
IEEE TRANSACTIONS ON PAlTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 15, NO. 2, FEBRUARY 1993 129

Dynamic Programming Alignment of
Sequences Representing Cyclic Patterns

Jens Gregor and Michael G. Thomason, Senior Member, IEEE

Abstract-String alignment by dynamic programming is gener-
alized to include cyclic shift and corresponding optimal alignment
cost for strings representing cyclic patterns. A guided search
algorithm uses bounds on actual alignment costs to find all
optimal cyclic shifts. The bounds are derived from submatrices of
an initial dynamic programming matrix. Algorithmic complexity
is analyzed for major stages in the search. Applicability of the
method is illustrated with satellite DNA sequences and circularly
permuted protein sequences.

Index Terms-Cyclic patterns, DNA and protein sequences, dy-
namic programming, guided search, string matching, structural
pattern analysis.

/ I. INTRODUCTION
OMPARISON OF one finite-length string with another C is a fundamental method of structural pattern analysis

employed in many applications [l], [8], [9], [ll], [12]. The
standard computation consists of aligning one string with
the other according to a cost function computed optimally
by dynamic programming. An alignment of strings a and b
defines a sequence of edit operations that transforms b into a
by matching, substituting, inserting, or deleting symbols in a
and b on a symbol-by-symbol basis. Each individual edit is
assigned a real-valued cost by the cost function, and the costs
in a complete edit sequence are added. An optimal alignment
of a and b is one for which the edit sequence has the minimum
total cost. The computation is organized by systematically
filling in a dynamic programming matrix with time and space
complexity U(mn), where the length of a is m., and the length
of b is n.

A typical application of this technique uses a as a proto-
type, possibly representing a larger class of strings, to which
candidate string b must be compared. It may be the case,
however, that a circular shift of b has a superior (lower cost)
alignment with a than does b unshifted. This may occur, for
example, in digital image analysis in which strings represent
closed contours of objects without unique starting points for
scanning [lo]. It may also occur when biological strings are
compared for evidence of evolutionary similarities [4].

To address these cases, we generalize the definition of
an optimal alignment to include all cyclical shifts of b as
candidates and require that the amount of the shift be part

Manuscript received December 24, 1990; revised November 4, 1991. This
work was supported by the Danish Technical Research Council, Grant 16-
4406.E, and the Danish Research Academy. Recommended for acceptance by
Associate Editor H. Baird.

The authors are with the Department of Computer Science, University of
Tennessee, Knoxville, TN 37996.

IEEE Log Number 9206557.

of an optimal solution. This paper presents an algorithm to
find all shifts yielding optimal alignments. The algorithm is
based on computing the full dynamic programming matrix
M for a and b unshifted and then using information from
M to process candidate circular shifts of b. The goal is
to avoid additional, time-consuming dynamic programming
computation if possible.

Section I1 describes cyclic alignments in more detail, and
Section 111 discusses partitioning a and b into substrings
aligned in a candidate solution. Upper and lower bounds
on the costs of these substring alignments are established.
Numerical values of bounds for actual strings are computed
from matrix M . Section IV discusses the algorithm using these
bounds in its search for optimal solutions. As the algorithm
investigates candidate solutions, it (i) updates the values of the
tightest bounds on costs known to be achievable and (i i) uses
these tightest bounds as references to eliminate any candidate
alignment as soon as it is found to be suboptimal. Thus, the
algorithm’s search is guided by actively updating the bounds
on optimal costs. Section IV also gives a complexity analysis
of major stages in the search algorithm.

Section V describes results in two applications involving
biomolecular strings. The first deals with two nucleotide
sequences from satellite DNA sequences in which there are
repetitive patterns. The second deals with two protein se-
quences evidently arising from a common ancestor but with
evolutionarily induced cyclical shifts.

