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Abstract 
 

In order to find the longest common subsequence 
(LCS) as soon as possible, we, with the method of 
match pairs, propose the new algorithm of the 
sequence of DNA, which is efficient both in time and in 
space on the basis of the improved dynamic 
programming theorem. 
 
 
1. Introduction 
 

Mutations in DNA arise naturally in an evolution 
process. These mutations, which lead to the  “editing” 
of DNA texts, include substitutions, insertions and 
deletions of nucleotides. The comparison of two DNA 
sequences attempts to align those two sequences to get 
the function these mutations. The most commonly used 
function is the so-called edit distance first introduced 
by Levenshtein[6], which simply counts the number of 
mutations. If substitutions are not allowed, the 
alignment minimizing the edit distance will produce a 
longest common subsequence (LCS) of the two 
sequences. And the LCS problem had been studied by 
mathematicians for general sequences long before the 
edit distance was introduced for DNA sequences. 

Assume that both sequences are of O(n) length. 
Needleman and Wunsch[7] gave an O(n2) time and 
O(n2) space dynamic programming algorithm for the 
LCS problem. Hirschberg[2] improved it to O(n) space 
by using a divide-and-conquer technique. Later, Hunt 
and Szymanski[5], and Hirschberg[3], all noticed that not 
all steps in the dynamic-programming procedure need 
to be processed and they proposed more efficient 
nondynamic-programming algorithms. Hunt and 
Szymanski’s algorithm was improved by Apostolico[1] 
to O(n·logn) time and O(n+l) space, where l denotes 
the number of matches between two sequences. 
Hirschberg’s algorithm requires O(L·n) time and 
O(n+L·n) space, where L is the length of an LCS. 
Pevzner and Weterman[8] recognized that these 
algorithms can be performed by a primal-dual set-up. 

The derived primal-dual algorithm[4], as presented by 
Pevzner and Waterman, takes O(l+L·n) time and 
O(l+L·n) space. we propose a new algorithm, whose 
implementation takes an O(n·L) time and O(n) space.  
 
2. The Improved Dynamic Programming 
Algorithm 
 

The single stranded DNA is viewed as a linear 
sequence a1a2…an of nucleotide. The sequence is 
called the primary structure. Each ai is identified with 
one of four basic nucleotides: A, C, G, T. 

Definition 1[9] (Longest Common Subsequence) 
An DNA sequence can be described as a string of 

the alphabet {A,C,G,T}. Given two DNA sequences 
I={i1, i2, ..., im} and J={j1, j2, ..., jn}, when ii, 
jj�{A,C,G,T}. the LCS problem is to find a largest 
subsequence Z={z1, z2, ..., zL}, when zi�{A,C,G,T}, 
satisfies 1 k L≤ ≤ , 

k kk i jz i j= = and 1 2 Li i i< < <" , 

1 2 Lj j j< < <" . 
A brute-force approach to solve the LCS problem is 

to enumerate all subsequences of I and check each 
subsequence to see if it is also a subsequence of J, 
keeping track the process of the discovery of the 
longest subsequence. Each subsequence of I 
corresponds to a subset of the indices {1, 2, ..., m} of I. 
There are 2m subsequences of I, which make the 
approach require exponential time, so that it is 
impractical for long sequences. 

The LCS problem has an optimal-substructure 
property, as the following theorem shows. As we shall 
see, the natural classes of subproblems correspond to 
pairs of "prefixes" of the two input sequences. To be 
precise, given a sequence I={i1, i2, ..., im}, we define 
the ith prefix of I, for i= 0, 1, ..., m, as Ii={i1, i2, ..., ii} 
and I0 is the empty sequence. 

Theorem 1[9] (Optimal substructure of an LCS)  
Let I={i1, i2, ..., im} and J={j1, j2, ..., jn} be 

sequences, and let Z={z1, z2, ..., zL} be any LCS of I 
and J. 

(1).If im = jn, then zL = im = jn and ZL-1 is an LCS of 
Im-1 and Jn-1. 
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(2).If im ≠ jn, then zL ≠ im implies that Z is an LCS of 
Im-1 and J. 

(3).If im ≠ jn, then zL ≠ jn implies that Z is an LCS of 
I and Jn-1. 

 
Similarly, the natural classes of subproblems can 

also correspond to pairs of " Suffixes " of the two input 
sequences. To be precise, given a sequence I={i1, i2, ..., 
im}, we define the ith Suffixe of I, for i = 0, 1, ..., m, as 
Ii={ii, ii+1, ..., im} and I0 is the empty sequence. 

