
A New Algorithm for the Longest Common Subsequence Problem

Xuyu Xianga,b, Dafang Zhanga, Jiaohua Qina,b
aSchool of Computer & Communication, Hunan University, Changsha, Hunan China, 410082

bDepartment of Computer, Hunan City University, Changsha, Hunan China, 413000
xyuxiang@163.com, dfzhang@hnu.cn, qinjiaohua@163.com

Abstract

In order to find the longest common subsequence
(LCS) as soon as possible, we, with the method of
match pairs, propose the new algorithm of the
sequence of DNA, which is efficient both in time and in
space on the basis of the improved dynamic
programming theorem.

1. Introduction

Mutations in DNA arise naturally in an evolution
process. These mutations, which lead to the “editing”
of DNA texts, include substitutions, insertions and
deletions of nucleotides. The comparison of two DNA
sequences attempts to align those two sequences to get
the function these mutations. The most commonly used
function is the so-called edit distance first introduced
by Levenshtein[6], which simply counts the number of
mutations. If substitutions are not allowed, the
alignment minimizing the edit distance will produce a
longest common subsequence (LCS) of the two
sequences. And the LCS problem had been studied by
mathematicians for general sequences long before the
edit distance was introduced for DNA sequences.

Assume that both sequences are of O(n) length.
Needleman and Wunsch[7] gave an O(n2) time and
O(n2) space dynamic programming algorithm for the
LCS problem. Hirschberg[2] improved it to O(n) space
by using a divide-and-conquer technique. Later, Hunt
and Szymanski[5], and Hirschberg[3], all noticed that not
all steps in the dynamic-programming procedure need
to be processed and they proposed more efficient
nondynamic-programming algorithms. Hunt and
Szymanski’s algorithm was improved by Apostolico[1]
to O(n·logn) time and O(n+l) space, where l denotes
the number of matches between two sequences.
Hirschberg’s algorithm requires O(L·n) time and
O(n+L·n) space, where L is the length of an LCS.
Pevzner and Weterman[8] recognized that these
algorithms can be performed by a primal-dual set-up.

The derived primal-dual algorithm[4], as presented by
Pevzner and Waterman, takes O(l+L·n) time and
O(l+L·n) space. we propose a new algorithm, whose
implementation takes an O(n·L) time and O(n) space.

2. The Improved Dynamic Programming
Algorithm

The single stranded DNA is viewed as a linear
sequence a1a2…an of nucleotide. The sequence is
called the primary structure. Each ai is identified with
one of four basic nucleotides: A, C, G, T.

Definition 1[9] (Longest Common Subsequence)
An DNA sequence can be described as a string of

the alphabet {A,C,G,T}. Given two DNA sequences
I={i1, i2, ..., im} and J={j1, j2, ..., jn}, when ii,
jj�{A,C,G,T}. the LCS problem is to find a largest
subsequence Z={z1, z2, ..., zL}, when zi�{A,C,G,T},
satisfies 1 k L≤ ≤ ,

k kk i jz i j= = and 1 2 Li i i< < <" ,

1 2 Lj j j< < <" .
A brute-force approach to solve the LCS problem is

to enumerate all subsequences of I and check each
subsequence to see if it is also a subsequence of J,
keeping track the process of the discovery of the
longest subsequence. Each subsequence of I
corresponds to a subset of the indices {1, 2, ..., m} of I.
There are 2m subsequences of I, which make the
approach require exponential time, so that it is
impractical for long sequences.

The LCS problem has an optimal-substructure
property, as the following theorem shows. As we shall
see, the natural classes of subproblems correspond to
pairs of "prefixes" of the two input sequences. To be
precise, given a sequence I={i1, i2, ..., im}, we define
the ith prefix of I, for i= 0, 1, ..., m, as Ii={i1, i2, ..., ii}
and I0 is the empty sequence.

Theorem 1[9] (Optimal substructure of an LCS)
Let I={i1, i2, ..., im} and J={j1, j2, ..., jn} be

sequences, and let Z={z1, z2, ..., zL} be any LCS of I
and J.

(1).If im = jn, then zL = im = jn and ZL-1 is an LCS of
Im-1 and Jn-1.