11. CYCLIC ALIGNMENTS

Let e denote the empty symbol. For all symbols ai and 6 j

in the alphabet A, the function d assigns nonnegative, real-
valued costs to the string-edit operations match, substitute,
delete, and insert. To make notation simpler in places, we
assume that d satisfies the following requirements commonly
imposed in practice [8]:

d(ai ,bj) = 0 if ai = 6 j

d (a i , b j) > 0 if ai # 6 j

d(a, ,e) = d(e ,a ,) > 0.
d(ai ,bj) = d (b j , a i)

The cost of a series of edits is the sum of their individual
costs. Function d is extended to finite-length strings a and b
in alphabet A by defining d(a , b) to be the minimal cost of
transforming b into a by a series of edits. Zero cost for match
and nonzero cost for other edits ensures that d(a,b) = 0 iff

0162-8828/93$03.00 0 1993 IEEE

130 IEEE TRANSACTIONS ON PAITERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 15, NO. 2, FEBRUARY 1993

e

I I d(a, bl 1

Fig. 1. Matrix .\I showing a partitioned at p and b partitioned at y.

U = b. Letting deletion and insertion cost be identical and
substitution cost be symmetric ensures that d(a, b) = d(b, a) .

The cyclic alignment problem is to find optimal alignment of
two strings a = ala2 . . . a, of length m and b = b l b 2 . . , b, of
length n for m, n 2 2, where a is a prototype string, and b is
a test string that is allowed to be cyclically shifted q symbols
0 5 q 5 n - 1 before edit cost is computed. To refer to a
aligned with a specific shift of b, let

d,(a, b) = d(a , bq+lbq+2 . . . b,bl . . . b q) .

Let Dcvc(arb) denote the optimal cost of cyclic alignment of
a and b, i.e.

Dcyc(a, b) = min(do(a, b) . d l (a , b) , . . . , d,-1 (U. b)) .

The simplest approach to find Pcy,(a.b) is to rotate b
one symbol at a time and realign each rotated string with
a (cf. [5]). This brute-force approach has time complexity
O(mn2) as measured by the number of entries computed
in dynamic programming matrices. The complexity becomes
O(mp log n) for all data by recursively partitioning a
matrix “channel” established with initial width n by optimal
alignment of a and b [7].

The technique for optimal solutions in this paper has data-
dependent time complexity that can approach O(mn). The
method is based on computing bounds on costs of aligning
substrings of a and b using d values from (m + 1) x (n + 1)
matrix M . Many applications of cyclic alignment involve
strings with lengths on the order of several hundred symbols.
For these applications, using values in M to reduce the number
of matrix entries computed can substantially reduce relative
run-time in practice. For example, Section V reports actual
timing for biomolecular sequences ranging from 1.8 to 44.5%
of the time for brute-force computations.

111. SUBSTRING ALIGNMENT BOUNDS

b partitioned at q. Let

dpq(a.b) = d(al:p, bq+l:n) + d(ap+l:,, h : q)

i.e., d,,(a,b) is the optimal cost of aligning a partitioned at
p with b partitioned and rotated at q . Note that an optimal
cyclic alignment of a with b determines a specific value of q
and associated values of p such that d,,(a,b) = Dcyc(u,b).
Essentially, the search for optimal cyclic alignment computes
bounds on d(al,, , bq+l: ,) and d(ap+l:m. bl:,) while indexing
through candidate values of @I, q).

Reference lower bounds on d(al:,. l ~ , + ~ : ,) and d(a,+l:,,
bl:,) are first established by comparing lengths of strings and
frequencies of symbols without taking locations of symbols
into account. Let SUB-MIN denote the minimum cost of any
substitution. Let INDEL-MIN and INDEL-MAX denote the min-
imum and maximum costs, respectively, of any deletion or
insertion. Aligning two strings, say U and w, must incur cost
of insertions or deletions to equalize string lengths. Minimal
additional cost is obtained iff all symbols happen to be located
in U and ‘U for maximum matching. Let LL and v represent
strings U and w from which symbols that match one for one
without regard for location are removed, and let I I denote the
length of a string; then, this lower bound on d(u , w) is

a (u , w) = min(l/LI. 1.1) rriin(SUB-MIN. 2 . INDEL-MIN)

+ abs(1p.l - 1.1) INDEL-MIN.

Applying lower bound a to substrings for a partitioned at p
and b partitioned and rotated at q gives

4 a 1 : p . bq+l:n) I d(al:p.bq+l:n)
g(ap+l:m, h : q) I d(ap+l:m: h : q)

and establishes a lower bound on dpq(a.b):

o(ai:pq bq+l:n) + a(ap+l:m,bl:q) I & (a , b) .