Theorem 2 (The improved dynamic programming 
algorithm) 

If I={i1, i2, ..., im} and If J={j1, j2, ..., jn} are 
sequences and let Z={z1, z2, ..., zL} be some LCS of I 
and J. 

(1) If i1= j1 then z1=i1 and Z2 is an LCS of I2 and J2,  
(2) If i1≠ j1 then z1≠i1 and Z is an LCS of I2 and J,  
(3) If i1≠ j1 then z1≠j1 and Z is an LCS of I and J2.  
Proof: (1) If z1≠i1, we could add i1= j1 to Z to get an 

LCS of length L+1. By contradiction, z1=i1=j1. | Z2|=L-
1 and it must be an LCS of I2 and J2. In this case, Z2 is 
an LCS. if not , ∃ W ， |W|>L-1 ， and it is a 
CS(common sequence) of I2 and J2, then we get a CS 
of I and J of the length greater than L by appending i1= 
j1. so It is a contradiction.  

(2) If z1≠i1, Z is a CS of I2 and J. If ∃ W, |W|>L, and 
it is a CS, then W would be a CS of I and J. and it is 
also a contradiction.  

(3) The same Proof as Proof (2) by reversing I and 
J. 

 
So the approach to find the LCS of I and J is as 

following: 
(1) if i1= j1 find LCS of I2 and J2,  
(2) if i1≠ j1 

a) find LCS of I2 and J , 
b) find LCS of I and J2 , 
and take the larger one of 'a)' or 'b)'.  

Thus we start with small problem, find LCS and 
develop our solution: 

Let LCS(Ii, Jj) be LCS of Ii and Jj. Let 
I1={i1,i2,…,im}, I2={i2,i3,…,im}, …, Im={im}; 
J1={j1,j2,…,jn}, J2={j2,j3,…,jn}, …, Jn={jn}. 
then 
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Algorithm 1: computing LCS(I, J) 
1   LCS(Ii, φ)=φ;  
2   LCS(φ, Jj)= φ;  
3   for i=1 to m  
4    for j=1 to n 
5      if  ii=jj 
6     LCS(Ii, Jj)={ii}+LCS(Ii-1, Jj-1) 

7    else if length(LCS(Ii-1, Jj))>=length(LCS(Ii, Jj-

1)) 
8            LCS(Ii, Jj)=LCS(Ii-1, Jj) 
9         else  
10           LCS(Ii, Jj)=LCS(Ii, Jj-1)  
11  output LCS(Im, Jn) 
Running Time=O(mn) because each table entry 

takes O(1) time and O(mn) space. 
The following example, taken from [8], illustrates 

the algorithm in table 1. 
I= ATCTGAT, J= TGCATA,  

Table 1. illustration of the improved dynamic 
programming algorithm  

 
 
3. The New Algorithm 
 

From the Definition 1 and the Theorems, We can 
see that subproblem class is corresponding to match 
pair of the two input sequences. Given two DNA 
sequences I={i1, i2, ..., im} and J={j1, j2, ..., jn}, when 
ii,jj�{A,C,G,T}. 

Definition 2  Let I={i1, i2, ..., im} and J={j1, j2, ..., 
jn} denote two DNA sequences, let ii=jj, i=1,2,…,m; 
j=1,2,…,n. Define Ρ={(i, j): ii =jj }. then (i, j) is the 
match pair. 

This is the case that each nucleotide independently 
has probability pA, pC, pG, pT of being A, C, G, T, 
respectively. We will also denote P = {p1, p2, … , pl} 
where each pk is a pair (ik, jk). 

Definition 3  Given two match pairs px, py, if ix<iy, 
jx<jy, define px < py. py is the subsequence of the px, or 
px is  the pre-sequence of the py. 

Definition 4  If px < py, px < pz,  py, pz�P , and pz< py 
doesn’t exist, define the specific order <* to be px<*py,  
py is the direct subsequence of the px, or px is  the direct 
pre-sequence of the py. 

 
Algorithm 2: computing LCS(I, J) 
1   construct Ρ={(i, j): ii =jj } in the order of I;  
2   construct P1, …, Pl, where l denotes the number 

of matches between two sequences and Pk={pz: pz<* 

 J T G C A T A 

I φ φ φ φ φ φ φ 

A φ φ φ φ A ←A A 

T φ T ←T ←T ↑A �AT ←AT 

C φ ↑T ↑T �TC ←TC ↑AT ↑AT 

T φ T ↑T ↑TC ↑TC �TCT ←TCT 

G φ ↑T �TG ↑TC ↑TC ↑TCT ↑TCT 

A φ ↑T ↑TG ↑TC �TCA ↑TCT �TCTA 

T φ T ↑TG ↑TC ↑TCA �TCAT ↑TCTA 
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pz+1, z=k, k+1, …, l}; we do not write out the sets of the 
match pairs which have direct pre-sequence, because 
their sets must be subsets of their direct pre-sequence. 

