
Journal of Discrete Algorithms 5 (2007) 647–661

www.elsevier.com/locate/jda

Regular expression constrained sequence alignment ✩

Abdullah N. Arslan

Department of Computer Science, The University of Vermont, Burlington, VT 05405, USA

Available online 12 February 2007

Abstract

We introduce regular expression constrained sequence alignment as the problem of finding the maximum alignment score
between given strings S1 and S2 over all alignments such that in these alignments there exists a segment where some substring s1
of S1 is aligned to some substring s2 of S2, and both s1 and s2 match a given regular expression R, i.e. s1, s2 ∈ L(R) where L(R)

is the regular language described by R. For complexity results we assume, without loss of generality, that n = |S1| � |m| = |S2|.
A motivation for the problem is that protein sequences can be aligned in a way that known motifs guide the alignments. We
present an O(nmr) time algorithm for the regular expression constrained sequence alignment problem where r = O(t4), and t is
the number of states of a nondeterministic finite automaton N that accepts L(R). We use in our algorithm a nondeterministic
weighted finite automaton M that we construct from N . M has O(t2) states where the transition-weights are obtained from the
given costs of edit operations, and state-weights correspond to optimum alignment scores we compute using the underlying dynamic
programming solution for sequence alignment. If we are given a deterministic finite automaton D accepting L(R) with td states
then our construction creates a deterministic finite automaton Md with t2

d
states. In this case, our algorithm takes O(t2

d
nm) time.

Using Md results in faster computation than using M when td < t2. If we only want to compute the optimum score, the space
required by our algorithm is O(t2n) (O(t2

d
m) if we use a given Md). If we also want to compute an optimal alignment then our

algorithm uses O(t2m + t2|s1||s2|) space (O(t2
d
m + t2

d
|s1||s2|) space if we use a given Md) where s1 and s2 are substrings of S1

and S2, respectively, s1, s2 ∈ L(R), and s1 and s2 are aligned together in the optimal alignment that we construct. We also show that
our method generalizes for the case of the problem with affine gap penalties, and for finding optimal regular expression constrained
local sequence alignments.
© 2007 Elsevier B.V. All rights reserved.

Keywords: Regular expression; Sequence alignment; Dynamic programming; Pattern matching; Finite automaton

1. Introduction

We introduce regular expression constrained sequence alignment (RECSA) as the following problem: given
strings S1, S2, and a regular expression R, find the maximum alignment score between S1 and S2 over all align-
ments that satisfy a given regular expression constraint. An alignment satisfies the constraint if it includes a segment
in which a substring s1 of S1 is aligned with a substring s2 of S2, and both s1 and s2 match R where a string s is said
to match a regular expression R if s ∈ L(R), i.e. s is a string in the language described by R. We precisely explain

✩ Supported in part by NSF Award No. CCF-0514819. A preliminary version of this paper was presented in CPM 2005, Jeju Island, Korea, June
19–22, 2005.

E-mail address: aarslan@cs.uvm.edu.
1570-8667/$ – see front matter © 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.jda.2007.01.003

http://www.elsevier.com/locate/jda
mailto:aarslan@cs.uvm.edu
http://dx.doi.org/10.1016/j.jda.2007.01.003

648 A.N. Arslan / Journal of Discrete Algorithms 5 (2007) 647–661
Fig. 1. For strings S1 = TGFPSVGKTKDDA and S2 = TFSVAKDDDGKSA: (a) An alignment with maximum number of matches, 8. (b) An alignment
in which substring GFPSVGKT of S1 is aligned with substring AKDDDGKS of S2, and both match R = (G+A)����GK(S+T) where � is a fixed
alphabet on which the sequences are defined. This alignment has 4 matches, and it satisfies the regular expression constraint.

what we mean by “substring s1 is aligned with substring s2” when we define alignment paths in Section 3. In a simple
case, if s1, and s2 are of the same length then we say that s1 is aligned with s2 if they appear in the same window of
columns in the alignment matrix as shown in Fig. 1.

