
Application of the A* Algorithm to Solve the Longest Common
Subsequence from Fragments Problem

Yu-Mei Pan and Chia-Tung Lee*

Computer Science and Information Engineering Department
National Chi-Nan University, Nantou, Taiwan
ympan@realtek.com.tw, rctlee@ncnu.edu.tw*

Abstract

Finding longest common subsequence (LCS) is
a common problem in Biology informatics. The
problem is defined as follows: Given two strings
X=x1x2…xm and Y=y1y2…yn, find a common
subsequence L=l1l2…lp of X and Y such that p is
maximized. In this paper, we discuss a variation
of the LCS problem – LCS from fragments problem
defined as follows: Given two strings X and Y and
a set M of fragments which are matching
substrings of X and Y, find a LCS from M. A new
method using a tree searching strategy, A*
algorithm, is proposed in this study for the LCS
from fragments problem. The method can help us
to filter out some fragments which wouldn’t
appear in solutions, and efficiently find a solution.
However, in worst cases, all fragments are needed
to be computed in the solving process.

1 Introduction

In computational biology, there are many
important problems such as sequence alignment
problem [11, 12], multiple sequence alignment
problem [3, 5], longest common subsequence
(LCS) problem [6, 7, 8] and string matching
problem [1, 4, 9] etc.

In this paper, we discuss a variation of the LCS
problem. First, let us introduce the LCS problem
defined as follows.
Def. 1-1 Longest common subsequence problem
Given two strings X=x1x2…xm and Y=y1y2…yn,
find a common subsequence L=l1l2…lp of X and Y
such that p is maximized.

The LCS of two strings X and Y is denoted
LCS(X, Y). Let |LCS(X, Y)| be the length of
LCS(X, Y). For instance, given X=agcgtta and
Y=gatgagt, LCS(X, Y) is “aggt” and |LCS(X, Y)|=4.
Up to now, many algorithms [7, 8] have been
proposed to solve the problem. [7] proposed a
divide-and-conquer algorithm to solve the
problem in linear space. [8] proposed a dynamic
programming approach to solve the problem, and
it introduced the sparse computing concept into
the dynamic programming method.

We now introduce the LCS from fragments
problem. First, given two strings X and Y, a
fragment of X and Y is a common substring of X
and Y. Given two strings X and Y and a set M of
fragments {f1, f2, …, fh} of X and Y, a common
subsequence CS from M is a common
subsequence between X and Y such that CS
contains only some fi’s or substrings of fi’s. An
LCS of X and Y from M is one of the common
subsequence of X and Y from M which is the
longest. The LCS from fragments problem is
defined as follows:
Def. 1-2 Longest common subsequence from
fragments problem
Given two strings X and Y and a set M of
fragments of X and Y, find a longest common
subsequence of X and Y from M.

The LCS from fragments problem was first
proposed in [2], and a dynamic programming
approach was proposed to solve the problem. In
the dynamic programming approach, it has to
compute all fragments in finding the solution.
But, not all fragments appear in the found solution.
Due to the reason, a new method is proposed in
this paper and the method can ignore the
fragments which don’t appear in solutions.

In the new method proposed in the paper, the
concept of the A* algorithm [10] is used. The
method can help us to ignore the fragments which
will not appear in solutions, and it can efficiently
find a solution for the LCS from fragments
problem.

In the following sections, the score measure
used in this paper will be introduced in section 2.
The A* algorithm to solving the LCS from
fragments problem will be discussed in section 3.
Experimental results will be presented in section 4.
Finally, in section 5, concluding statements will be
presented.

2 The Edit Distance

Given two strings X and Y, the edit distance
between X and Y is the minimum number of
deletions, substitutions and insertions to transform
X to Y. For example, let X=aat- -ct and Y=aatgag.

~240~

We may align the strings as follows:

X = a a t - - c t
 Y = a a t g a - g

As can be seen, X can be transformed to Y by

executing two insertions, one deletion and one
substitution. It can also be proved that the edit
distance between X and Y is 4.

It is well known that the edit distance finding

problem is equivalent to the longest common
subsequence finding problem.

2.1 The Edit Graph Shortest Path Problem

In this section, we are interested in the longest
common subsequence from fragments problem.
In this section, we shall show that this problem
can be viewed as a graph searching problem.
The graph is defined an edit graph and the
problem is to find a shortest path from a certain
starting node to a certain terminal node.

Let us illustrate the edit graph through an
example. Suppose we are given X=tacat and
Y=actat, the edit graph of X and Y is showed in Fig.
1. In the edit graph, for a node p, let x(p) and y(p)
to be the x-coordinate and y-coordinate of p,
respectively. For instance, for node (2, 3), x((2,
3))=2 and y((2, 3))=3.

