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Dynamic Programming Alignment of 
Sequences Representing Cyclic Patterns 

Jens Gregor and Michael G. Thomason, Senior Member, IEEE 

Abstract-String alignment by dynamic programming is gener- 
alized to include cyclic shift and corresponding optimal alignment 
cost for strings representing cyclic patterns. A guided search 
algorithm uses bounds on actual alignment costs to find all 
optimal cyclic shifts. The bounds are derived from submatrices of 
an initial dynamic programming matrix. Algorithmic complexity 
is analyzed for major stages in the search. Applicability of the 
method is illustrated with satellite DNA sequences and circularly 
permuted protein sequences. 

Index Terms-Cyclic patterns, DNA and protein sequences, dy- 
namic programming, guided search, string matching, structural 
pattern analysis. 

/ I. INTRODUCTION 
OMPARISON OF one finite-length string with another C is a fundamental method of structural pattern analysis 

employed in many applications [l], [8], [9], [ll], [12]. The 
standard computation consists of aligning one string with 
the other according to a cost function computed optimally 
by dynamic programming. An alignment of strings a and b 
defines a sequence of edit operations that transforms b into a 
by matching, substituting, inserting, or deleting symbols in a 
and b on a symbol-by-symbol basis. Each individual edit is 
assigned a real-valued cost by the cost function, and the costs 
in a complete edit sequence are added. An optimal alignment 
of a and b is one for which the edit sequence has the minimum 
total cost. The computation is organized by systematically 
filling in a dynamic programming matrix with time and space 
complexity U(mn),  where the length of a is m., and the length 
of b is n. 

A typical application of this technique uses a as a proto- 
type, possibly representing a larger class of strings, to which 
candidate string b must be compared. It may be the case, 
however, that a circular shift of b has a superior (lower cost) 
alignment with a than does b unshifted. This may occur, for 
example, in digital image analysis in which strings represent 
closed contours of objects without unique starting points for 
scanning [lo]. It may also occur when biological strings are 
compared for evidence of evolutionary similarities [4]. 

To address these cases, we generalize the definition of 
an optimal alignment to include all cyclical shifts of b as 
candidates and require that the amount of the shift be part 
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of an optimal solution. This paper presents an algorithm to 
find all shifts yielding optimal alignments. The algorithm is 
based on computing the full dynamic programming matrix 
M for a and b unshifted and then using information from 
M to process candidate circular shifts of b. The goal is 
to avoid additional, time-consuming dynamic programming 
computation if possible. 

Section I1 describes cyclic alignments in more detail, and 
Section 111 discusses partitioning a and b into substrings 
aligned in a candidate solution. Upper and lower bounds 
on the costs of these substring alignments are established. 
Numerical values of bounds for actual strings are computed 
from matrix M .  Section IV discusses the algorithm using these 
bounds in its search for optimal solutions. As the algorithm 
investigates candidate solutions, it ( i )  updates the values of the 
tightest bounds on costs known to be achievable and (i i)  uses 
these tightest bounds as references to eliminate any candidate 
alignment as soon as it is found to be suboptimal. Thus, the 
algorithm’s search is guided by actively updating the bounds 
on optimal costs. Section IV also gives a complexity analysis 
of major stages in the search algorithm. 

Section V describes results in two applications involving 
biomolecular strings. The first deals with two nucleotide 
sequences from satellite DNA sequences in which there are 
repetitive patterns. The second deals with two protein se- 
quences evidently arising from a common ancestor but with 
evolutionarily induced cyclical shifts. 

11. CYCLIC ALIGNMENTS 

Let e denote the empty symbol. For all symbols ai and 6 j  

in the alphabet A, the function d assigns nonnegative, real- 
valued costs to the string-edit operations match, substitute, 
delete, and insert. To make notation simpler in places, we 
assume that d satisfies the following requirements commonly 
imposed in practice [8]: 

d(ai ,bj)  = 0 if  ai = 6 j  

d ( a i , b j )  > 0 if  ai # 6 j  

d(a, ,e)  = d(e ,a , )  > 0. 
d(ai ,bj)  = d ( b j , a i )  

The cost of a series of edits is the sum of their individual 
costs. Function d is extended to finite-length strings a and b 
in alphabet A by defining d(a ,  b)  to be the minimal cost of 
transforming b into a by a series of edits. Zero cost for match 
and nonzero cost for other edits ensures that d(a,b) = 0 iff 
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Fig. 1. Matrix .\I showing a partitioned at p and b partitioned at y. 