3   LCS(I, J)= max{Pi: length(Pi), i=1,2,…,l}. 
 

The following example, taken from [8], illustrates 
the algorithm. 

I = ATCTGAT, J = TGCATA, 
Ρ={(1,4), (1,6), (2,1), (2,5), (3,3), (4,1), (4,5), (5,2), 

(6,4), (6,6), (7,1), (7,5)}. 
P1={(1,4), (2,5), (6,6)};  P2={ (1,6)};  P3={ (2,1), 

(3,3), (4,5), (6,6)};  P4={ (2,1), (3,3), (6,4), (7,5)};  
P5={ (4,1), (5,2), (6,4), (7,5)};  P6={ (4,1), (5,2), 
(6,6)};  P7={ (7,1)}. 

P3 and P4 are the (2,1) sets, because (2,1) has two 
direct subsequences. The (3,3) set is not writen, 
because (3,3) has direct pre-sequence (2,1), the set is a 
sub-set of the (2,1) set. then we do not write these sets 
of the match pairs which have direct pre-sequence. 

P3={ (2,1), (3,3), (4,5), (6,6)}, or P4={ (2,1), (3,3), 
(6,4), (7,5)} or P5={ (4,1), (5,2), (6,4), (7,5)} is the 
longest, then LCS(I, J)= P3 or P4 or P5. Using the 
former, an optimal alignment can be  

–TGCAT–A– 
AT–C–TGAT 

 
We can induce the following theorem from the 

definitions and the algorithm. 
Theorem 3  Let I={I1, I2, ..., Im} and J={J1, J2, ..., 

Jn} denote two DNA sequences, LCS(I, J)= max{Pi: 
length(Pi), i=1,2,…,l}. 

Proof: Let one LCS(I, J)={ P1, P2, …, PL }, 
L=length(LCS(I, J)), then pk <* pk+1, k=1,2,…, L-1. if 
not,  ∃ W, |W|>L, and it is a CS(common sequence) of 
I and J , we get a CS set of I and J of the length which 
is greater than L by appending pk’ and pk’ �Ρ, so the W 
set has three pairs pk, pk’, pk+1 and pk <* pk’<* pk+1. It is 
a contradiction. 
 

4．An O(nL) time and O(n) space 
implementation 
 

We construct a table 2 with 5 rows marked by j, A, 
C, G, T and n columns marked by 1, … , n−1, n, the 
number that a single nucleotide appears most 
frequently in the sequence. And the number of the 
columns stand for the position of a single nucleotide in 
the sequence, when it appears for the nth time. If it 
doesn’t appear, fill no number in it. 

For example, for J = ATCTGAT see Table 2. 
We now check the time complexity of this 

implementation. Table 2 can be constructed in O(n) 
time and O(n) space. 

In order to constructe Ρ, we need to go through the 
O(m) elements of I. The number of the position of each 
element and the respective number of the rows in 
which the corresponding element appears in the table 1 
can construct match pairs, which can be stored in linear 
space in O(l) space,  

 
Table 2. The position and frequency of the 
nucleotide in the sequence of J 

j 1 2 3 
A 1 6  
C 3   
G 5   
T 2 4 7 

 
Assume m=O(n). It takes O(n+l) time and space to 

construct Ρ. It takes O(lL) time and O(l+L) space to 
construct P1, …, Pl. 

 
5. Conclusions 
 

For the LCS problem, the dynamic programming 
approach requires quadratic time but linear space, 
while the nondynamic-programming approach requires 
O(nlogn) time or O(Ln) time, which is almost linear 
when the length of an LCS is small compared to n, but 
more than linear space. We propose a nondynamic 
programming implementation with O(n+l) time and 
space whose algorithm is efficient in both time and 
space. 

Although our presentation is for a DNA sequence, 
the implementation is valid for any general sequence 
with, say, p alphabets. If p is treated as a variable, then 
the time complexity would be O(n(L+p)) and the space 
complexity O(np). We may also drop the assumption 
that both sequences are of lengths of O(n) order. If the 
lengths of the two sequences are not equal and m<n, 
then either the time complexity would be O(mp+nL) 
and the space complexity O(mp), or m and n are 
interchanged in the complexities above. 
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