Additional bounds are based on actual alignment of a and
b. Differential cost is used in several places; therefore, we
introduce operator A to refer to it. For any strings U, w, w,
and 5, let

A(u, W ; M, 5) = d(u: w) - d(w, 2).

For example, A(al:,. b; e , bl:,) = d(al:,, b)-d(e, b1:,)? where
e is the empty string.

Proposition 3.1: A(a1:,, b; e , blyq) is a lower bound on
d(al:,, b,+l:,) and A(a, bl:,: a l Ip , e) is a lower bound on

Proof: Refer to Fig. 2. Note that d(al:,, b) cannot exceed
optimal cost of reaching location (0 , q) in matrix M , plus
optimal cost of continuing from (0, q) to (p , n) . Optimal cost
to reach (0, q) is d(e, bl,,); optimal cost to continue to (p , n)
is d(aI:,, bq+l,,); therefore

d(ap+l:m, bl:,).

We use indices p and q to partition strings a and b,
respectively, into “head” and “tail” substrings. Let ~ 1 : ~ = d(al:p,b) I d(ei b1:q) + d(al:p, bq+l:n).

- a i a z . . . ap and ap+1:, - ap+1ap+2 . . . a, denote head and
tail substrings for a partitioned at p . Let bl:, = b lb2 . . . b, and

Hence

bq+l:n = bq+lbq+~. ’ ‘ b, denote head and tail substrings for d(al :p , b) - d(e, h : q) I d(al:,, bq+l:n)

GREGOR AND THOMASON. DYNAMIC PROGRAMMING ALIGNMENT OF SEQUENCES

~

131

I trace

Fig. 2. Beginning and end points of uppermost trace in H,,,, and leftmost
trace in T,],,; the former trace has a cost of ~ (C I , : ~ . b: a, :r . b , , ,) = (l (~ , : ~ . b)
- t l (a , , , . b , : q) and correspondingly for the latter 1 (a . b , : , : ~ , : ~ . b , ~ ~) =
~ l (a . b , : ~) - d (a , : p . b , : c) .

Similarly, d(a. b l : ,) cannot exceed the optimal cost of reaching
(p . 0) plus optimal cost of continuing from (p . 0) to (m.q);
therefore, we obtain

d(a%bl:,) - d(ai:p. e) 5 d(ap+i:rrL. h : q) .

0
The proof above is a direct application of the general

property that d(uv, wz) 5 d(u. w) +d(v.z) for cost functions
of the kind specified here. Since a and A both establish lower
bounds on the two terms of dpq(a.b), they can be combined
into
X,,(a, b) = max(a(al,,. b q + l I n) . A(al:,, b: e . b l : ,))

+ max(a(ap+l :m. bl:,). A(a. b ~ : ~ : 0 1 : ~ . e)) .

Corollary 3.1: X,,(a, b) is a lower bound on d,,(a. b) . 0
It is convenient to describe upper bounds by refering to two

submatrices of M , which are known as H p q and T,,, that are
associated with a partitioned at p and b partitioned at q, as
shown in Fig. 2. Locations 03, n) and (m, q) in matrix M are
the lower-right corners of submatrices Hp4 and Tps, which
hold values d(al:,, b) and d(a. b l : ,) , respectively. There is at
least one optimal trace from (0,O) to (p . n) in M . Select one
such trace that intersects column y at the smallest possible
row number, say, row r , as in Fig. 2. The portion of this
trace within Hpq is an uppermost trace in H p q ; it runs from
(7'. q) to (p . n) , and its cost is A(a lZp . b: a ~ : ~ . b l : ,) . Similarly,
there is at least one optimal trace from (0,O) to (m. q) in M .
The portion of such a trace within Tpq intersecting row p
at the smallest possible column number, say, column c, is a
leftmost trace in Tpq; it runs from (p . c) to (m. q) , and its cost
is A(a.bl:,: a lZp , b l r C) .

