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Abstract. In this paper, we revisit the classic and well-studied longest
common subsequence (LCS) problem and study some new variants, first
introduced and studied by Rahman and Iliopoulos [Algorithms for Com-
puting Variants of the Longest Common Subsequence Problem, ISAAC
2006]. Here we define a generalization of these variants, the longest pa-
rameterized common subsequence (LPCS) problem, and show how to
solve it in O(n2) and O(n+R log n) time. Furthermore, we show how to
compute two variants of LCS, RELAG and RIFIG in O(n +R) time.

1 Introduction

This paper deals with some new interesting variants of the classic and
well-studied longest common subsequence (LCS) problem. The longest
common subsequence between strings can be defined as the maximum
number of common (identical) symbols between them, while preserving
the order of those symbols. Therefore, the LCS problem, can be seen as an
investigation for the “closeness” among strings. Apart from being inter-
esting from pure theoretical point of view, the LCS problem has extensive
applications in diverse areas of computer science and bioinformatics.

The LCS problem for k > 2 strings was first shown to be NP-hard [13]
and later proved to be hard to be approximated [11]. In fact, Jiang and
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Li, in [11], showed that there exists a constant δ > 0, such that, if LCS
problem for more than 2 strings has a polynomial time approximate al-
gorithm with performance ratio nδ, then P = NP . The restricted but
probably the more studied problem that deals with two strings has been
studied extensively [7,8,9,14,15,16,17,19]. The classic dynamic program-
ming solution to LCS problem (for two strings), invented by Wagner and
Fischer [19], has O(n2) worst case running time, where each given string
is of length n. Masek and Paterson [14] improved this algorithm using
the “Four-Russians” technique [1] to reduce the worst case running time3

to O(n2/ log n). Since then, not much improvement in terms of n can
be found in the literature. However, several algorithms exist with com-
plexities depending on other parameters. For example, Myers in [15] and
Nakatsu et al. in [17] presented an O(nD) algorithm where the parameter
D is the simple Levenshtein distance between the two given strings [12].
Another interesting and perhaps more relevant parameter for this prob-
lem is R, where R is the total number of ordered pairs of positions at
which the two strings match. Hunt and Szymanski [9] presented an al-
gorithm running in O((R + n) log n). They have also cited applications
where R ∼ n and thereby claimed that for these applications the algo-
rithm would run in O(n log n) time. For a comprehensive comparison of
the well-known algorithms for LCS problem and study of their behaviour
in various application environments the readers are referred to [4].

Very recently, Rahman and Iliopoulos [18,10] introduced the notion of
gap-constraints in LCS and presented efficient algorithms to solve the re-
sulting variants. The motivations and applications of their work basically
come from Computational Molecular Biology and are discussed in [10]. In
this paper, we revisit those variants of LCS and present improved algo-
rithms to solve them. The results we present in this paper are summarized
in the following table.

PROBLEM INPUT Results in [18,10] Our Results

LPCS X, Y, K1, K2 and D −
O(min(n2, n +R log n))FIG X, Y and K O(n2 +R log log n)

ELAG X, Y, K1 and K2 O(n2 +R log log n)

RIFIG X, Y and K O(n2)
O(n +R)

RELAG X, Y, K1 and K2 O(n2 +R(K2 −K1))

The rest of the paper is organized as follows. In Section 2, we present all
the definitions and notations required to present the new algorithms. In

3 Employing different techniques, the same worst case bound was achieved in [6]. In
particular, for most texts, the achieved time complexity in [6] is O(hn2/ log n), where
h ≤ 1 is the entropy of the text.



Sections 3 to 5, we present new improved algorithms for all the variants
discussed in this paper. Finally, we briefly conclude in Section 6.

2 Preliminaries

Suppose we are given two sequences X[1] . . . X[n] and Y [1] . . . Y [n]. A sub-
sequence S[1..r] = S[1]S[2] . . . S[r] of X is obtained by deleting [0, n− r]
symbols from X. A common subsequence of two strings X and Y , de-
noted CS(X, Y ), is a subsequence common to both X and Y . The longest
common subsequence of X and Y , denoted LCS(X, Y ), is a common sub-
sequence of maximum length. In LCS problem, given two sequences, X
and Y , we want to find out a longest common subsequence of X and Y .

In [18,10], Rahman and Iliopoulos introduced a number of new vari-
ants of the classical LCS problem, namely FIG, ELAG, RIFIG and RE-
LAG problems. These new variants were due to the introduction of the
notion of gap constraints in LCS problem. In this section we set up a
new ‘parameterized’ model for the LCS problem, giving us a more gen-
eral way to incorporate all the variants of it. In the rest of this section we
define this new notion of parameterized common subsequence and define
the variants of LCS mentioned above in light of the new framework. We
remark that both the definitions of [18,10] and this paper are equivalent.