U = b. Letting deletion and insertion cost be identical and 
substitution cost be symmetric ensures that d(a, b )  = d(b, a) .  

The cyclic alignment problem is to find optimal alignment of 
two strings a = ala2 . . . a, of length m and b = b l b 2  . . , b, of 
length n for m, n 2 2, where a is a prototype string, and b is 
a test string that is allowed to be cyclically shifted q symbols 
0 5 q 5 n - 1 before edit cost is computed. To refer to a 
aligned with a specific shift of b, let 

d,(a, b)  = d(a ,  bq+lbq+2 . . . b,bl . . . b q ) .  

Let Dcvc(arb)  denote the optimal cost of cyclic alignment of 
a and b, i.e. 

Dcyc(a, b)  = min(do(a, b ) .  d l ( a ,  b ) ,  . . . , d,-1 (U. b ) ) .  

The simplest approach to find Pcy,(a.b) is to rotate b 
one symbol at a time and realign each rotated string with 
a (cf. [5]).  This brute-force approach has time complexity 
O(mn2) as measured by the number of entries computed 
in dynamic programming matrices. The complexity becomes 
O(mp log n)  for all data by recursively partitioning a 
matrix “channel” established with initial width n by optimal 
alignment of a and b [7]. 

The technique for optimal solutions in this paper has data- 
dependent time complexity that can approach O(mn). The 
method is based on computing bounds on costs of aligning 
substrings of a and b using d values from (m  + 1) x ( n  + 1) 
matrix M .  Many applications of cyclic alignment involve 
strings with lengths on the order of several hundred symbols. 
For these applications, using values in M to reduce the number 
of matrix entries computed can substantially reduce relative 
run-time in practice. For example, Section V reports actual 
timing for biomolecular sequences ranging from 1.8 to 44.5% 
of the time for brute-force computations. 

111. SUBSTRING ALIGNMENT BOUNDS 

b partitioned at q. Let 

dpq(a.b) = d(al:p, bq+l:n) + d(ap+l:,, h : q )  

i.e., d,,(a,b) is the optimal cost of aligning a partitioned at 
p with b partitioned and rotated at q .  Note that an optimal 
cyclic alignment of a with b determines a specific value of q 
and associated values of p such that d,,(a,b) = Dcyc(u,b).  
Essentially, the search for optimal cyclic alignment computes 
bounds on d(al,, ,  bq+l: , )  and d(ap+l:m. bl:,) while indexing 
through candidate values of @I, q). 

Reference lower bounds on d(al:,. l ~ , + ~ : , )  and d(a,+l:,, 
bl:,) are first established by comparing lengths of strings and 
frequencies of symbols without taking locations of symbols 
into account. Let SUB-MIN denote the minimum cost of any 
substitution. Let INDEL-MIN and INDEL-MAX denote the min- 
imum and maximum costs, respectively, of any deletion or 
insertion. Aligning two strings, say U and w, must incur cost 
of insertions or deletions to equalize string lengths. Minimal 
additional cost is obtained iff all symbols happen to be located 
in U and ‘U for maximum matching. Let LL and v represent 
strings U and w from which symbols that match one for one 
without regard for location are removed, and let I I denote the 
length of a string; then, this lower bound on d(u ,  w )  is 

a ( u ,  w )  = min(l/LI. 1.1) rriin(SUB-MIN. 2 . INDEL-MIN) 

+ abs( 1p.l - 1.1) INDEL-MIN. 

Applying lower bound a to substrings for a partitioned at p 
and b partitioned and rotated at q gives 

4 a 1 : p .  bq+l:n) I d(al:p.bq+l:n) 
g(ap+l:m, h : q )  I d(ap+l:m: h : q )  

and establishes a lower bound on dpq(a.b):  

o(ai:pq bq+l:n)  + a(ap+l:m,bl:q) I & ( a ,  b ) .  

Additional bounds are based on actual alignment of a and 
b. Differential cost is used in several places; therefore, we 
introduce operator A to refer to it. For any strings U, w, w, 
and 5, let 

A(u, W ;  M, 5) = d(u: w) - d(w, 2). 

For example, A(al:,. b; e ,  bl:,) = d(al:,, b)-d(e, b1:,)? where 
e is the empty string. 