Cp,(a. b) = A(a. b1:,: Q ~ : ~ . bIrc) + c . INDEL-MAX..
Proposition 3.2: R,,(a.b) is an upper bound on d(al:,.

b q + l Z n) , and &(a. b) is an upper bound on d (a p + l : 7 n . b l z q) .
Proof: Refer to Fig. 2. An uppermost trace from (r , q)

to (p , n) in Hpq is part of an (not necessarily optimal)
alignment of al:, and b , + ~ : ~ when extended by r deletions
to reach (0 .q) ; hence, the optimal cost for aligning the two
substrings cannot exceed the cost of an uppermost trace, which

Let Rpq(a. b) = A(al:,. b: a l : r . b i : ,) + 1' . INDEL-MAX and

is A(a1 p . b. 01 r . bl ,), plus the cost of the deletions, which is
at most 7' . INDEL-MAX:

d(Ql p.b,+l n) I A(a1 p . b: a1 7-1 bl 4)

+ 7' . INDEL-MAX

Analogously, for alignment of and bl

(i (a p + ~ n l . h q) I A (a . h q ; a 1 , , h c)
+ c . INDEL-MAX

U
Note that if = 0 or c = 0, then an upper bound

coincides with the corresponding lower bound, and at least
one of the two terms of d,,(a,b) is known exactly. Let

Corollary 3.2: ISpq(a. b) is an upper bound on d,,(a. b) . 0
In an implementation, upper and lower bounds are used

in the following way. For a given q , bounds are computed
to establish interval [pmln.pmax] as the smallest range on p
such that d,,(a.b) could be optimal, i.e., p $! [pmln,pmax]
implies that d,,(a. 6) exceeds the lowest cost currently known
to be achievable for cyclic alignment of a and b. One possible
outcome is that for every p , d,,(a. b) exceeds this lowest cost,
in which case, [P,,,.p,,,] is null, and y is eliminated as a
candidate for optimal shift. If q remains viable, its p,,, and
pma, reduce the number of matrix entries needed to compute
dq(a,b) . Specifically, matrix entries indicated in Fig. 3 need
not be computed because the various optimal traces noted in
the figure may intersect, i.e., may share matrix entries, but need
never cross. Thus, d,(a. b) can be computed in worst-case time

1 p,(a. b) = R,,(a, b) + C,,(a. b) .

O(Pmax(n - 4) + (m - pn i in)q) .

IV. GUIDED SEARCH ALGORITHM

The bounds developed in the previous section are used in
a guided search algorithm to find optimal cyclic alignment of
a and b. These bounds are used to maintain a search list Q[]
that holds information about candidate alignment traces, i.e., it
holds specific (p . y) pairs that refer to the alignment of specific
head-and-tail substrings of a and b. A trace is a candidate iff its
lower bound is less than or equal to the minimum upper bound
for any candidate trace. New candidate traces are added to the
list, and old traces that can no longer be optimal are removed.
When the set of candidate traces is exhausted, optimal costs
for aligning a and the shifted versions of b represented by
(p . q) pairs in Q[] are computed by dynamic programming.

Fig. 4 lists a pseudo-code description of the algorithm. The
following description includes comments on tradeoffs between
computation time complexity and memory requirements.

A. Building Search List Q[]

Building search list Q[] takes places as follows:
(Fig. 4, Steps 1 and 2) Q[] is initialized with d(a ,b) ,
which also serves as an (initial) minimum upper bound
on any d,,(a. b) . The algorithm then loops through all
combinations of p and q for 1 I p I m - 1 and
1 5 q 5 7 1 - 1 .

(Fig. 4, Steps 3 and 4) For a specific (p . q) pair, if
the lower bound on d,,(a.b) is strictly greater than

132 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 15, NO. 2, FEBRUARY 1993

(b)

Stylized outline of computational savings obtainable for realignment
of a with b cyclically shifted to start at h,+l. Bold arcs represent optimal
traces. Matrix locations in dark gray are eliminated by optimal trace for a
aligned with b unshifted. Additional locations in light gray are eliminated for
a given q by its [pm,,l.p,mat] range.

the current minimum upper bound, the trace in question
cannot be optimal and is discarded.
(Fig. 4, Steps 5 and 6) If not discarded, the (p > q) pair is
added to Q[] in terms of the lower and upper bounds on
d p q (a r b) ; it is then tested to see if the minimum upper
bound can be lowered with (p , q) pairs removed from
Q[] accordingly.