Let X and Y be sequences of length n. We will say, that the sequence
C is the parameterized common subsequence PCS(X, Y,K1,K2, D) (for
1 ≤ K1 ≤ K2 ≤ n, 0 ≤ D ≤ n) if there exist such sequences P and Q,
that:

– |C| = |P | = |Q|; we will denote the length of these sequences by l,
– P and Q are increasing sequences of indices from 1 to n, that is: 1 ≤

P [i], Q[i] ≤ n (for 1 ≤ i ≤ l), and P [i] < P [i + 1] and Q[i] < Q[i + 1]
(for 1 ≤ i < l),

– the sequence of elements from X indexed by P and the sequence of
elements from Y indexed by Q are both equal C, that is: C[i] =
X[P [i]] = Y [Q[i]] (for 1 ≤ i ≤ l),

– additionally, P and Q satisfy the following two constraints:

• K1 ≤ P [i + 1]− P [i], Q[i + 1]−Q[i] ≤ K2, and
• |(P [i + 1]− P [i])− (Q[i + 1]−Q[i])| ≤ D, for 1 ≤ i < l.

By LPCS(X, Y,K1,K2, D) (longest parameterized common subsequence)
we will denote the problem of finding the maximum length of the common



subsequence C of X and Y 4. Now we can define the problems introduced
in [18,10] using our new framework as follows.

– FIG(X, Y,K) (LCS problem with fixed gap) denotes the problem
LPCS(X, Y, 1,K, n),

– ELAG(X, Y,K1,K2) (LCS problem with elastic gap) denotes the pro-
blem LPCS(X, Y,K1,K2, n),

– RIFIG(X, Y,K) (LCS problem with rigid fixed gap) denotes the prob-
lem LPCS(X, Y, 1,K, 0),

– RELAG(X, Y,K1,K2) (LCS problem with rigid elastic gap) denotes
the problem LPCS(X, Y,K1,K2, 0).

Let us denote by R the total number of ordered pairs of positions at
which X and Y match, that is the size of the set M = {(i, j) : X[i] =
Y [j], 1 ≤ i, j ≤ n}.

3 An O(n2) Algorithm for LPCS

The LPCS(X, Y,K1,K2, D) problem can be solved in polynomial time
using dynamic programming. Let us denote by T [i, j] maximum length of
such a PCS(X[1, . . . , i], Y [1, . . . , j],K1,K2, D), that ends at X[i] = Y [j].
Using the problem definition, we can formulate the following equation:

T [i, j] =

{
0 if X[i] 6= Y [j]
1 + max({0} ∪ {T [x, y] : (x, y) ∈ Zi−K1,j−K1}) if X[i] = Y [j]

where Zi,j denotes the set:

Zi,j = {(x, y) : 0 ≤ i− x, j − y ≤ K2 −K1, |(i− x)− (j − y)| ≤ D}

We will show, how to compute array T in O(n2) time using dynamic
programming. But first we have to introduce an auxiliary data-structure.

3.1 Max-queue

Max-queue is a kind of priority queue that provides the maximum of the
last L elements put into the queue (for a fixed L). It provides the following
operations:

– init(Q,L) initializes Q as the empty queue and fixes the parameter L,
4 The parameterization presented here should not be mistaken with one that can be

found in the parameterized edit distance problem [2,3].



– insert(Q, x) inserts x into Q,
– max(Q) is the maximum from the last L elements put into Q (assum-

ing, that Q is not empty).

Max-queue is implemented as a pair Q = (q, c), where q is a two-linked
queue of pairs, and c is a counter indexing consecutive insertions. Each
element x inserted into the queue is represented by pair (i, x), where i is
its index. The q contains only pairs containing these elements, that (at
some moment) can be returned as answer to max query. These elements
form a decreasing sequence. The empty queue is represented by (∅, 0).
Insertion can be implemented as shown in Algorithm 1.

Algorithm 1: insert(Q = (q, c), x)
/* Remove such pairs (i, val), that val ≤ x. */

while not empty(q) and q.tail.val ≤ x do RemoveLast(q)1

c + +2

Enqueue(q, {index = c, val = x})3

/* Remove such pairs (i, val), that i ≤ c− L. */

while q.head.index ≤ c− L do RemoveFirst(q)4

The amortized running time of insert is O(1). The max query simply
returns q.head.val (or 0 if the q is empty).
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Fig. 1. Set Zi−K1,j−K1 , for i = 14, j = 12, K1 = 3, K2 = 10, and D = 3.