Fig. 1. The shortest path of two strings X=tacat
and Y=actat and the set M={f(2, 1, 2), f(1, 3, 2), f(4, 4, 2)}.

Suppose we further have fragments ta, ac and at.

Then we denote these fragments as diagonal paths.
We denote a path by (i, j, k) where i, j and k stand
for the starting positions in X and Y and the length
of the matching substring, respectively. For
instance, given two strings X=tacat and Y=actat
and M={f(2, 1, 2), f(1, 3, 2), f(4, 4, 2)}, f(2, 1, 2), f(1, 3, 2) and
f(4, 4, 2) represent the three common substrings ac, ta
and at, of X and Y, respectively.

In addition, for a fragment f, the node (i-1, j-1)

of f is denoted as start(f) and the node (i+k-1,
j+k-1) of f is denoted by end(f). For example,
consider Fig. 1. start(f(2, 1, 2)) is the node (1, 0)
and start(f(4, 4, 2)) is the node (3, 3).

For each horizontal and vertical edge, we
associate it with cost 1 and for each diagonal edge,
we associate it with cost 0. Our longest common
subsequence from fragments problem can now be
viewed as a shortest path finding problem where
the path is from (0, 0) to (m, n). In Fig. 1, the
black path it the shortest path from (0, 0) to (5, 5).

After obtaining the shortest path, we obtain the
solution by only retaining the substring in the
fragments. There for the case shown above, the
found solution is acat. Now, let us consider a
situation. Would all fragments appear in the
found shortest path? The answer is “Not
necessarily”. For example, consider Fig. 1,
fragment f(1, 3, 2) doesn’t appear in the found
shortest path of X and Y and the set M. Thus we
proposed a new method using A* algorithm to
solve the problem. Through this method, we can
filter out the fragments which wouldn’t appear in
the solution, and it can efficiently find the
solution.

3 The A* Algorithm

In this chapter, we shall introduce the A*
algorithm for the shortest path finding problem.
The edit distance is used to be the cost measure
through this chapter. In the edit graph, for each
horizontal and vertical edge, we associate it with
cost 1 and for each diagonal edge, and we
associate it with cost 0. In the following, we
shall use one simple example to informally
illustrate the basic idea of the A* algorithm.

Consider Fig. 1. It’s the edit graph of two
strings X=tacat and Y=actat and a set M={f(2, 1, 2), f

(1, 3, 2), f(4, 4, 2)}. In the execution of the A*
algorithm, there are two sets, found and unfound.
At the beginning, the found is null and unfound
stores the two nodes (0, 0) and (m, n) and the three
given fragments, f(2, 1, 2), f (1, 3, 2) and f(4, 4, 2).

In the first step, node (0, 0) is selected from
unfound to found, because there is no cost between
it and the starting position of the shortest path
from (0, 0) to (m, n). Then, expand the selected
node (0, 0) to the elements in unfound as shown in
Fig. 2, and the costs of the paths from (0, 0) to all
elements in unfound are obtained. For example,
the cost of the path from (0, 0) to f(2, 1, 2), f(1, 3, 2), f(4,

4, 2) and (m, n) are 1, 2, 6 and 10, reapectively.
By the A* algorithm, for each element in

unfound, the cost of the path from it to the ending
node (m, n) is estimated. The details of the
estimating method will be discussed later. Since
the cost of the paths from each element in unfound

0 1 2 3 4 5
0

1

2

3

(m, 0)

(0, n)

(m, n)

(0, 0)

4

t

a

c

a

t

a c t a t

5

f(2,1,2)

f(1,3,2)

f(4,4,2)

~241~

to the ending node (m, n) can be estimated, the
cost of the path from (0, 0) to (m, n) through each
element in unfound can be gotten. Consider Fig.
2. The cost of the path from (0, 0) to (m, n)
through f(2, 1, 2) is 2, the cost of the path from (0, 0)
to (m, n) through f(1, 3, 2) is 5, the cost of the path
from (0, 0) to (m, n) through f(4, 4, 2) is 6 and the
cost of the path from (0, 0) to (m, n) is 10.

Fig. 2. Node (0, 0) selected to expand of Fig. 1.

