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Abstract 
 

Finding longest common subsequence (LCS) is 
a common problem in Biology informatics.  The 
problem is defined as follows: Given two strings 
X=x1x2…xm and Y=y1y2…yn, find a common 
subsequence L=l1l2…lp of X and Y such that p is 
maximized.  In this paper, we discuss a variation 
of the LCS problem – LCS from fragments problem 
defined as follows: Given two strings X and Y and 
a set M of fragments which are matching 
substrings of X and Y, find a LCS from M. A new 
method using a tree searching strategy, A* 
algorithm, is proposed in this study for the LCS 
from fragments problem.  The method can help us 
to filter out some fragments which wouldn’t 
appear in solutions, and efficiently find a solution.  
However, in worst cases, all fragments are needed 
to be computed in the solving process. 

 
 

1  Introduction 
 
In computational biology, there are many 
important problems such as sequence alignment 
problem [11, 12], multiple sequence alignment 
problem [3, 5], longest common subsequence 
(LCS) problem [6, 7, 8] and string matching 
problem [1, 4, 9] etc.   

In this paper, we discuss a variation of the LCS 
problem.  First, let us introduce the LCS problem 
defined as follows. 
Def. 1-1  Longest common subsequence problem 
Given two strings X=x1x2…xm and Y=y1y2…yn, 
find a common subsequence L=l1l2…lp of X and Y 
such that p is maximized. 

The LCS of two strings X and Y is denoted 
LCS(X, Y).  Let |LCS(X, Y)| be the length of 
LCS(X, Y).  For instance, given X=agcgtta and 
Y=gatgagt, LCS(X, Y) is “aggt” and |LCS(X, Y)|=4.  
Up to now, many algorithms [7, 8] have been 
proposed to solve the problem.  [7] proposed a 
divide-and-conquer algorithm to solve the 
problem in linear space.  [8] proposed a dynamic 
programming approach to solve the problem, and 
it introduced the sparse computing concept into 
the dynamic programming method. 

We now introduce the LCS from fragments 
problem.  First, given two strings X and Y, a 
fragment of X and Y is a common substring of X 
and Y.  Given two strings X and Y and a set M of 
fragments {f1, f2, …, fh} of X and Y, a common 
subsequence CS from M is a common 
subsequence between X and Y such that CS 
contains only some fi’s or substrings of fi’s.  An 
LCS of X and Y from M is one of the common 
subsequence of X and Y from M which is the 
longest.  The LCS from fragments problem is 
defined as follows: 
Def. 1-2  Longest common subsequence from 
fragments problem 
Given two strings X and Y and a set M of 
fragments of X and Y, find a longest common 
subsequence of X and Y from M. 

The LCS from fragments problem was first 
proposed in [2], and a dynamic programming 
approach was proposed to solve the problem.  In 
the dynamic programming approach, it has to 
compute all fragments in finding the solution.  
But, not all fragments appear in the found solution.  
Due to the reason, a new method is proposed in 
this paper and the method can ignore the 
fragments which don’t appear in solutions.  

In the new method proposed in the paper, the 
concept of the A* algorithm [10] is used.  The 
method can help us to ignore the fragments which 
will not appear in solutions, and it can efficiently 
find a solution for the LCS from fragments 
problem. 

In the following sections, the score measure 
used in this paper will be introduced in section 2.  
The A* algorithm to solving the LCS from 
fragments problem will be discussed in section 3.  
Experimental results will be presented in section 4.  
Finally, in section 5, concluding statements will be 
presented. 

 
   
2  The Edit Distance 
 

Given two strings X and Y, the edit distance 
between X and Y is the minimum number of 
deletions, substitutions and insertions to transform 
X to Y.  For example, let X=aat- -ct and Y=aatgag.  
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We may align the strings as follows: 
 

X = a a t - - c t 
 Y = a a t g a - g 

 
As can be seen, X can be transformed to Y by 

executing two insertions, one deletion and one 
substitution.  It can also be proved that the edit 
distance between X and Y is 4.  