The most complex part of the lower bound computations are
the ~7 costs, all of which takes total time U((m+n)mn). Tabu-
lating character counts for all possible head-and-tail substrings
of a and b reduces the computational complexity to U(mn).
The tradeoff is extra memory usage in the order of U(7n + n).

For the upper bound computations, repetitive backtracing of
both upper-most and left-most traces will take time U ((m +
n)mn) in the worst case. By tabulating row and column
intersections for all upper-most traces prior to forming Q[]
at worst-case complexity O(c,"=;' (p + n)) and sequentially
tabulating row and column intersections for the (unique) left-
most trace whenever q changes at worst-case complexity
U(c:i:(q+m)), the upper bounds compute in, at most, time
U(m2 + n2) using O(mn) extra memory. When comparing
complexities in practice, it should be noted that an elemen-

tary operation in this backtracing is itself simpler than, e.g.,
computing a value in a dynamic programming matrix.

Adding and removing trace information to and from search
list Q[] might also be very time consuming. By building Q[3
as a linked list and inserting new (p , q) pairs according to
increasing values of the lower bounds, Q[] is updated in
linear time. For an integer-valued cost function, the finite
number of lower bounds (a(a , b) , . . . , d(a, b)) allows Q[] to
be partitioned into sublists. Using a pointer to the last element
in each sublist reduces maintenance of Q[] to constant time
at very low memory cost.

Finally, in an actual implementation, new information about
bounds on d,,(a, b) for a (p . q) pair is taken into consideration
immediately. The ~7 cost, for example, is two independent
computations, one of which is the difference in length between
two substrings; it often occurs that a (p , q) pair can be
discarded on that basis alone, in which case, further gathering
of evidence of suboptimality is unnecessary.

B. Computing Optimal Costs

When (p , q) combinations are exhausted, search list Q[]
holds information on the set of shifts of b for which there might
be an optimal alignment; each q value may be represented by
one or more (p , q) pairs.

(Fig. 4, Steps 7 and 8) Although Q[] is not empty, all
(p , q) pairs with the same q value as the top element
in Q[] are extracted by superimposing a new linked list
P[1 on Q[1.

GREGOR AND THOMASON: DYNAMIC PROGRAMMING ALIGNMENT OF SEQUENCES 133

Extracting a (p . q) pair from Q[] involves removing i t
therefrom and relinking its neighbor elements in both lists. If
the optimal alignment cost is known for a trace corresponding
to a (p , q) pair, then (p , q) pairs still to be extracted from
Q[] are removed but not added to P[1. If the cost function
is integer valued, the above-mentioned list of pointers to each
lower bound’s last element in Q[] allow fastforward search for
elements to be extracted. For a specific lower bound sublist of
Q[1, when a q encountered is greater than the one in question,
there are no more (p . q) pairs of interest until the next lower
bound sublist starts.

(Fig. 4, Step 9) Minimum and maximum y values pill,,,

and p,,, are determined for (11, q) pairs in P[1.
(Fig. 4, Steps 10-13) Before computing d , (a . b) , the
computational complexity for aligning substring pairs for
which optimal alignment is not known is compared with
that of full alignment using p,,,, and p,,,. The less costly
method is chosen.
(Fig. 4, Step 14) If the minimum upper bound can be
lowered on the basis of d,(a,b), then (11.q) pairs are
removed from Q[] accordingly.
(Fig. 4, Step 15) When Q[] is empty, Vcyc (a3 b) is equal
to the final minimum upper bound, and the corresponding
start positions are those shifts for which that cost is
obtained.

In summary, as partitions of a and shifts of b are examined,
the results given earlier ensure that a candidate solution
is rejected iff that solution proves to be worse than the
best solutions that are currently known. It follows that the
guided search algorithm finds all shifts yielding optimal cyclic
alignments of a and b.

v. EXAMPLES OF BIOLOGICAL SEQUENCES

In molecular biology, sequence comparison is applied to
nucleic acids and to proteins to study the evolution, structure,
and function of different molecules [8]. The two examples
given here illustrate the performance of the guided search
algorithm. For comparison, the search is fully evaluated for
each shift of the test sequences as the initial (“unshifted”)
string to indicate the impact of the initial alignment on
performance.