2007 International Conference on Computational Intelligence and Security Workshops

0-7695-3073-7/07 $25.00 © 2007 IEEE
DOI 10.1109/CIS.Workshops.2007.209

112

2007 International Conference on Computational Intelligence and Security Workshops

0-7695-3073-7/07 $25.00 © 2007 IEEE
DOI 10.1109/CIS.Workshops.2007.209

112

2007 International Conference on Computational Intelligence and Security Workshops

0-7695-3073-7/07 $25.00 © 2007 IEEE
DOI 10.1109/CIS.Workshops.2007.209

112

2007 International Conference on Computational Intelligence and Security Workshops

0-7695-3073-7/07 $25.00 © 2007 IEEE
DOI 10.1109/CIS.Workshops.2007.209

112

2007 International Conference on Computational Intelligence and Security Workshops

0-7695-3073-7/07 $25.00 © 2007 IEEE
DOI 10.1109/CIS.Workshops.2007.209

112

2007 International Conference on Computational Intelligence and Security Workshops

0-7695-3073-7/07 $25.00 © 2007 IEEE
DOI 10.1109/CIS.Workshops.2007.209

112

2007 International Conference on Computational Intelligence and Security Workshops

0-7695-3073-7/07 $25.00 © 2007 IEEE
DOI 10.1109/CIS.Workshops.2007.209

112

(2).If im ≠ jn, then zL ≠ im implies that Z is an LCS of
Im-1 and J.

(3).If im ≠ jn, then zL ≠ jn implies that Z is an LCS of
I and Jn-1.

Similarly, the natural classes of subproblems can

also correspond to pairs of " Suffixes " of the two input
sequences. To be precise, given a sequence I={i1, i2, ...,
im}, we define the ith Suffixe of I, for i = 0, 1, ..., m, as
Ii={ii, ii+1, ..., im} and I0 is the empty sequence.

Theorem 2 (The improved dynamic programming
algorithm)

If I={i1, i2, ..., im} and If J={j1, j2, ..., jn} are
sequences and let Z={z1, z2, ..., zL} be some LCS of I
and J.

(1) If i1= j1 then z1=i1 and Z2 is an LCS of I2 and J2,
(2) If i1≠ j1 then z1≠i1 and Z is an LCS of I2 and J,
(3) If i1≠ j1 then z1≠j1 and Z is an LCS of I and J2.
Proof: (1) If z1≠i1, we could add i1= j1 to Z to get an

LCS of length L+1. By contradiction, z1=i1=j1. | Z2|=L-
1 and it must be an LCS of I2 and J2. In this case, Z2 is
an LCS. if not , ∃ W ， |W|>L-1 ， and it is a
CS(common sequence) of I2 and J2, then we get a CS
of I and J of the length greater than L by appending i1=
j1. so It is a contradiction.

(2) If z1≠i1, Z is a CS of I2 and J. If ∃ W, |W|>L, and
it is a CS, then W would be a CS of I and J. and it is
also a contradiction.

(3) The same Proof as Proof (2) by reversing I and
J.

So the approach to find the LCS of I and J is as

following:
(1) if i1= j1 find LCS of I2 and J2,
(2) if i1≠ j1

a) find LCS of I2 and J ,
b) find LCS of I and J2 ,
and take the larger one of 'a)' or 'b)'.

Thus we start with small problem, find LCS and
develop our solution:

Let LCS(Ii, Jj) be LCS of Ii and Jj. Let
I1={i1,i2,…,im}, I2={i2,i3,…,im}, …, Im={im};
J1={j1,j2,…,jn}, J2={j2,j3,…,jn}, …, Jn={jn}.
then

1 1

1 1

{ } (,)
(,)

max{ (,), (,)}
i i j i j

i j
i j i j

i LCS I J i j
LCS I J

LCS I J LCS I J
− −

− −

 ==

∪ i f
others

Algorithm 1: computing LCS(I, J)
1 LCS(Ii, φ)=φ;
2 LCS(φ, Jj)= φ;
3 for i=1 to m
4 for j=1 to n
5 if ii=jj
6 LCS(Ii, Jj)={ii}+LCS(Ii-1, Jj-1)