Next, in unfound, the element whose cost of the
path from (0, 0) to (m, n) through it is the lowest,
is selected to be the expanding element. In our
case, f(2, 1, 2) is selected from unfound to found, and
f(2, 1, 2) is expanded to the elements in unfound as
shown in Fig. 3-3. Thus the cost of the path
from (0, 0) to f(1, 3, 2) through f(2, 1, 2) is 1+3=4, the
cost of the path from (0, 0) to f(4, 4, 2) through f(2, 1, 2)
is 1+1=2 and the cost of the path from (0, 0) to (m,
n) through f(2, 1, 2) is 1+5=6. As well, from each
element in unfound, the cost of the paths from it to
(m, n) can be estimated. Through this estimation,
we know that the path from (0, 0) to (m, n)
through f(2, 1, 2) and f(1, 3, 2) is with cost 5, the path
from (0, 0) to (m, n) through f(2, 1, 2) and f(4, 4, 2) is
with cost 2 and the path from (0, 0) to (m, n)
through f(2, 1, 2) is with cost 6.

Fig. 3. f(2, 1, 2) selected to expand of Fig. 1.

By the method, if node (m, n) is selected next,

the shortest path from (0, 0) to (m, n) is found by
A* algorithm. Fig. 4 shows that the found
shortest path is from (0, 0) to (m, n) through two
fragments f(2, 1, 2) and f(4, 4, 2), and the path
corresponds the shortest path of the edit graph of
X , Y and M as shown in Fig. 1.

As shown in Fig. 1. The found shortest path
doesn’t contain the fragment f(1, 3, 2). The reader
can see that f(1, 3, 2) was not contained by the A*
algorithm. This is the advantage of our A*
algorithm. Many fragments may not need to be

considered. The details of the A* algorithm to
solve the shortest path finding problem will be
discussed in the below.

Fig. 4. Node (m, n) selected to expand of Fig. 1.

Consider the partially expanded tree shown in

Fig. 5. Let p denote a node. Let Dist(p) denote
the length of the shortest path from the root of the
tree to a terminal node through p. Let D(p)
denote the length of the shortest path from the root
of the tree to p. Let E(p) denote the length of the
shortest path from p to a terminal node. Then
Dist(p)=D(p)+E(p).

Fig. 5. p is a node of the expanded tree.

For A* algorithm, there is an estimation scheme

which estimates the lower bound of E(p). Let
E*(p) denote the estimated E(p). Then
Dist*(p)=D(p)+E*(p). The A* algorithm always
selects the node with the lowest Dist*(p) to
expand and stops if the selected node is a terminal
node.

To apply the A* algorithm to our problem, we
use the edit graph as the input data. We always
expand the nodes related to the fragments. For
instance, consider Fig. 6. The nodes to be
expanded at the first level are points (3, 2), (2, 4),
(8, 2) … (5, 7).

Now, for each node p, we define E*(p) as
follows. Let Srow(p) denote the number of the
rows in the area from p to (m, n) which do not
contain diagonal edges and the number of the
columns in the area from p to (m, n) which do not
contain diagonal edges is denoted by Scol(p). For
instance, in Fig. 6, Srow((0, 0))=2 and Srow((4, 3))=1.
Scol((0, 0))=2 and Scol((4, 3))=1. Obviously, from
a node p to (m, n) of the edit graph, E*(p) can be
defined as follows: E*(p)= Srow(p)+Scol(p).

In addition, we may use some other information
to cut down the searching space. In Fig. 6,

f(2,1,2), 2 node (m, n), 10

node (0, 0)

1 2 6 10

f(1,3,2), 5 f(4,4,2), 6

node (0, 0)

1 2 6 10

3 1 5

f(2,1,2), 2 node (m, n), 10f(1,3,2), 5 f(4,4,2), 6

node (m, n), 6f(1,3,2), 5 f(4,4,2), 2

node (0, 0)

1 2 6 10

3 1 5

0

f(2,1,2), 2 f(1,3,2), 5 f(4,4,2), 6

f(1,3,2), 5 f(4,4,2), 2

node (m, n), 10

node (m, n), 2

node (m, n), 6

p
……

~242~

consider the fragment f(3, 2, 2). Any solution
consisting of this fragment will not contain use the
fragment f(2, 4, 2). Therefore, when we consider f(3,

2, 2), we may ignore f(2, 4, 2). We now define the
domination relation as follows: For two fragments
f and f′, f′ is dominated by f, if x(end(f′)) > x(end(f))
and y(end(f′)) > y(end(f)). In our algorithm,
suppose we are considering a fragment f, we shall
ignore all of the fragments which are not
dominated by f. For instance, in Fig. 6, f(3, 2, 2)
dominates f(5, 7, 2), f(7, 4, 2) and f(8, 6, 2). f(2, 4, 2)
dominates f(3, 6, 2), f(8, 6, 2) and f(5, 7, 2), and f(7, 4, 2)
dominates f(8, 6, 2).