The software is implemented in C and run under Unix on
a Sparc Station 2.

A . Repetitive DNA Sequences

Two nucleotide sequences of satellite DNA molecules from
the fruitfly constitute the first example. One sequence contains
a repeated sequence that is 359 base pairs (bp) in length [6],
and the other contains a 254-bp-long repeated sequence [2].
Fig. 5 shows one strand of each of the two sequences written
in the four-letter alphabet {A,C,G,T} used for DNA, with X
added to denote an unknown (uncertain) nucleic acid [4]. The
254-bp unit is homologous to the 359-bp repeat, except for
a long sequence in the middle of the latter. Let the 359-bp
sequence a be written as a = ala203 with meta substrings
01, 0 2 , and 0 3 , and let the 254-bp sequence b be written as

CCACATTTTGCAAATTTTGATGACCCCCCTCCTTACAAAAAATGCGAAAATTGATCCAAAAATT
AATTTCCCTAAATCCTTCAAAAAGTAATAGGGATCGTTAGCACTGGTAATTAGCTGCTCAAAAC
AGATATTCGTACATCTATGTGACCATTTTTAGCCAAGTTATAACGAAAATTTCGTTTGTAAATA
TCCACTTTTTTGCAGAGTCTGTTTTTCCAAATTTCGGTCGGTCATCAAATAATCATTTATTTTGCCAC
AACATAAAAAATAATTGTCTGAATATGGAATGTCATATATCTCACTGAGCTCGTAATAAAATTTCC
AATCAAACTGTGTTCAAAAATGGAAATTAAATTTTTTGG

(a)

CAXATTTGCAAATTTAATGAACCCCCCTTCAAAAAATGCGAAAATTAACGCAAAAATTGA~TC
CCTAAATCCTTCAAAAAGTAAATAACAACTTTTTCGGTGGCAAAATCTGATTCCCTAATTTCGGTCAT
TAAATAATCAGTTTTTTTGCCACAACTTTAAAAATAATTGTCTGAATATGGAATGTCATACCTC
GCXXAGCTXGTAATTAAATTTCCAATGAAACTGTGTTCAACAATGAAAATTACATTTTTCGG

(b)

Fig. 5 . Satellite DNA repeats: (a) 359-base pair sequence, and (b) the
254-base pair sequence.

TABLE I
FIVF STRING C‘OMBINATIONS TESTED USING THE DNA SEQUENCES

1 Meta-strings 1 String Ixngths I

b = blb2 with meta substrings bl and b2. Alignment of a
and b then corresponds to aligning a1 and b l , a3 and b2, and
deleting ~ 2 . The position of the deletion sequence is due only
to the cutting point of the enzyme used to isolate one period
of both repeats. In fact, sequence analysis using edit costs of
0 for a match, 1 for a substitution, and 2 for both deletion
and insertion (the same d as used here) suggests that a more
intuitive sequencing would be a = a3ala2 and b = b2bl such
that a and b have one large interval rather than two separate
intervals in common [4].

Performance of the guided search algorithm is evaluated for
five different string combinations S1-5’5, whose characteristics
are listed in Table I.

A summary of timing and computation statistics is given in
Table 11; timing results are relative to simple brute-force shift
and realignment, and r (q) and r (p) are the relative number of
rejected shifts and (p . q) pairs, respectively; p / q is the relative
number of (p . q) pairs left per shift not rejected; mn/q is
the relative number of matrix locations actually computed per
realignment (cf. Fig. 3). Note that the average computation
statistics listed for S4 and S5 all refer to a single (p . q) pair
left after building the search list.

On average, the optimal alignment is found for S1 in about
one third the time of the brute-force method. This ratio is
halved for 5’2 and S3 and reduced more for S 4 and Sg, as
expected. More detailed timing is given in Fig. 6, which shows
relative timing results as a function of the relative position of
the correct start symbol in the test string; for every plot, each
data point is obtained from a full guided search. It is interesting
that for S1-5’3, best performance is not obtained when the
initial alignment itself is optimal. Further, even though S2 and
S3 both align with the same cost and correspond to exactly the
same symbol sequences (only one set of strings is cyclically
shifted with respect to the other), their timing profiles are quite
different due to the impact of the initial alignment.