7 else if length(LCS(Ii-1, Jj))>=length(LCS(Ii, Jj-

1))
8 LCS(Ii, Jj)=LCS(Ii-1, Jj)
9 else
10 LCS(Ii, Jj)=LCS(Ii, Jj-1)
11 output LCS(Im, Jn)
Running Time=O(mn) because each table entry

takes O(1) time and O(mn) space.
The following example, taken from [8], illustrates

the algorithm in table 1.
I= ATCTGAT, J= TGCATA,

Table 1. illustration of the improved dynamic
programming algorithm

3. The New Algorithm

From the Definition 1 and the Theorems, We can
see that subproblem class is corresponding to match
pair of the two input sequences. Given two DNA
sequences I={i1, i2, ..., im} and J={j1, j2, ..., jn}, when
ii,jj�{A,C,G,T}.

Definition 2 Let I={i1, i2, ..., im} and J={j1, j2, ...,
jn} denote two DNA sequences, let ii=jj, i=1,2,…,m;
j=1,2,…,n. Define Ρ={(i, j): ii =jj }. then (i, j) is the
match pair.

This is the case that each nucleotide independently
has probability pA, pC, pG, pT of being A, C, G, T,
respectively. We will also denote P = {p1, p2, … , pl}
where each pk is a pair (ik, jk).

Definition 3 Given two match pairs px, py, if ix<iy,
jx<jy, define px < py. py is the subsequence of the px, or
px is the pre-sequence of the py.

Definition 4 If px < py, px < pz, py, pz�P , and pz< py
doesn’t exist, define the specific order <* to be px<*py,
py is the direct subsequence of the px, or px is the direct
pre-sequence of the py.

Algorithm 2: computing LCS(I, J)
1 construct Ρ={(i, j): ii =jj } in the order of I;
2 construct P1, …, Pl, where l denotes the number

of matches between two sequences and Pk={pz: pz<*

 J T G C A T A

I φ φ φ φ φ φ φ

A φ φ φ φ A ←A A

T φ T ←T ←T ↑A �AT ←AT

C φ ↑T ↑T �TC ←TC ↑AT ↑AT

T φ T ↑T ↑TC ↑TC �TCT ←TCT

G φ ↑T �TG ↑TC ↑TC ↑TCT ↑TCT

A φ ↑T ↑TG ↑TC �TCA ↑TCT �TCTA

T φ T ↑TG ↑TC ↑TCA �TCAT ↑TCTA

113113113113113113113

pz+1, z=k, k+1, …, l}; we do not write out the sets of the
match pairs which have direct pre-sequence, because
their sets must be subsets of their direct pre-sequence.

3 LCS(I, J)= max{Pi: length(Pi), i=1,2,…,l}.

The following example, taken from [8], illustrates
the algorithm.

I = ATCTGAT, J = TGCATA,
Ρ={(1,4), (1,6), (2,1), (2,5), (3,3), (4,1), (4,5), (5,2),

(6,4), (6,6), (7,1), (7,5)}.
P1={(1,4), (2,5), (6,6)}; P2={ (1,6)}; P3={ (2,1),

(3,3), (4,5), (6,6)}; P4={ (2,1), (3,3), (6,4), (7,5)};
P5={ (4,1), (5,2), (6,4), (7,5)}; P6={ (4,1), (5,2),
(6,6)}; P7={ (7,1)}.

P3 and P4 are the (2,1) sets, because (2,1) has two
direct subsequences. The (3,3) set is not writen,
because (3,3) has direct pre-sequence (2,1), the set is a
sub-set of the (2,1) set. then we do not write these sets
of the match pairs which have direct pre-sequence.

P3={ (2,1), (3,3), (4,5), (6,6)}, or P4={ (2,1), (3,3),
(6,4), (7,5)} or P5={ (4,1), (5,2), (6,4), (7,5)} is the
longest, then LCS(I, J)= P3 or P4 or P5. Using the
former, an optimal alignment can be

–TGCAT–A–
AT–C–TGAT

We can induce the following theorem from the

definitions and the algorithm.
Theorem 3 Let I={I1, I2, ..., Im} and J={J1, J2, ...,

Jn} denote two DNA sequences, LCS(I, J)= max{Pi:
length(Pi), i=1,2,…,l}.