Fig. 6. The edit graph of two strings X=atcggatcgc
and Y=ccgtccgac and a set M={f(2, 4, 2), f(3, 2, 2), f(3, 6,

2), f(5, 7, 2), f(7, 4, 2), f(8, 2, 2), f(8, 6, 2)}.

In addition, for two fragments f and f′, we

define Len(f, f′) as the number of horizontal and
vertical edges between f and f′. Let us consider
Fig. 6. Len(f(2, 4, 2), f(3, 6, 2)) is 1. Len(f(2, 4, 2), f(5, 7,

2)) is 2. Len(f(2, 4, 2), f(8, 6, 2)) is 4.

3.1 The Algorithm

The algorithm proposed in this paper consists of

two phases, preprocessing and main algorithm.
In Step 3 of the main algorithm as below, E*(f) has
to be used in for loop. For each fragment f, since
E*(f) doesn’t change, we only compute E*(f) once
for each f. In the preprocessing, we compute
E*(f) for each f. In the main algorithm, a value
Link is prepared for each fragment f and it will be
used in recovering the shortest path step.

Let Par be pointer.
Input: Two strings X=x1x2…xm and Y=y1y2…yn,

and a set M of fragments.
Output: A shortest path from (0, 0) to (m, n)

Step 1. Consider two nodes (0, 0) and (m, n) as
fragments f(1, 1, 0) and f(m, n, 0), respectively. Put
fragments f(1, 1, 0) and f(m, n, 0) and set M into set
unfound. Let set found=φ.

Step 2. For each fragment f in set unfound
except fragment f(1, 1, 0), let D(f)=∞ and Dist*(f)=
∞. For f(1, 1, 0), let D(f(1, 1, 0))=0 and Dist*(f(1, 1,

0))=E*(f(1, 1, 0)).

Step 3.
Do until f = f(m, n, 0)

Select f from set unfound such that Dist*(f) is
the smallest, and remove f from unfound to
found.
For every f′ in unfound which is dominated by f
do
 Let)(fD ′ = D(f) + Len(f, f′).
 If)()(fDfD ′<′ , set f′.Link = f.
 Let D(f ′) = min{D(f ′),)(fD ′ }.
 Let Dist*(f ′) = D(f ′)+E*(f ′).
End For

End Do

Step 4. Set Par = f(m, n, 0).
While Par is not null
 Print (i, j) pair pointed to by Par
 Advance Par
End While

Fig 7. Given fragments distributed over the edit
graph where the dotted fragments are not selected
by the A* algorithm.

If the given fragments are distributed over the

diagonal line of the edit graph, the A* algorithm
can not filter out many fragments which will not
appear in the solution. For instance, in Fig. 7, the
fragments are distributed over the diagonal line of

0 11 2 3 4 5
0

1

2

3

4

(0, 0)

5

t

c

g

g

a

c c g t c

a

6

6 7 8 9

(0, n)

(m, n)

g a cc

7

8

9

10

c

g

c

t

(0, 0)

f(3,2,2)

f(2,4,2)

f(3,6,2)

f(5,7,2)

f(7,4,2)

f(8,2,2) f(8,6,2)

A G G T C G G T C A A A C T G G T G G T C A T T G G T
G
G
T
A
A
G
G
T
C
C
C
T
G
G
T
G
G
T
T
G
G
T

~243~

the edit graph. There are few dotted fragments
filtered by the A* algorithm. Furthermore, if the
given fragments are distributed over the edit graph,
the A* algorithm can filter out many fragments
which will not appear in the solution.

3 Experiments

In this section, we shall present some

experimental results processed by the A*
algorithm proposed in this paper and the dynamic
programming approach proposed by Baker and
Giancarlo[2]. In the experiments, 6 Hepatitis B
Virus and 10 gene strings were used. The 6
Hepatitis B Viruses were HT, A4, pAD14, HMA,
8884H and 7768H. The 10 gene strings were
CYP3A26, LOC489851, At2g30770, At1g11610,
Fmo3, FMO3, P0452F10.9, P0452F10.11,
B1131G07.28-2, B1131G07.28-1, which are
considered to belong to the same group, CYP3A7,
in NCBI Website. Table 1 shows the definition
of terms used in the experiments. The
experimental results are shown in Table 2. In Fig.
8, we compare the number of computed fragments

by using the A* algorithm and the number of
computed fragments by using the dynamic
programming approach.

Table 1. The definition of terms used in the
experiments.

S1: The name of the first string.
S2: The name of the second string.