Proposition 3.1: A(a1:,, b; e ,  blyq)  is a lower bound on 
d(al:,, b,+l:,) and A(a,  bl:,: a l Ip ,  e)  is a lower bound on 

Proof: Refer to Fig. 2. Note that d(al:,, b)  cannot exceed 
optimal cost of reaching location ( 0 , q )  in matrix M ,  plus 
optimal cost of continuing from (0, q )  to ( p ,  n) .  Optimal cost 
to reach (0, q )  is d(e, bl,,); optimal cost to continue to ( p ,  n)  
is d(aI:,, bq+l,,); therefore 

d(ap+l:m, bl:,). 

We use indices p and q to partition strings a and b, 
respectively, into “head” and “tail” substrings. Let ~ 1 : ~  = d(al:p,b) I d(ei b1:q) + d(al:p, bq+l:n). 

- a i a z . .  . ap and ap+1:, - ap+1ap+2 . . . a, denote head and 
tail substrings for a partitioned at p .  Let bl:, = b lb2  . . . b, and 

Hence 

bq+l:n = bq+lbq+~. ’ ‘ b, denote head and tail substrings for d(al :p ,  b)  - d(e,  h : q )  I d(al:,, bq+l:n) 
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Fig. 2. Beginning and end points of uppermost trace in H,,,, and leftmost 
trace in T,],,; the former trace has a cost of ~ ( C I , : ~ .  b: a, :r .  b , , , )  = ( l ( ~ , : ~ .  b)  
- t l ( a , , , . b , : q )  and correspondingly for the latter 1 ( a . b , : , : ~ , : ~ . b , ~ ~ )  = 
~ l ( a . b , : ~ )  - d ( a , : p . b , : c ) .  

Similarly, d(a. b l : , )  cannot exceed the optimal cost of reaching 
( p . 0 )  plus optimal cost of continuing from ( p . 0 )  to (m.q); 
therefore, we obtain 

d(a%bl:,) - d(ai:p. e )  5 d(ap+i:rrL. h : q ) .  

0 
The proof above is a direct application of the general 

property that d(uv, wz) 5 d(u. w) +d(v.z)  for cost functions 
of the kind specified here. Since a and A both establish lower 
bounds on the two terms of dpq(a.b), they can be combined 
into 
X,,(a, b )  = max(a(al,,. b q + l I n ) .  A(al:,, b: e .  b l : , ) )  

+ max(a(ap+l :m.  bl:,). A(a. b ~ : ~ :  0 1 : ~ .  e ) ) .  

Corollary 3.1: X,,(a, b )  is a lower bound on d,,(a. b ) .  0 
It is convenient to describe upper bounds by refering to two 

submatrices of M ,  which are known as H p q  and T,,, that are 
associated with a partitioned at p and b partitioned at q,  as 
shown in Fig. 2. Locations 03, n) and (m, q )  in matrix M are 
the lower-right corners of submatrices Hp4 and Tps, which 
hold values d(al:,, b)  and d(a. b l : , ) ,  respectively. There is at 
least one optimal trace from (0,O) to ( p .  n )  in M .  Select one 
such trace that intersects column y at the smallest possible 
row number, say, row r ,  as in Fig. 2. The portion of this 
trace within Hpq is an uppermost trace in H p q ;  it runs from 
(7'. q )  to ( p .  n ) ,  and its cost is A(a lZp .  b: a ~ : ~ .  b l : , ) .  Similarly, 
there is at least one optimal trace from (0,O) to (m.  q )  in M .  
The portion of such a trace within Tpq intersecting row p 
at the smallest possible column number, say, column c, is a 
leftmost trace in Tpq; it runs from ( p .  c) to (m.  q ) ,  and its cost 
is A(a.bl:,: a lZp ,  b l r C ) .  

Cp,(a. b )  = A(a. b1:,: Q ~ : ~ .  bIrc)  + c . INDEL-MAX.. 
Proposition 3.2: R,,(a.b) is an upper bound on d(al:,. 

b q + l Z n ) ,  and &(a. b )  is an upper bound on d ( a p + l : 7 n .  b l z q ) .  
Proof: Refer to Fig. 2. An uppermost trace from ( r , q )  

to ( p , n )  in Hpq is part of an (not necessarily optimal) 
alignment of al:, and b , + ~ : ~  when extended by r deletions 
to reach (0 .q ) ;  hence, the optimal cost for aligning the two 
substrings cannot exceed the cost of an uppermost trace, which 