Proof: Let one LCS(I, J)={ P1, P2, …, PL },
L=length(LCS(I, J)), then pk <* pk+1, k=1,2,…, L-1. if
not, ∃ W, |W|>L, and it is a CS(common sequence) of
I and J , we get a CS set of I and J of the length which
is greater than L by appending pk’ and pk’ �Ρ, so the W
set has three pairs pk, pk’, pk+1 and pk <* pk’<* pk+1. It is
a contradiction.

4．An O(nL) time and O(n) space
implementation

We construct a table 2 with 5 rows marked by j, A,
C, G, T and n columns marked by 1, … , n−1, n, the
number that a single nucleotide appears most
frequently in the sequence. And the number of the
columns stand for the position of a single nucleotide in
the sequence, when it appears for the nth time. If it
doesn’t appear, fill no number in it.

For example, for J = ATCTGAT see Table 2.
We now check the time complexity of this

implementation. Table 2 can be constructed in O(n)
time and O(n) space.

In order to constructe Ρ, we need to go through the
O(m) elements of I. The number of the position of each
element and the respective number of the rows in
which the corresponding element appears in the table 1
can construct match pairs, which can be stored in linear
space in O(l) space,

Table 2. The position and frequency of the
nucleotide in the sequence of J

j 1 2 3
A 1 6
C 3
G 5
T 2 4 7

Assume m=O(n). It takes O(n+l) time and space to

construct Ρ. It takes O(lL) time and O(l+L) space to
construct P1, …, Pl.

5. Conclusions

For the LCS problem, the dynamic programming
approach requires quadratic time but linear space,
while the nondynamic-programming approach requires
O(nlogn) time or O(Ln) time, which is almost linear
when the length of an LCS is small compared to n, but
more than linear space. We propose a nondynamic
programming implementation with O(n+l) time and
space whose algorithm is efficient in both time and
space.

Although our presentation is for a DNA sequence,
the implementation is valid for any general sequence
with, say, p alphabets. If p is treated as a variable, then
the time complexity would be O(n(L+p)) and the space
complexity O(np). We may also drop the assumption
that both sequences are of lengths of O(n) order. If the
lengths of the two sequences are not equal and m<n,
then either the time complexity would be O(mp+nL)
and the space complexity O(mp), or m and n are
interchanged in the complexities above.

Acknowledgments

This work is supported by the National Natural
Science Foundation of China (NSFC No. 60473031,
60673155), Scientific Research Fund of Education
Department of Hunan Province, China (No.07C192).

References

[1] A. Apostolico, G. Rozenberg, A. Salomaa (Eds.),
Handbook of Formal Languages, Springer-Verlag, Berlin,
1997, pp. 361–398.

114114114114114114114

[2] A. Apostolico, M.J. Atallah (Ed.), Handbook of
Algorithms and Theory of Computation, CRC, Boca Raton,
FL, 1998.
[3] L. Bergroth, H. Hakonen, T. Raita, A survey of longest
common subsequence algorithms, SPIRE, A Coruña, Spain,
2000, pp. 39–48.
[4] J.Y. Guo , F.K. Hwang, “An almost-linear time and linear
space algorithm for the longest common subsequence
problem”, Information Processing Letters, 94 (2005) 131–
135
[5] D.S. Hirschberg, “Algorithms for the longest common
subsequence problem”, J. ACM, 24 (1977) 664–675.
[6] D.S. Hirschberg, A. Apostolico, Z. Galil (Eds.), Pattern
Matching Algorithms, Oxford University Press, Oxford,
1997, pp. 123–141.
[7] D. Maier, “The complexity of some problems on
subsequences and supersequences”, J. ACM 25 (1978) 322–
336.
[8] W.J. Masek, M.S. Paterson, “A faster algorithm
computing string edit distances”, J. Comput. System Sci,. 20
(1980) 18–31.
[9] Thomas H. Cormen, Charles E. Leiserson, and Ronald L.
Rivest, Introduction to Algorithms,
http://www.cs.fsu.edu/~cop4531/slideshow/chapter16/16-
3.html.

115115115115115115115