 
It is well known that the edit distance finding 

problem is equivalent to the longest common 
subsequence finding problem.   

 
2.1  The Edit Graph Shortest Path Problem 
 

In this section, we are interested in the longest 
common subsequence from fragments problem.  
In this section, we shall show that this problem 
can be viewed as a graph searching problem.  
The graph is defined an edit graph and the 
problem is to find a shortest path from a certain 
starting node to a certain terminal node.  

Let us illustrate the edit graph through an 
example.  Suppose we are given X=tacat and 
Y=actat, the edit graph of X and Y is showed in Fig. 
1.  In the edit graph, for a node p, let x(p) and y(p) 
to be the x-coordinate and y-coordinate of p, 
respectively.  For instance, for node (2, 3), x((2, 
3))=2 and y((2, 3))=3.  

 

 
Fig. 1. The shortest path of two strings X=tacat 
and Y=actat and the set M={f(2, 1, 2), f(1, 3, 2), f(4, 4, 2)}. 

 
Suppose we further have fragments ta, ac and at.  

Then we denote these fragments as diagonal paths.  
We denote a path by (i, j, k) where i, j and k stand 
for the starting positions in X and Y and the length 
of the matching substring, respectively.  For 
instance, given two strings X=tacat and Y=actat 
and M={f(2, 1, 2), f(1, 3, 2), f(4, 4, 2)}, f(2, 1, 2), f(1, 3, 2) and 
f(4, 4, 2) represent the three common substrings ac, ta 
and at, of X and Y, respectively. 

In addition, for a fragment f, the node (i-1, j-1) 

of f is denoted as start(f) and the node (i+k-1, 
j+k-1) of f is denoted by end(f).  For example, 
consider Fig. 1.  start(f(2, 1, 2)) is the node (1, 0) 
and start(f(4, 4, 2)) is the node (3, 3). 

For each horizontal and vertical edge, we 
associate it with cost 1 and for each diagonal edge, 
we associate it with cost 0.  Our longest common 
subsequence from fragments problem can now be 
viewed as a shortest path finding problem where 
the path is from (0, 0) to (m, n).  In Fig. 1, the 
black path it the shortest path from (0, 0) to (5, 5). 

After obtaining the shortest path, we obtain the 
solution by only retaining the substring in the 
fragments.  There for the case shown above, the 
found solution is acat. Now, let us consider a 
situation.  Would all fragments appear in the 
found shortest path?  The answer is “Not 
necessarily”.  For example, consider Fig. 1, 
fragment f(1, 3, 2) doesn’t appear in the found 
shortest path of X and Y and the set M.  Thus we 
proposed a new method using A* algorithm to 
solve the problem.  Through this method, we can 
filter out the fragments which wouldn’t appear in 
the solution, and it can efficiently find the 
solution.  
 
3 The A* Algorithm 
 

In this chapter, we shall introduce the A* 
algorithm for the shortest path finding problem.  
The edit distance is used to be the cost measure 
through this chapter.  In the edit graph, for each 
horizontal and vertical edge, we associate it with 
cost 1 and for each diagonal edge, and we 
associate it with cost 0.  In the following, we 
shall use one simple example to informally 
illustrate the basic idea of the A* algorithm.  

Consider Fig. 1.  It’s the edit graph of two 
strings X=tacat and Y=actat and a set M={f(2, 1, 2), f 

(1, 3, 2), f(4, 4, 2)}.  In the execution of the A* 
algorithm, there are two sets, found and unfound.  
At the beginning, the found is null and unfound 
stores the two nodes (0, 0) and (m, n) and the three 
given fragments, f(2, 1, 2), f (1, 3, 2) and f(4, 4, 2). 