Let Rpq(a. b)  = A(al:,. b: a l : r .  b i : , )  + 1' . INDEL-MAX and 

is A(a1 p .  b. 01 r .  bl ,), plus the cost of the deletions, which is 
at most 7' . INDEL-MAX: 

d(Ql p.b,+l n )  I A(a1 p .  b: a1 7-1 bl  4 )  

+ 7' . INDEL-MAX 

Analogously, for alignment of and bl 

( i ( a p + ~ n l . h q )  I A ( a . h q ; a 1 , , h c )  
+ c .  INDEL-MAX 

U 
Note that if = 0 or c = 0, then an upper bound 

coincides with the corresponding lower bound, and at least 
one of the two terms of d,,(a,b) is known exactly. Let 

Corollary 3.2: ISpq(a. b )  is an upper bound on d,,(a. b) .  0 
In an implementation, upper and lower bounds are used 

in the following way. For a given q ,  bounds are computed 
to establish interval [pmln.pmax] as the smallest range on p 
such that d,,(a.b) could be optimal, i.e., p $! [pmln,pmax] 
implies that d,,(a. 6) exceeds the lowest cost currently known 
to be achievable for cyclic alignment of a and b. One possible 
outcome is that for every p ,  d,,(a. b )  exceeds this lowest cost, 
in which case, [P,,,.p,,,] is null, and y is eliminated as a 
candidate for optimal shift. If q remains viable, its p,,, and 
pma, reduce the number of matrix entries needed to compute 
dq(a,b) .  Specifically, matrix entries indicated in Fig. 3 need 
not be computed because the various optimal traces noted in 
the figure may intersect, i.e., may share matrix entries, but need 
never cross. Thus, d,(a. b )  can be computed in worst-case time 

1 p,(a. b)  = R,,(a, b )  + C,,(a. b ) .  

O(Pmax(n - 4 )  + ( m  - pn i in )q ) .  

IV. GUIDED SEARCH ALGORITHM 

The bounds developed in the previous section are used in 
a guided search algorithm to find optimal cyclic alignment of 
a and b. These bounds are used to maintain a search list Q[ ] 
that holds information about candidate alignment traces, i.e., it 
holds specific ( p .  y) pairs that refer to the alignment of specific 
head-and-tail substrings of a and b. A trace is a candidate iff its 
lower bound is less than or equal to the minimum upper bound 
for any candidate trace. New candidate traces are added to the 
list, and old traces that can no longer be optimal are removed. 
When the set of candidate traces is exhausted, optimal costs 
for aligning a and the shifted versions of b represented by 
( p .  q )  pairs in Q[ ] are computed by dynamic programming. 

Fig. 4 lists a pseudo-code description of the algorithm. The 
following description includes comments on tradeoffs between 
computation time complexity and memory requirements. 

A. Building Search List Q[ ] 

Building search list Q[ ] takes places as follows: 
(Fig. 4, Steps 1 and 2) Q[ ] is initialized with d(a ,b ) ,  
which also serves as an (initial) minimum upper bound 
on any d,,(a. b ) .  The algorithm then loops through all 
combinations of p and q for 1 I p I m - 1 and 
1 5  q 5 7 1 - 1 .  

(Fig. 4, Steps 3 and 4) For a specific ( p . q )  pair, if 
the lower bound on d,,(a.b) is strictly greater than 
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(b) 

Stylized outline of computational savings obtainable for realignment 
of a with b cyclically shifted to start at h,+l. Bold arcs represent optimal 
traces. Matrix locations in dark gray are eliminated by optimal trace for a 
aligned with b unshifted. Additional locations in light gray are eliminated for 
a given q by its [pm,,l.p,mat] range. 

the current minimum upper bound, the trace in question 
cannot be optimal and is discarded. 
(Fig. 4, Steps 5 and 6) If not discarded, the ( p >  q )  pair is 
added to Q[ ] in terms of the lower and upper bounds on 
d p q ( a r b ) ;  it is then tested to see if the minimum upper 
bound can be lowered with ( p , q )  pairs removed from 
Q[ ] accordingly. 

The most complex part of the lower bound computations are 
the ~7 costs, all of which takes total time U((m+n)mn). Tabu- 
lating character counts for all possible head-and-tail substrings 
of a and b reduces the computational complexity to U(mn). 
The tradeoff is extra memory usage in the order of U(7n + n). 