Fig. 1 illustrates an example in which sequences S1 = TGFPSVGKTKDDA, and S2 = TFSVAKDDDGKSA are
aligned in a way to maximize the number of matches (this is the longest common subsequence problem). An optimal
alignment with 8 matches is shown in part (a). For the regular expression constrained sequence alignment problem
with R = (G+ A)����GK(S+ T), where � denotes a fixed alphabet over which sequences are defined, the align-
ments sought change. The alignment in part (a) does not satisfy the regular expression constraint. Part (b) shows an
alignment with which the constraint is satisfied. This alignment includes a region (shown with a rectangle drawn in
dashed lines in the figure) where the substring GFPSVGKT of S1 is aligned with substring AKDDDGKS of S2, and both
substrings match R. In this case, optimal number of matches achievable with the constraint decreases to 4.

The motivation for the problem is that when computing the homology of two protein sequences it may be important
to take into account a common specific or putative structure. Family of similar protein sequences include a conserved
region. Such conserved amino acid residues associated with a particular function is called a sequence motif. Typically,
motifs span 10 to 30 amino acid residues. The notion of a motif was first explicitly introduced by Russell Doolittle
in 1981 [6]. Discovery of sequence motifs related to a vast variety of enzymatic and binding activities of proteins
has continued at a steady rate [2], and the motifs, in the form of amino acid patterns, were incorporated by Amos
Bairoch in the PROSITE database. PROSITE (http://www.expasy.org/prosite) is maintained by Amos Bairoch and
tightly integrated with SWISS-PROT [7]. For many years, PROSITE has been a collection of sequence motifs which
were represented and stored as regular expressions. For example, the motif in Fig. 1 is the famous P-loop motif,
first described in 1982 by John Walker and colleagues as “Motif A” and found later in many ATP- and GTP-binding
proteins, corresponds to a flexible loop, sandwiched between a b-strand and an a-helix and interacting with b- and
g-phosphates of ATP or GTP [14]. In PROSITE database it is represented as [GA]-X(4)-G-K-[ST] (ATP/GTP-
binding site motif A (P-loop) (PS00017)) which means that the first position of the motif can be occupied by either
Ala or Gly, the second, third, fourth, and fifth positions can be occupied by any amino acid residue, and the sixth and
seventh positions have to be Gly and Lys, respectively, followed by either Ser or Thr.

The regular expression constraint can guide the alignments. As we observe in Fig. 1 the regular expression con-
straint changes the optimality of the alignments. If the sequences contain the same motif then it is biologically
meaningful to seek an optimal alignment that contains the motif (i.e. that satisfies the corresponding regular ex-
pression constraint) because the motif should be part of the true alignment. In Fig. 1 strings S1, and S2 are not real
protein sequences. We use them to present the effect of using a regular expression constraint in a simple setting with
short strings.

In this paper we present an algorithm for the RECSA problem whose time complexity is O(nmr), and r = O(t4),
and t is the number of states of a nondeterministic finite automaton N that accepts the language L(R) described by the
given regular expression R. We use in our algorithm a nondeterministic weighted finite automaton M that we construct
from N . M has O(t2) states where the transition-weights are obtained from the given costs of edit operations. If we
are given a deterministic finite automaton D with td states accepting L(R) then in our construction we can use D for
N to create a weighted deterministic finite automaton Md . If we use Md for M in our algorithm then the resulting

http://www.expasy.org/prosite

A.N. Arslan / Journal of Discrete Algorithms 5 (2007) 647–661 649
time complexity is O(t2
d nm). If td < t2 then using Md in our algorithm results in faster computation than using M .

In general converting a deterministic finite automaton D (and minimizing the number of states afterward) takes in the
worst case exponential time and space [9]. Therefore, we assume that we are given such D if one exists with td < t2.
M accepts alignments that satisfy the regular expression constraint where the weights of the states in M correspond
to optimum constrained alignment scores. Our algorithm is based on a given dynamic programming formulation for
sequence alignment. Instead of computing optimum scores, it uses the dynamic programming solution to compute
weights for automaton M .