3.2 The algorithm

The set Zi,j has a complicated shape. It is easier to view it as a sum
of squares. Let B = min(K2 − K1, D) + 1, C = K2 − K1 − B + 2, and
Si,j = {(i− x, i− y) : 0 ≤ x, y < B}. Then, we can define Zi,j as:

Zi,j =
⋃

0≤k<C

Si−k,j−k

To compute T , we will use three auxiliary arrays:

– R[i, j] = maxk=0,...,B−1 T [i− k, j],
– S[i, j] = maxk=0,...,B−1 R[i, j − k] = max(x,y)∈Si,j

T [x, y],
– P [i, j] = maxk=0,...,C−1 S[i− k, j − k] = max(x,y)∈Zi,j

T [x, y].

Now, T [i, j] can be expressed as:

T [i, j] =

{
0 if X[i] 6= Y [j]
1 + P [i−K1, j −K1] if X[i] = Y [j]

We will compute all the arrays using dynamic programming, filling them
row by row. We will also use max-queues to compute respective maxima
— while computing elements of these arrays indexed by i and j:

– QR is a max-queue containing information about T [i−B + 1 . . . i, j],
– QS [i] is a max-queue containing information about R[i, j−B+1 . . . j],
– QP [i−j] is a max-queue containing information about S[i, j], . . . , S[i−

C + 1, j − C + 1].

The value LPCS(X, Y,K1,K2, D) is computed in the GlobalMax vari-
able. Please note, that arrays R, S and P are introduced for the clarity
of the algorithm and can be removed.

The actual longest parameterized common subsequence can be recon-
structed in O(n) time. Since the operations on max-queues run in O(1)
amortized time, total time complexity of the above algorithm is O(n2).

4 An O(n + R log n) Algorithm for FIG and ELAG

For special cases, where R = o(n2/ log n), we can solve ELAG (and FIG)
problems more efficiently, namely in O(n+R log n) running time. In order
to do it, instead of computing the whole array T , we should compute only



Algorithm 2: AlgLPCS-1
Initialize R[i, j] = S[i, j] = GlobalMax = 01

for i = 1 to n do Init(QS [i], B)2

for i = −n + 1 to n− 1 do Init(QP [i], C)3

for j = 1 to n do4

Init(QR, B)5

for i = 1 to n do6

if X[i] = Y [j] then7

T [i, j] = P [i−K1, j −K1] + 18

GlobalMax = max(GlobalMax, T [i, j])9

else10

T [i, j] = 011

insert(QR, T [i, j]); R[i, j] = max(QR)12

insert(QS [i], R[i, j]); S[i, j] = max(QS [i])13

insert(QP [i− j], S[i, j]); P [i, j] = max(QP [i− j])14

these entries that correspond to matches from the set M . For (i, j) 6∈ M
we have T [i, j] = 0, and for (i, j) ∈ M we have:

T [i, j] = 1 + max
(
{0} ∪

{
T [x, y] : (x, y) ∈ M, i−K2 ≤ x ≤ i−K1,

j −K2 ≤ y ≤ j −K1

})
We will require data structures D and Q providing the following op-

erations:

– Insert(i, j, p) — inserts element (i, j) with priority p,
– Remove(i, j) — removes element (i, j),
– Priority(i, j) — returns priority of the element (i, j), or 0 if it is not

present,
– Max(l, r) — returns maximum priority among such elements (i, j),

that l ≤ i ≤ r (or 0 if there are no such elements).

We can implement the above operations in O(log n) time, using balanced
search trees (such, as AVL or Red-Black trees [5]) and enriching each
node with a maximum priority in the corresponding subtree.

Let M ′ = {(i − K1, j − K1) : (i, j) ∈ M} and B = K2 − K1 + 1.
The algorithm scans the consecutive rows of M and M ′. While scanning,
we keep in D information about elements from the last B rows of T [i, j].
Hence, when processing row j, we have:

D.Max(i−B + 1, i) = max
(x,y)∈M,

i−K2+K1≤x≤i,

j−K2+K1≤y≤j

T [x, y]



However, instead of storing values T [i, j] in an array, we store in Q pairs
(i, j) (for (i, j) ∈ M ′) with priorities max{T [x, y] : 0 ≤ i− x, j − x < B}.