For the upper bound computations, repetitive backtracing of 
both upper-most and left-most traces will take time U ( ( m  + 
n)mn) in the worst case. By tabulating row and column 
intersections for all upper-most traces prior to forming Q[ ] 
at worst-case complexity O(c,"=;' ( p  + n) )  and sequentially 
tabulating row and column intersections for the (unique) left- 
most trace whenever q changes at worst-case complexity 
U(c:i:(q+m)), the upper bounds compute in, at most, time 
U(m2 + n2)  using O(mn) extra memory. When comparing 
complexities in practice, it should be noted that an elemen- 

tary operation in this backtracing is itself simpler than, e.g., 
computing a value in a dynamic programming matrix. 

Adding and removing trace information to and from search 
list Q[ ] might also be very time consuming. By building Q[ 3 
as a linked list and inserting new ( p , q )  pairs according to 
increasing values of the lower bounds, Q[ ] is updated in 
linear time. For an integer-valued cost function, the finite 
number of lower bounds (a(a ,  b ) ,  . . . , d(a, b ) )  allows Q[ ] to 
be partitioned into sublists. Using a pointer to the last element 
in each sublist reduces maintenance of Q[ ] to constant time 
at very low memory cost. 

Finally, in an actual implementation, new information about 
bounds on d,,(a, b)  for a ( p .  q )  pair is taken into consideration 
immediately. The ~7 cost, for example, is two independent 
computations, one of which is the difference in length between 
two substrings; it often occurs that a ( p , q )  pair can be 
discarded on that basis alone, in which case, further gathering 
of evidence of suboptimality is unnecessary. 

B. Computing Optimal Costs 

When ( p ,  q )  combinations are exhausted, search list Q[ ] 
holds information on the set of shifts of b for which there might 
be an optimal alignment; each q value may be represented by 
one or more ( p ,  q )  pairs. 

(Fig. 4, Steps 7 and 8) Although Q[ ] is not empty, all 
( p , q )  pairs with the same q value as the top element 
in Q[ ] are extracted by superimposing a new linked list 
P[ 1 on Q[ 1. 
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Extracting a ( p . q )  pair from Q[ ] involves removing i t  
therefrom and relinking its neighbor elements in both lists. If 
the optimal alignment cost is known for a trace corresponding 
to a ( p , q )  pair, then ( p , q )  pairs still to be extracted from 
Q[ ] are removed but not added to P[ 1. If the cost function 
is integer valued, the above-mentioned list of pointers to each 
lower bound’s last element in Q[ ] allow fastforward search for 
elements to be extracted. For a specific lower bound sublist of 
Q[ 1, when a q encountered is greater than the one in question, 
there are no more ( p . q )  pairs of interest until the next lower 
bound sublist starts. 

(Fig. 4, Step 9) Minimum and maximum y values pill,,, 

and p,,, are determined for (11, q )  pairs in P[ 1. 
(Fig. 4, Steps 10-13) Before computing d , ( a . b ) ,  the 
computational complexity for aligning substring pairs for 
which optimal alignment is not known is compared with 
that of full alignment using p,,,, and p,,,. The less costly 
method is chosen. 
(Fig. 4, Step 14) If the minimum upper bound can be 
lowered on the basis of d,(a,b), then (11.q) pairs are 
removed from Q[ ] accordingly. 
(Fig. 4, Step 15) When Q[ ] is empty, Vcyc (a3  b )  is equal 
to the final minimum upper bound, and the corresponding 
start positions are those shifts for which that cost is 
obtained. 

In summary, as partitions of a and shifts of b are examined, 
the results given earlier ensure that a candidate solution 
is rejected iff that solution proves to be worse than the 
best solutions that are currently known. It follows that the 
guided search algorithm finds all shifts yielding optimal cyclic 
alignments of a and b. 

v. EXAMPLES OF BIOLOGICAL SEQUENCES 

In molecular biology, sequence comparison is applied to 
nucleic acids and to proteins to study the evolution, structure, 
and function of different molecules [8]. The two examples 
given here illustrate the performance of the guided search 
algorithm. For comparison, the search is fully evaluated for 
each shift of the test sequences as the initial (“unshifted”) 
string to indicate the impact of the initial alignment on 
performance. 

The software is implemented in C and run under Unix on 
a Sparc Station 2. 