The outline of this paper is as follows: in Section 2, we summarize the previous related work, and results. In
Section 3, we describe a framework for sequence alignment. In Section 4, we describe how we create the finite
automaton that we use in our algorithm for the RECSA problem that we present in Section 5. In Section 6, we show
how our techniques can be generalized for affine gap penalties, and computing regular expression constrained local
alignment. We summarize our results in Section 7.

2. Previous related work

Given two sequences S1 and S2, the pairwise sequence alignment [15] problem is to compute the maximum score
over all possible alignment matrices for these sequences. In an alignment matrix, a given scoring scheme assigns
a score to each column corresponding to the symbols appearing in the column. A column contains symbols of S1,
and S2, and it can also contain a special symbol ′−′, but it cannot be composed entirely of ′−′s. The score of an
alignment matrix is the sum of its column-scores. In order to obtain an alignment matrix with the maximum score, we
insert ′−′s in S1, and S2, generating respectively, sequences S∗

1 , and S∗
2 with equal length such that S∗

1 is the first, and
S∗

2 is the second row of this matrix. The multiple sequence alignment is the generalization of this problem for multiple
sequences.

The constrained versions of the sequence alignment problems have been studied in the literature extensively
[1,3–5,11–13].

Tang et al. [11] introduces the constrained multiple sequence alignment (CMSA) problem in which we are given k

sequences S1, S2, . . . , Sk with maximum length n, and a pattern P with length r , and the solution of the problem is
an alignment with optimal score such that there exists a sequence of columns c1 < c2 < · · · < cr in the corresponding
multiple sequence alignment matrix where column ci is entirely composed of P [i]s. A motivation for the prob-
lem is the alignment of RNase sequences. Such sequences are all known to contain three active residues His(H),
Lyn(K), His(H) that are essential for RNA degrading. Therefore it is natural to expect that in an alignment of
RNA sequences, each of these residues should be aligned in the same column, i.e. alignment satisfies the constrained
sequence "HKH". the CMSA problem when k = 2 is called the constrained pairwise sequence alignment (CPSA)
problem [3,11]. Solutions for the CPSA problem can be used to solve the CMSA problem. We can progressively align
the sequences into a multiple alignment by using a minimum spanning tree obtained from the pairwise distance matrix
of the sequences [3,11,13]. Tang et al. [11] introduces the CPSA problem, and presents an algorithm whose both time
and space requirements are O(rn4) for sequences of length n. For the CPSA problem, Chin et al. [3], and Tang et
al. [13] present improved algorithms with time complexity O(nmr) where n, and m are the lengths of the sequences
compared, and r is the length of the pattern P .

The longest common subsequence (LCS) problem for two strings is to find a common subsequence in both strings
having maximum length. The LCS problem has many applications, and it has been studied extensively. Tsai [12] in-
troduces the constrained longest common subsequence problem, and gives a dynamic programming solution whose
time complexity is O(rn2m2). For given strings S1, S2, and pattern P whose lengths are n,m, and r respectively, the
constrained longest common subsequence problem is to find a longest common subsequence lcs of S1 and S2 such
that P is a subsequence of this lcs. Chin et al. [4], and Arslan and Eğecioğlu [1] give different dynamic program-
ming solutions for the constrained LCS problem with time complexity O(nmr). Chin et al. [4] also shows that the
constrained LCS problem is a special case of the multiple sequence alignment problem. Arslan and Eğecioğlu [1]
introduces the edit distance constrained LCS problem as a generalization of the constrained LCS problem. The edit
distance constrained LCS problem is, given strings S1, S2, P , and distance d , to find a longest common subsequence
lcs of S1 and S2 such that this lcs has a subsequence whose simple edit distance from P is smaller than d . Simple
edit distance between two strings is the minimum number of edit operations required to transform one string into the

650 A.N. Arslan / Journal of Discrete Algorithms 5 (2007) 647–661
other where the edit operations are insert, delete, and substitute. Arslan and Eğecioğlu [1] present an O(dnmr)-time
algorithm for the edit distance constrained LCS problem.