In the first step, node (0, 0) is selected from 
unfound to found, because there is no cost between 
it and the starting position of the shortest path 
from (0, 0) to (m, n).  Then, expand the selected 
node (0, 0) to the elements in unfound as shown in 
Fig. 2, and the costs of the paths from (0, 0) to all 
elements in unfound are obtained.  For example, 
the cost of the path from (0, 0) to f(2, 1, 2), f(1, 3, 2), f(4, 

4, 2) and (m, n) are 1, 2, 6 and 10, reapectively. 
By the A* algorithm, for each element in 

unfound, the cost of the path from it to the ending 
node (m, n) is estimated.  The details of the 
estimating method will be discussed later.  Since 
the cost of the paths from each element in unfound 

0 1 2 3 4 5
0

1

2

3

(m, 0)

(0, n)

(m, n)

(0, 0)

4

t

a

c

a

t

a c t a t

5

f(2,1,2)

f(1,3,2)

f(4,4,2)

~241~



to the ending node (m, n) can be estimated, the 
cost of the path from (0, 0) to (m, n) through each 
element in unfound can be gotten.  Consider Fig. 
2.  The cost of the path from (0, 0) to (m, n) 
through f(2, 1, 2) is 2, the cost of the path from (0, 0) 
to (m, n) through f(1, 3, 2) is 5, the cost of the path 
from (0, 0) to (m, n) through f(4, 4, 2) is 6 and the 
cost of the path from (0, 0) to (m, n) is 10. 

 
Fig. 2. Node (0, 0) selected to expand of Fig. 1.  
 

Next, in unfound, the element whose cost of the 
path from (0, 0) to (m, n) through it is the lowest, 
is selected to be the expanding element.  In our 
case, f(2, 1, 2) is selected from unfound to found, and 
f(2, 1, 2) is expanded to the elements in unfound as 
shown in Fig. 3-3.   Thus the cost of the path 
from (0, 0) to f(1, 3, 2) through f(2, 1, 2) is 1+3=4, the 
cost of the path from (0, 0) to f(4, 4, 2) through f(2, 1, 2) 
is 1+1=2 and the cost of the path from (0, 0) to (m, 
n) through f(2, 1, 2) is 1+5=6.  As well, from each 
element in unfound, the cost of the paths from it to 
(m, n) can be estimated.  Through this estimation, 
we know that the path from (0, 0) to (m, n) 
through f(2, 1, 2) and f(1, 3, 2) is with cost 5, the path 
from (0, 0) to (m, n) through f(2, 1, 2) and f(4, 4, 2) is 
with cost 2 and the path from (0, 0) to (m, n) 
through f(2, 1, 2) is with cost 6.  

 
Fig. 3.  f(2, 1, 2) selected to expand of Fig. 1.  
 
By the method, if node (m, n) is selected next, 

the shortest path from (0, 0) to (m, n) is found by 
A* algorithm.  Fig. 4 shows that the found 
shortest path is from (0, 0) to (m, n) through two 
fragments f(2, 1, 2) and f(4, 4, 2), and the path 
corresponds the shortest path of the edit graph of 
X , Y and M as shown in Fig. 1.  

As shown in Fig. 1.  The found shortest path 
doesn’t contain the fragment f(1, 3, 2).  The reader 
can see that f(1, 3, 2) was not contained by the A* 
algorithm.  This is the advantage of our A* 
algorithm.  Many fragments may not need to be 

considered.  The details of the A* algorithm to 
solve the shortest path finding problem will be 
discussed in the below. 

 
Fig. 4. Node (m, n) selected to expand of Fig. 1. 
 
Consider the partially expanded tree shown in 

Fig. 5.  Let p denote a node.  Let Dist(p) denote 
the length of the shortest path from the root of the 
tree to a terminal node through p.  Let D(p) 
denote the length of the shortest path from the root 
of the tree to p.  Let E(p) denote the length of the 
shortest path from p to a terminal node.  Then 
Dist(p)=D(p)+E(p).  

 
 
 
 

Fig. 5.  p is a node of the expanded tree. 
 
For A* algorithm, there is an estimation scheme 

which estimates the lower bound of E(p).  Let 
E*(p) denote the estimated E(p).  Then 
Dist*(p)=D(p)+E*(p).  The A* algorithm always 
selects the node with the lowest Dist*(p) to 
expand and stops if the selected node is a terminal 
node. 