A .  Repetitive DNA Sequences 

Two nucleotide sequences of satellite DNA molecules from 
the fruitfly constitute the first example. One sequence contains 
a repeated sequence that is 359 base pairs (bp) in length [6], 
and the other contains a 254-bp-long repeated sequence [2]. 
Fig. 5 shows one strand of each of the two sequences written 
in the four-letter alphabet {A,C,G,T} used for DNA, with X 
added to denote an unknown (uncertain) nucleic acid [4]. The 
254-bp unit is homologous to the 359-bp repeat, except for 
a long sequence in the middle of the latter. Let the 359-bp 
sequence a be written as a = ala203 with meta substrings 
01, 0 2 ,  and 0 3 ,  and let the 254-bp sequence b be written as 

CCACATTTTGCAAATTTTGATGACCCCCCTCCTTACAAAAAATGCGAAAATTGATCCAAAAATT 
AATTTCCCTAAATCCTTCAAAAAGTAATAGGGATCGTTAGCACTGGTAATTAGCTGCTCAAAAC 
AGATATTCGTACATCTATGTGACCATTTTTAGCCAAGTTATAACGAAAATTTCGTTTGTAAATA 
TCCACTTTTTTGCAGAGTCTGTTTTTCCAAATTTCGGTCGGTCATCAAATAATCATTTATTTTGCCAC 
AACATAAAAAATAATTGTCTGAATATGGAATGTCATATATCTCACTGAGCTCGTAATAAAATTTCC 
AATCAAACTGTGTTCAAAAATGGAAATTAAATTTTTTGG 

(a) 

CAXATTTGCAAATTTAATGAACCCCCCTTCAAAAAATGCGAAAATTAACGCAAAAATTGA~TC 
CCTAAATCCTTCAAAAAGTAAATAACAACTTTTTCGGTGGCAAAATCTGATTCCCTAATTTCGGTCAT 
TAAATAATCAGTTTTTTTGCCACAACTTTAAAAATAATTGTCTGAATATGGAATGTCATACCTC 
GCXXAGCTXGTAATTAAATTTCCAATGAAACTGTGTTCAACAATGAAAATTACATTTTTCGG 

(b) 

Fig. 5 .  Satellite DNA repeats: (a) 359-base pair sequence, and (b) the 
254-base pair sequence. 

TABLE I 
FIVF STRING C‘OMBINATIONS TESTED USING THE DNA SEQUENCES 

1 Meta-strings 1 String Ixngths  I 

b = blb2 with meta substrings bl and b2. Alignment of a 
and b then corresponds to aligning a1 and b l ,  a3 and b2, and 
deleting ~ 2 .  The position of the deletion sequence is due only 
to the cutting point of the enzyme used to isolate one period 
of both repeats. In fact, sequence analysis using edit costs of 
0 for a match, 1 for a substitution, and 2 for both deletion 
and insertion (the same d as used here) suggests that a more 
intuitive sequencing would be a = a3ala2 and b = b2bl such 
that a and b have one large interval rather than two separate 
intervals in common [4]. 

Performance of the guided search algorithm is evaluated for 
five different string combinations S1-5’5, whose characteristics 
are listed in Table I. 

A summary of timing and computation statistics is given in 
Table 11; timing results are relative to simple brute-force shift 
and realignment, and r ( q )  and r ( p )  are the relative number of 
rejected shifts and ( p .  q )  pairs, respectively; p / q  is the relative 
number of ( p .  q )  pairs left per shift not rejected; mn/q is 
the relative number of matrix locations actually computed per 
realignment (cf. Fig. 3). Note that the average computation 
statistics listed for S4 and S5 all refer to a single ( p .  q )  pair 
left after building the search list. 

On average, the optimal alignment is found for S1 in about 
one third the time of the brute-force method. This ratio is 
halved for 5’2 and S3 and reduced more for S 4  and Sg, as 
expected. More detailed timing is given in Fig. 6, which shows 
relative timing results as a function of the relative position of 
the correct start symbol in the test string; for every plot, each 
data point is obtained from a full guided search. It is interesting 
that for S1-5’3, best performance is not obtained when the 
initial alignment itself is optimal. Further, even though S2 and 
S3 both align with the same cost and correspond to exactly the 
same symbol sequences (only one set of strings is cyclically 
shifted with respect to the other), their timing profiles are quite 
different due to the impact of the initial alignment. 
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Opt  Align. 
Y Label Cost 

dl 226 163 
d2 167 163-64 
ds  149 163-64, 166-68 

TABLE I1 
DNA TIMING AND AVERAGE COMPUTATION STATISTICS 

31.0 

Timing (%) Avrg Comp Statistics (%) 
P min m a s  r ( q )  rip) p l q  mnlq 

40.5 32.2 54.1 25.1 82.8 22.3 41.2 
40.6 32.5 56.7 24.8 83.0 21.9 39.5 
44.5 32.9 65.0 31.0 74.5 36.1 41.0 

/ \  

/’ 
, _J’~ 

~. n 
-, 

-------- _ * _ A  

n 20 40 60 an I W I  

Fig. 6.  DNA timing results measured relative to simple rotation and realign- 
ment. 