134 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 15, NO. 2, FEBRUARY 1993

Opt Align.
Y Label Cost

dl 226 163
d2 167 163-64
ds 149 163-64, 166-68

TABLE I1
DNA TIMING AND AVERAGE COMPUTATION STATISTICS

31.0

Timing (%) Avrg Comp Statistics (%)
P min m a s r (q) rip) p l q mnlq

40.5 32.2 54.1 25.1 82.8 22.3 41.2
40.6 32.5 56.7 24.8 83.0 21.9 39.5
44.5 32.9 65.0 31.0 74.5 36.1 41.0

/ \

/’
, _J’~

~. n
-,

-------- _ * _ A

n 20 40 60 an I W I

Fig. 6. DNA timing results measured relative to simple rotation and realign-
ment.

Speed-up is a result of several factors. Many candidate q’s ,
and even more (p , q) pairs, are discarded as suboptimal without
computing their true alignment costs. For example, for S1,
approximately one third of the rejected traces are found to be
suboptimal by the simple length test 0 applied to al:p and
bq+l:n, whereas another third are rejected when adding A
costs for ap+l:m and bl:, to the lower bound computed for
the other pair of substrings. The rejection pattern is different
for S2 and 5’3 for which more than half of the traces are
discarded merely by testing A costs and substring lengths for
al:p and bq+l:n. The small p / q values show that the number
of candidate traces is greatly reduced, and therefore, only part
of the full matrix is computed for a realignment, as illustrated
by the mn/q numbers. For 5’4 and Sg, only a small fraction
of the traces persist beyond the tests for al:p and bq+l:n , and
no realignments take place.

B. Circularly Permuted Protein Sequences

The second example involves alignment of two amino acid
sequences from the plant proteins concanavalin A (Con A)
and favin. Con A is composed of a single chain that is 237
residues long; favin contains an alpha chain of 51 amino acid
residues and a beta chain of 185 residues [3]. The two proteins
are unique in the sense that they are evolutionarily related, but
an unusual genetic event has resulted in cyclic permutation of
the homologous sequences. Fig. 7 schematically illustrates the
optimal alignment of favin alpha and beta chains with Con
A; the sequences are similar with the end of favin beta chain
resembling the beginning of Con A and vice versa [3].

Protein is described by a 20-letter alphabet of which each
letter represents an amino acid corresponding to a specific set
of transcribed DNA base triplets [8]. Therefore, for metric
analysis of amino acid sequences, a highly specialized cost
function d l may be defined to correlate individual edit costs
with the number of base changes needed to interconvert two

185

1 51

Fig. 7 . Schematic drawing of the alignment of favin alpha and beta chains
(open bars) with Con A (solid bar) showing the circular shift that is globally
optimal.

amino acids: the cost is 0 for match, varies between 1 and 3
for substitution, and is 3 for both deletion and insertion [4].

The guided search algorithm is evaluated using three differ-
ent cost functions. d l uses the above edit costs. d2 and d3 are
both based on fixed edit costs. d2 assigns cost 0 to a match, 1
to a substitution, and 2 to both deletion and insertion, and d3
assigns cost 0 to a match and 1 to all other edits.

Table I11 summarizes timing and computation statistics
similarly to Table 11. d2 and d3 result in alignment costs
much lower than d l because approximately half the edit
operations are substitutions; yet biochemically, the sequences
are said to be alike. The three cost functions yield a variety
of optimal solutions, but all agree that a shift of the test string
of 163 symbols is optimal. If the edit costs are more alike,
the confusion about the true amount of shift is greater. The
functions show approximately the same relative average timing
performance but differ somewhat on the maximum time spent
in computation.

Cost functions d l and d2 have similar rejection patterns
of candidate traces. Overall, fewer traces are rejected for d3,
although more shifts are ruled out compared with both d l
and d2. In all three cases, about 40% of the full matrix is
computed for realignments.

Fig. 8 gives relative timing results as a function of the
relative position of the correct start symbol in the test string.
Compared with the DNA timing profiles in Fig. 6, the protein
timing profiles are more intuitive; the worst case is when the
test string is shifted to have the start symbol located in its
middle.