To apply the A* algorithm to our problem, we 
use the edit graph as the input data.  We always 
expand the nodes related to the fragments.  For 
instance, consider Fig. 6.  The nodes to be 
expanded at the first level are points (3, 2), (2, 4), 
(8, 2) … (5, 7).   

Now, for each node p, we define E*(p) as 
follows.  Let Srow(p) denote the number of the 
rows in the area from p to (m, n) which do not 
contain diagonal edges and the number of the 
columns in the area from p to (m, n) which do not 
contain diagonal edges is denoted by Scol(p).  For 
instance, in Fig. 6, Srow((0, 0))=2 and Srow((4, 3))=1.  
Scol((0, 0))=2 and Scol((4, 3))=1.  Obviously, from 
a node p to (m, n) of the edit graph, E*(p) can be 
defined as follows: E*(p)= Srow(p)+Scol(p).  

In addition, we may use some other information 
to cut down the searching space.  In Fig. 6, 
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consider the fragment f(3, 2, 2).  Any solution 
consisting of this fragment will not contain use the 
fragment f(2, 4, 2).  Therefore, when we consider f(3, 

2, 2), we may ignore f(2, 4, 2).  We now define the 
domination relation as follows: For two fragments 
f and f′, f′ is dominated by f, if x(end(f′)) > x(end(f)) 
and y(end(f′)) > y(end(f)).  In our algorithm, 
suppose we are considering a fragment f, we shall 
ignore all of the fragments which are not 
dominated by f.  For instance, in Fig. 6, f(3, 2, 2) 
dominates f(5, 7, 2), f(7, 4, 2) and f(8, 6, 2).  f(2, 4, 2) 
dominates f(3, 6, 2), f(8, 6, 2) and f(5, 7, 2), and f(7, 4, 2) 
dominates f(8, 6, 2). 

 
Fig. 6. The edit graph of two strings X=atcggatcgc 
and Y=ccgtccgac and a set M={f(2, 4, 2), f(3, 2, 2), f(3, 6, 

2), f(5, 7, 2), f(7, 4, 2), f(8, 2, 2), f(8, 6, 2)}. 
 
In addition, for two fragments f and f′, we 

define Len(f, f′) as the number of horizontal and 
vertical edges between f and f′.  Let us consider 
Fig. 6.  Len(f(2, 4, 2), f(3, 6, 2)) is 1.  Len(f(2, 4, 2), f(5, 7, 

2)) is 2.  Len(f(2, 4, 2), f(8, 6, 2)) is 4. 
 

3.1 The Algorithm 
 
The algorithm proposed in this paper consists of 

two phases, preprocessing and main algorithm.  
In Step 3 of the main algorithm as below, E*(f) has 
to be used in for loop.  For each fragment f, since 
E*(f) doesn’t change, we only compute E*(f) once 
for each f.  In the preprocessing, we compute 
E*(f) for each f.  In the main algorithm, a value 
Link is prepared for each fragment f and it will be 
used in recovering the shortest path step. 

 
Let Par be pointer. 
Input: Two strings X=x1x2…xm and Y=y1y2…yn, 

and a set M of fragments. 
Output: A shortest path from (0, 0) to (m, n) 

 
Step 1.  Consider two nodes (0, 0) and (m, n) as 
fragments f(1, 1, 0) and f(m, n, 0), respectively.  Put 
fragments f(1, 1, 0) and f(m, n, 0) and set M into set 
unfound.  Let set found=φ.  

 
Step 2.  For each fragment f in set unfound 
except fragment f(1, 1, 0), let D(f)=∞ and Dist*(f)=
∞.  For f(1, 1, 0), let D(f(1, 1, 0))=0 and Dist*( f(1, 1, 

0))=E*(f(1, 1, 0)).   
 