Speed-up is a result of several factors. Many candidate q’s ,  
and even more ( p ,  q )  pairs, are discarded as suboptimal without 
computing their true alignment costs. For example, for S1, 
approximately one third of the rejected traces are found to be 
suboptimal by the simple length test 0 applied to al:p and 
bq+l:n, whereas another third are rejected when adding A 
costs for ap+l:m and bl:, to the lower bound computed for 
the other pair of substrings. The rejection pattern is different 
for S2 and 5’3 for which more than half of the traces are 
discarded merely by testing A costs and substring lengths for 
al:p and bq+l:n.  The small p / q  values show that the number 
of candidate traces is greatly reduced, and therefore, only part 
of the full matrix is computed for a realignment, as illustrated 
by the mn/q numbers. For 5’4 and Sg, only a small fraction 
of the traces persist beyond the tests for al:p and bq+l:n ,  and 
no realignments take place. 

B. Circularly Permuted Protein Sequences 

The second example involves alignment of two amino acid 
sequences from the plant proteins concanavalin A (Con A) 
and favin. Con A is composed of a single chain that is 237 
residues long; favin contains an alpha chain of 51 amino acid 
residues and a beta chain of 185 residues [3]. The two proteins 
are unique in the sense that they are evolutionarily related, but 
an unusual genetic event has resulted in cyclic permutation of 
the homologous sequences. Fig. 7 schematically illustrates the 
optimal alignment of favin alpha and beta chains with Con 
A; the sequences are similar with the end of favin beta chain 
resembling the beginning of Con A and vice versa [3]. 

Protein is described by a 20-letter alphabet of which each 
letter represents an amino acid corresponding to a specific set 
of transcribed DNA base triplets [8]. Therefore, for metric 
analysis of amino acid sequences, a highly specialized cost 
function d l  may be defined to correlate individual edit costs 
with the number of base changes needed to interconvert two 

185 

1 51 

Fig. 7 .  Schematic drawing of the alignment of favin alpha and beta chains 
(open bars) with Con A (solid bar) showing the circular shift that is globally 
optimal. 

amino acids: the cost is 0 for match, varies between 1 and 3 
for substitution, and is 3 for both deletion and insertion [4]. 

The guided search algorithm is evaluated using three differ- 
ent cost functions. d l  uses the above edit costs. d2 and d3 are 
both based on fixed edit costs. d2 assigns cost 0 to a match, 1 
to a substitution, and 2 to both deletion and insertion, and d3 
assigns cost 0 to a match and 1 to all other edits. 

Table I11 summarizes timing and computation statistics 
similarly to Table 11. d2 and d3 result in alignment costs 
much lower than d l  because approximately half the edit 
operations are substitutions; yet biochemically, the sequences 
are said to be alike. The three cost functions yield a variety 
of optimal solutions, but all agree that a shift of the test string 
of 163 symbols is optimal. If the edit costs are more alike, 
the confusion about the true amount of shift is greater. The 
functions show approximately the same relative average timing 
performance but differ somewhat on the maximum time spent 
in computation. 

Cost functions d l  and d2 have similar rejection patterns 
of candidate traces. Overall, fewer traces are rejected for d3, 
although more shifts are ruled out compared with both d l  
and d2. In all three cases, about 40% of the full matrix is 
computed for realignments. 

Fig. 8 gives relative timing results as a function of the 
relative position of the correct start symbol in the test string. 
Compared with the DNA timing profiles in Fig. 6, the protein 
timing profiles are more intuitive; the worst case is when the 
test string is shifted to have the start symbol located in its 
middle. 

VI. CONCLUSION 

This paper develops a guided search algorithm for the opti- 
mal string-to-string alignment problem extended to include all 
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Fig. 8. Protein timing results measured relative to simple rotation and 
realignment. 

cyclic shifts. Applied to two sets of biological sequences, the 
algorithm is substantially faster than brute-force computation. 
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