Using edit distances in the constraint is a step toward allowing alignments to contain patterns that may slightly
differ in each sequence in the constrained sequence alignment problems. Another approach proposed by Comet and
Henry [5] uses a method that rewards alignments containing motifs. From the motif database, the method first finds
a known motif (or motifs) in each sequence separately to determine a common motif (or motifs). Next, it extends
the dynamic programming solution for sequence alignment by reconsidering and rewarding in alignment each region
where the motif appears in each sequence simultaneously. If the rewarding mechanism is properly set, the resulting
alignment may contain the motif. If there are overlapping occurrences, it is difficult to choose the best one among
them. In this paper we continue in the direction of using motifs as constraints in the alignments. Protein sequences
contain motifs that are described in PROSITE format (http://www.expasy.org/txt/prosuser.txt) that can be translated
into simple regular expressions. Our main contribution in this paper is that we introduce the regular expression con-
strained sequence alignment (RECSA) problem, and we present an algorithm for it. This makes it possible to constrain
a desired score-optimal alignment of given protein sequences to contain a given motif.

Our algorithm is based on constructing a weighted finite automaton from the given regular expression constraint.
We simulate copies of this automaton on alignments updating state weights as dictated by the underlying scoring
scheme. Another problem in the literature that involves a regular expression in sequence alignment is the approximate
regular expression matching which is studied by Myers and Miller [10]. This is the problem of finding a sequence
S matching a given regular expression R (i.e. S ∈ L(R)) whose optimal alignment to a given sequence A has the
highest score over all such sequences S ∈ L(R). Myers and Miller construct an equivalent finite automaton from R,
and use |A| (where |A| denotes the length of sequence A) copies of this automaton to create a graph GA,R where
vertices in each copy are connected using possible alignment columns (i.e. edit operations) between the symbols of
A and any sequence matching R. Then the problem becomes a path optimization problem in GA,R which can be
solved in O(|A||R|) time where |R| is the length of regular expression R. Our automata construction is similar to the
construction in this work in that we create a weighted finite automata (which can be represented as a directed graph)
where the transitions (i.e. arcs) are on edit operations that have weights. However, in our case, these edit operations
are between the given two sequences. We simulate the copies of the automaton we create from R on alignments as
they are formed for these two sequences. In our case, (part of) an alignment we seek between two given sequences
matches a sequence in L(R). This is different than seeking a sequence S in L(R) for a given regular expression R

such that S and A have the highest possible score over all possible S in L(R).

3. Framework

Given two strings S1 and S2, the global pairwise sequence alignment of S1, and S2 is to find an alignment path
with the maximum score.

Given two strings S1[1..n] and S2[1..m] (for the complexity results we assume without loss of generality that
n � m), we use the alignment graph GS1,S2 to analyze alignments between all substrings of S1, and S2. The alignment
graph is a directed acyclic graph having (n + 1)(m + 1) lattice points (u, v) as vertices for 0 � u � n, and 0 � v � m

(Fig. 2). An alignment path for substrings S1 and S2 is a directed path from the vertex (0,0) to (n,m) in GS1,S2 . To
each vertex there is an incoming arc from each of its existing neighbors. Horizontal and vertical arcs correspond to
insert and delete operations respectively. The diagonal arcs correspond to substitutions which are either matching (if
the corresponding symbols are the same), or mismatching (otherwise). If we trace the arcs of an alignment path, and
perform the indicated edit operations on S1 in the order of the arcs in the alignment then we obtain S2. Blocks of
insertions and deletions are referred to as gaps.

The objective of sequence alignment is to quantify the similarity between S1 and S2 under a given scoring scheme.
In simple scoring scheme, the arcs of GS1,S2 are assigned weights determined by some real function γ .

The following is the classical dynamic programming formulation [15] to compute the maximum global alignment
score Hi,j achieved by an optimal alignment ending at each vertex (i, j):