Algorithm 3: AlgELAG
Compute sets M and M ′ = {(i−K1, j −K1) : (i, j) ∈ M}1

Initialize D = ∅, Q = ∅, GlobalMax = 0, B = K2 −K1 + 12

for j=1 to n do3

// Remove row j −B from D.4

for (x, y = j −B) ∈ M do D.Remove(x, y)5

// Insert row j into D6

for (x, j) ∈ M do7

Len = 1 + Q.Priority(x−K1, j −K1)8

D.Insert(x, j, Len)9

GlobalMax = max(GlobalMax, Len)10

for (x, j) ∈ M ′ do11

Q.Insert((x, j), D.Max(x−B + 1, x))12

The value ELAG(X, Y,K1,K2) is computed in the GlobalMax vari-
able. The actual longest common subsequence with elastic gap can be
reconstructed in O(n) time. Clearly, the overall time complexity of the
above algorithm is O(n +R log n).

The above algorithm can be extended to solve the LPCS problem in
O(n +R log n) running time.

5 An O(n + R) Algorithm for RIFIG and RELAG

To solve the RELAG and RIFIG problems, we need to observe, that
they can be reduced to O(n) independent 1-dimensional problems. Since
RIFIG is a special case of RELAG, for K1 = 1, we will focus on the latter
one. Please recall, that RELAG is equivalent to LPCS(X, Y,K1,K2, 0).

Let T [i, j] denote the maximum length of such a PCS(X[1, . . . , i],
Y [1, . . . , j], K1,K2, 0), that includes X[i] and Y [j]. T [i, j] can be com-
puted using the following formula:

T [i, j] =

{
0 if X[i] 6= Y [j]
1 + max{T [i− p, j − p] : K1 ≤ p ≤ K2} if X[i] = Y [j]

Let M ′ = {(i−K1, j −K1) : (i, j) ∈ M}, and R[i, j] = max{T [i− p, j −
p] : 0 ≤ p ≤ K2 − K1}. It is enough to calculate values T [i, j] only for



(i, j) ∈ M , and they can be expressed as: T [i, j] = 1 + R[i−K1, j −K1].
Hence, it is enough to calculate values R[i, j] only for (i, j) ∈ M ′.

We will use a slightly extended version of max-queue (cf. Section 3.1).
Since we process only indices (i, j) ∈ M ∪M ′, we must be able to insert
elements with specified indices. Let Q = (q, c) be a max-queue. Opera-
tion insert-ind(Q, x, i) first sets the counter c to i − 1, and then calls
insert(Q, x). The amortized running time of such an operation is still
constant, since each element is inserted and removed once.

We will process each diagonal separately. For each d = 1, . . . , 2n − 1
we scan points (i, j) ∈ M ∪M ′ laying on the d-th diagonal (i.e. such that
n + i − j = d), in order of increasing i. We will use a max-queue Q to
compute values R[i, j], but we will store them in a one dimensional vector
P [i], P [i] = R[i, n + i− d]. When processing (i, j) ∈ M , we can compute
T [i, j], as T [i, j] = R[i−K1, j−K1]+1 = P [i−K1]+1. When processing
(i, j) ∈ M ′ we can compute P [i], as P [i] = R[i, j] = max(Q). The details
are shown in Algorithm 4: AlgRELAG.

Algorithm 4: AlgRELAG
Compute sets M and M ′ = {(i−K1, j −K1) : (i, j) ∈ M}1

Initialize GlobalMax = 0, P [i] = 0, for 1 ≤ i ≤ n2

for d=1 to 2n-1 do3

init(Q, K2 −K1 + 1) ; /* extended Max-Queue */4

foreach (i, j) ∈ M ∪M ′ and n + i− j = d (in order of increasing i) do5

if (i, j) ∈ M then6

Len = P [i−K1] + 17

insert-ind(Q, Len, i)8

GlobalMax = max(GlobalMax, Len)9

if (i, j) ∈ M ′ then10

insert-ind(Q, 0, i) ; /* phony insert, to clean up the Q */11

P [i] = max(Q)12

// Clean modified cells of array P13

foreach (i, j) ∈ M ′ and n + i− j = d do P [i] = 014

Sets M and M ′ can be computed and sorted in O(n + R) time (as-
suming, that the alphabet is composed of polynomially bounded integer
numbers). While scanning the diagonals, we have to process |M ∪M ′| po-
sitions, each requiring constant amortized time. Hence, the overall time
complexity of the AlgRELAG is O(n +R).



6 Conclusions

We have studied variants of the well-known LCS problem: FIG, ELAG,
RIFIG and RELAG, presented in [18,10]. These problems can be seen
as special cases of the more general LPCS problem, introduced here. We
presented an algorithm for solving the LPCS problem in O(n2) time, that
improves the previously known algorithms for FIG, ELAG and RELAG.
For special cases, when R = o(n2), we have also presented algorithms for
RELAG and RIFIG problems running in O(n+R) time, and for FIG and
ELAG problems running in O(n + R log n) time. The latter one can be
extended to solve LPCS problem, without changing its running time.
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