Step 3.   
Do until f = f(m, n, 0) 

Select f from set unfound such that Dist*(f) is 
the smallest, and remove f from unfound to 
found. 
For every f′ in unfound which is dominated by f 
do  
     Let )( fD ′ = D(f) + Len( f, f′).   
     If )()( fDfD ′<′ , set f′.Link = f.   
     Let D(f ′) = min{D(f ′), )( fD ′ }.  
     Let Dist*( f ′) = D(f ′)+E*( f ′).  
End For 

End Do  
 
Step 4.  Set Par = f(m, n, 0). 
While Par is not null 
    Print (i, j) pair pointed to by Par 
    Advance Par 
End While 

 

 
Fig 7. Given fragments distributed over the edit 
graph where the dotted fragments are not selected 
by the A* algorithm. 

 
If the given fragments are distributed over the 

diagonal line of the edit graph, the A* algorithm 
can not filter out many fragments which will not 
appear in the solution.  For instance, in Fig. 7, the 
fragments are distributed over the diagonal line of 
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the edit graph.  There are few dotted fragments 
filtered by the A* algorithm.  Furthermore, if the 
given fragments are distributed over the edit graph, 
the A* algorithm can filter out many fragments 
which will not appear in the solution.   
 
3 Experiments 

 
In this section, we shall present some 

experimental results processed by the A* 
algorithm proposed in this paper and the dynamic 
programming approach proposed by Baker and 
Giancarlo[2].  In the experiments, 6 Hepatitis B 
Virus and 10 gene strings were used.  The 6 
Hepatitis B Viruses were HT, A4, pAD14, HMA, 
8884H and 7768H.   The 10 gene strings were 
CYP3A26, LOC489851, At2g30770, At1g11610, 
Fmo3, FMO3, P0452F10.9, P0452F10.11, 
B1131G07.28-2, B1131G07.28-1, which are 
considered to belong to the same group, CYP3A7, 
in NCBI Website.  Table 1 shows the definition 
of terms used in the experiments.  The 
experimental results are shown in Table 2.  In Fig. 
8, we compare the number of computed fragments  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

by using the A* algorithm and the number of 
computed fragments by using the dynamic 
programming approach. 

 
 

Table 1. The definition of terms used in the 
experiments. 

S1: The name of the first string. 
S2: The name of the second string. 

Len1: The length of the first string. 
Len2: The length of the second string. 

T: The threshold of the length of fragments. 
M: The number of fragments whose length are 

greater than and equal to the threshold T. 
A*: The number of fragments which need to be 

computed by the A* algorithm. 
DP: The number of fragments which need to be 

computed by the dynamic programming 
approach proposed by Baker and Giancarlo.

Rate: The rate of numbers of fragments between 
by using the A* algorithm and the dynamic 
programming approach. 

  
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Table 2. Experimental results 
S1 S2 Len1 Len2 T M A* DP Rate

HT A4 663 666 7 74 8 74 10.81%

pAD14 HMA 666 666 7 70 16 70 22.85%

8884H 7768H 666 666 7 39 20 39 51.28%

CYP3A26 LOC489851 1925 1743 8 150 68 150 45.33%

At2g30770 At1g11610 1632 1449 8 107 72 107 67.29%

Fmo3 FMO3 2020 1805 8 140 87 140 62.14%

P0452F10.9 P0452F10.11 1590 1656 9 98 54 98 55.10%

B1131G07.28-2 B1131G07.28-1 1529 1890 9 49 49 49 100%
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Fig. 8.  Comparing the number of computed fragments by using the A* algorithm and the  
number of computed fragments by using the dynamic programming approach. 
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5  Conclusion 
 

In this paper, we proposed the application of the 
A* algorithm to solve the longest common 
subsequence from fragments problem.  The A* 
algorithm can successfully filter out some 
fragments which wouldn’t appear in solutions, and 
efficiently find a solution.  If given fragments are 
distributed over the edit graph, the method can 
ignore a lot fragments.  The method is quite 
efficient as the number of fragments which are 
needed to be computed is smaller than the 
dynamic programming approach proposed in 
Baker and Giancarlo.  In general cases, a few 
fragments are computed in solving the problem.  
However, in worst cases, all fragments are needed 
to be computed in solving process. 
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