Len1: The length of the first string.
Len2: The length of the second string.

T: The threshold of the length of fragments.
M: The number of fragments whose length are

greater than and equal to the threshold T.
A*: The number of fragments which need to be

computed by the A* algorithm.
DP: The number of fragments which need to be

computed by the dynamic programming
approach proposed by Baker and Giancarlo.

Rate: The rate of numbers of fragments between
by using the A* algorithm and the dynamic
programming approach.

Table 2. Experimental results
S1 S2 Len1 Len2 T M A* DP Rate

HT A4 663 666 7 74 8 74 10.81%

pAD14 HMA 666 666 7 70 16 70 22.85%

8884H 7768H 666 666 7 39 20 39 51.28%

CYP3A26 LOC489851 1925 1743 8 150 68 150 45.33%

At2g30770 At1g11610 1632 1449 8 107 72 107 67.29%

Fmo3 FMO3 2020 1805 8 140 87 140 62.14%

P0452F10.9 P0452F10.11 1590 1656 9 98 54 98 55.10%

B1131G07.28-2 B1131G07.28-1 1529 1890 9 49 49 49 100%

0

20

40

60

80

100

120

140

160

A4 HMA 7768H LOC489851 At1g11610 FMO3 P0452F10.11 B1131G07.28-1

HT pAD14 8884H CYP3A26 At2g30770 Fmo3 P0452F10.9 B1131G07.28-2

Strings

Th
e

nu
m

be
r o

f c
om

pu
te

d
fra

gm
en

ts

A* Algorithm
Dynamic Programming Approach

Fig. 8. Comparing the number of computed fragments by using the A* algorithm and the
number of computed fragments by using the dynamic programming approach.

~244~

5 Conclusion

In this paper, we proposed the application of the
A* algorithm to solve the longest common
subsequence from fragments problem. The A*
algorithm can successfully filter out some
fragments which wouldn’t appear in solutions, and
efficiently find a solution. If given fragments are
distributed over the edit graph, the method can
ignore a lot fragments. The method is quite
efficient as the number of fragments which are
needed to be computed is smaller than the
dynamic programming approach proposed in
Baker and Giancarlo. In general cases, a few
fragments are computed in solving the problem.
However, in worst cases, all fragments are needed
to be computed in solving process.

References

[1] Faster Algorithms for String Matching with k

Mismatches, Amir, A., Lewenstein, M. and
Porat, E., Journal of Algorithms, Vol. 50,
2004, pp. 257-275.

[2] Sparse Dynamic Programming for Longest
Common Subsequence from Fragments,
Baker, B. S. and Giancarlo, R., Journal of
Algorithms, Vol. 42, 2002, pp. 231-254.

[3] Approximation Algorithms for Multiple
Sequence Alignment, Bafna, V., Lawler, E. L.
and Pevzner, P. A., Theoretical Computer
Science, Vol. 182, 1997, pp. 233-244.

[4] A Fast String Searching Algorithm, Boyer, R.
S. and Moore, J. S., Communication of the
ACM, Vol. 20, 1977, pp. 762-772.

[5] The Multiple Sequence Alignment problem in
Biology, Carrillo, H. and Lipman, D. J.,
SIAM Journal on Applied Mathematics, Vol.
48, 1988, pp. 1073-1082.

[6] Jewels of Stringology, Crochemore, M. and
Rytter, W., World Scientific, 2002.

[7] A Linear Space Algorithm for Computing
Maximal Common Subsequences, Hirschberg,
D. S., Communications of the ACM, Vol. 18,
No. 6, 1975, pp. 341-343.

[8] A Fast Algorithm for Computing Longest
Common Subsequences, Hunt, J. W. and
Szymanski, T. G., Communications of the
ACM, Vol. 20, No. 5, 1977, pp. 350-353.

[9] Fast Pattern Matching in Strings, Knuth, D.,
Morris, J. and Pratt, V., SIAM Journal on
Computing, Vol. 6, 1977, pp. 323-350.

[10] Introduction to the Design and Analysis of
Algorithms, Lee, R. C. T., Chang, R. C.,
Tseng, S. S. and Tsai, Y. T., Flag Corporation,
Second Edition, ISBN:957-717-777-8, 1991.

[11] Identification of common Molecular
Subsequences, Smith, T. F. and Waterman, M.
S., Journal of Molecular Biology, Vol. 147,
1981, pp. 195-197.

[12] Alignments Without Low-Scoring Regions,
Zhang, Z., Berman, P. and Miller, W.,
Research in Computational Molecular
Biology (RECOMB), Vol. 5, 1998, pp.
294-301.

~245~

