω is the
special character used to denote the end of the string) to merge the three blocks of
zeros representing the elements of Ai into a single block of zeros of length B without
affecting any other block of zeros. (Note that the reversals shown do not move the
block of zeros at the front of the string.) Then we can use m − 1 reversals of the
form . . . 01[11 . . . 0]1 . . . to create blocks of ones of length one separating the blocks
of zeros. This sequence of reversals has length 3m − 1, so dr(S, T ) ≤ 3m − 1. This
establishes the required property (a).

To prove properties (b), (c), and (d) we need Length and Max functions for
3-Partition and RD. For 3-Partition, reasonable definitions are Length(I) = |A| +∑

a∈A�log2 s(a)� and Max(I) = max{s(a) : a ∈ A}. For RD, reasonable definitions
are Length′(I ′) = 2n+�log2 d� and Max′(I ′) = 1 (since RD is not a number problem).
Note that n =

∑
a∈A s(a) + |A| − 3. Given these functions, the required properties

can be proved quite easily.
Therefore the transformation is a pseudopolynomial transformation and therefore

RD is NP-complete.
The transformation just described was obtained after several other simpler trans-

formations had been shown to fail. An example is a potential transformation from
sorting by reversals to RD. Given a permutation π, define strings S = (

∑n−1
i=1 0

π(i)1) ·
0π(n) and T = (

∑n−1
i=1 0

i1) · 0n. One might conjecture that determining the value
of dr(S, T ) must also determine the value of dr(π). However, if π = 3142, then
dr(π) = 3, but S = 0001010000100, T = 0100100010000, and dr(S, T ) = 2. Therefore
this transformation does not work.

6. Conclusion. In this paper we have shown that, just as sorting permutations
by reversals is NP-hard, so also is finding the reversal distance between two strings,
even when the strings are drawn from a binary alphabet. We have derived lower and
upper bounds for the reversal distance between binary strings and used these to find
the reversal diameter of Bn.

The complexity of finding the transposition distance between two strings remains
open, just as the complexity of sorting permutations by transpositions is open. We
have also derived lower and upper bounds for the transposition distance between
binary strings and used these to find the transposition diameter of Bn. This contrasts
with the problem of transposition diameter for permutations, which is unresolved.

In [6], Christie introduces the problem of sorting by block-interchanges. A block-
interchange is similar to a transposition, except that the substrings that are swapped
need not be adjacent. Christie proved that this problem could be solved in polynomial
time. When extended to strings, however, it can be shown [8] in a manner similar to
that used in the proof of Theorem 5.1 that the block-interchange distance problem is
NP-hard, even when the strings are drawn from a binary alphabet.
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