VI. CONCLUSION

This paper develops a guided search algorithm for the opti-
mal string-to-string alignment problem extended to include all

GREGOR AND THOMASON: DYNAMIC PROGRAMMING ALIGNMENT OF SEQUENCES 135

re1 m e I%]

Fig. 8. Protein timing results measured relative to simple rotation and
realignment.

cyclic shifts. Applied to two sets of biological sequences, the
algorithm is substantially faster than brute-force computation.

ACKNOWLEDGMENT

The authors thank the anonymous referees for valuable
comments that improved the paper significantly.

REFERENCES

H. Bunke and A. Sanfelieu, Eds. Syntactic and Structural Pattern
Recognition Theory and Applications. Singapore: World Scientific,
1990.
M. Carlson and D. Brutlag, “Different regions of a complex satellite
DNA vary in size and sequence of the repeating unit,” J . Molecular
Biol., vol. 135, pp. 483-500, 1979.
B. A. Cunningham, J. F. Hemperly, T. P. Hopp, and G. M. Edel-
man, “Favin versus concanavalin A: Circularly permuted amino acid
sequences,” in Proc. Nat. Acad. Sci.,, 1979, pp. 3218-3222, vol. 76.
B. W. Erickson and P. H. Sellers, “Recognition of patterns in genetic se-
quences,” in D. Sankoff and J. B. Kruskal, Time Warps, String Edits, and
Macromolecules: The Theory and Practice of Sequence Comparisons.
Reading, MA: Addison-Wesley, 1983, pp. 55-90.
K. S. Fu and S. Y. Lu, “Size normalization and pattern orientation
problems in syntactic clustering,” IEEE Trans. Syst. Man Cybern., vol.
9, pp., 55-58, 1979.
T. Hsieh and D. Brutlag, “Sequence and sequence variation within the
1.688 g/cm3 satellite DNA of drosophila melanogaster,” J . Molecular
Biol., vol. 135, pp. 465481, 1979.

[7] M. Maes, “On a cyclic string-to-string correction problem,” Inform.
Processing Lett., vol. 35, pp. 73-78, 1990.

181 D. Sankoff and J. B. Kruskal, Eds. Time Warps, String Edits, and
Macromolecules: The Theory and Practice of Sequence Comparisons.
Reading, MA: Addison-Wesley, 1983.

[9] P. H. Sellers, “An algorithm for the distance between two finite
sequences,” J . Combinatoric Theory, vol. A16, pp. 253-258, 1974.

[lo] W. -H. Tsai and S. -S. Yu, “Attributed string matching with merging for
shape recognition,”IEEE Trans. Patt. Anal. Machine Intell., vol. PAMI-7,
pp. 453462, 1985.

[l l] R. A. Wagner and M. J. Fischer, “The string-to-string correction
problem,” J . Assoc. Comput. Machinery, vol. 21, pp. 168-173, 1974.

1121 Y. P. Wang and T. Pavlidis, “Optimal correspondence of string
subsequences,” IEEE Trans. Patt. Anal. Machine Intell., vol. 12, pp.
1080-1087, 1990.

His research interests
processes in computer

Dr. Thomason is a n

Jens Gregor was born in Copenhagen, Denmark, on
September 22, 1963. He received the M.S. degree
ih electrical engineering and the Ph.D. degree in
technical science from the University of Aalborg,
Denmark, in 1988 and 1991, respectively.

He is currently Assistant Professor of Computer
Science at the University of Tennessee, Knoxville.

Dr. Gregor is a member of the Danish Pattern
Recognition Society.

Michael G. Thomason (S’63-M’65-SM’83) re-
ceived the B.S. degree from Clemson University,
Clemson, SC, in 1965, the M.S. degree from Johns
Hopkins University, Baltimore, MD, in 1970, and
the Ph.D. degree from Duke University, Durham,
NC, in 1973.

He worked at the Westinghouse Defense and
Space Center, Baltimore, MD, has been a consultant
for Perceptics Corp., Knoxville, TN, as well as other
companies, and is currently Professor of Computer
Science at the University of Tennessee, Knoxville.

include structural pattern analysis and stochastic
science.
iember of Sigma Xi, Tau Beta Pi, and the ACM.