(1)Hi,j = max
{
Hi−1,j + γ

(
S1[i] → ε

)
,Hi−1,j−1 + γ

(
S1[i] → S2[j]),Hi,j−1 + γ

(
ε → S2[j])}

for all i, j , 1 � i � n, 1 � j � m, with the boundary values H0,0 = 0, H0,j = H0,j−1 + γ (ε → S2[j]), and Hi,0 =
Hi−1,0 + γ (S1[i] → ε). Then Hn,m is the maximum global alignment score between S1 and S2. The maximum

http://www.expasy.org/txt/prosuser.txt

A.N. Arslan / Journal of Discrete Algorithms 5 (2007) 647–661 651
Fig. 2. Alignment graph GS1,S2 where S1 = CAGSGC and S2 = CAGCGTG. Matching diagonal arcs are drawn as solid lines while mismatching
diagonal arcs are shown by dashed lines. Dotted lines are used for horizontal and vertical arcs. An example alignment path is shown. Labels of the
arcs on this path are the corresponding edit operations where ε denotes the null string.

global alignment score can be computed in time O(nm) using O(m) space because only O(m) entries of the dynamic
programming matrix need to be stored at any given time [15].

We say that substring s1 of S1 is aligned with substring s2 of S2 in a given alignment if there exists in the alignment
a segment whose projection on S1 is s1, and whose projection on S2 is s2. In the alignment shown in Fig. 2, s1 = AGS
is aligned with s2 = AGCGT. The corresponding segment of the alignment is shown in thick lines in the figure.

In our algorithm for the regular expression constrained sequence alignment (RECSA) problem we use the dynamic
programming formulation in (1), but instead of scores we compute weighted finite automata that we describe next.

4. Weighted finite automaton for regular expression constrained sequence alignment

We imagine alignments as strings of edit operations between two strings that are aligned, and we construct an au-
tomaton M that moves on edit operations. M changes states as the alignments are formed. M accepts those alignments
in which the regular expression constraint is satisfied. An alignment satisfies a given regular expression constraint if
M enters a final state after reading the edit operations in the alignment. That is, M must remember if the regular
expression constraint is partially or completely satisfied by some substrings s1 of S1, and s2 of S2 that are aligned to-
gether. Since there may be many alignments accepted by M and we are interested in finding the maximum alignment
score, we assign weights to the states, and as the alignments are formed the weights are updated after each move on
an edit operation in M .

We construct M from a given regular expression R in several steps. We first construct a nondeterministic finite
automaton A from R such that they are equivalent, i.e. L(A) = L(R) [9]. Automaton A may have ε-moves. Then
we construct an equivalent nondeterministic finite automaton N = (Q,�, δ, q0,F) with no ε-moves as described
in [9]. N has the same number of states as A. To summarize, N accepts the set of strings described by the regular
expression R. We design automaton M to simulate two copies of N in parallel, one on S1, and the other on S2 as the
alignments are formed.

We define a weighted N × N automaton as the finite automaton M = (QM,WM,�M,qM
0 ,FM) which we con-

struct as follows:

652 A.N. Arslan / Journal of Discrete Algorithms 5 (2007) 647–661
• QM = Q×Q is the set of states. Each state of M corresponds to a pair of states in N . M remembers in each state
what part of the regular expression has been seen in S1, and S2.

• �M = (� ∪ {ε} × � ∪ {ε}) − {ε → ε}. The alphabet for M is the set of edit operations which does not include
ε → ε. We note that since N has no ε-moves ε → ε is not a possible input for an N × N automaton.

• qM
0 = (q0, q0) is the start state.

• FM = F × F is the set of final states. If M is in a final state then M has processed an alignment that satisfies
the regular expression constraint. That is, there are substrings s1 of S1 and s2 of S2 that are aligned together in an
alignment, and both s1, and s2 take N to final states.

• WM :QM → R is a function that assigns real weights to each state in QM , and initially all weights are −∞. We
determine the active set of states of M by examining their weights. The active states of M have weights different
than −∞.

• δM :QM × �M → QM . M moves on edit operations as follows:
– For all x → y ∈ �M , δM((q0, q0), x → y) contains (q0, q0). That is, in the state diagram of M there is a loop

on all possible inputs on state (q0, q0). This lets the regular expression matching start at any point during
alignment formation.

– For x �= ε, δM((p, q), x → ε) = {(p′, q) | p′ ∈ δ(p, x)}.
– For y �= ε, δM((p, q), ε → y) = {(p, q ′) | q ′ ∈ δ(q, y)}.
– For x �= ε, y �= ε, δM((p, q), x → y) = {(p′, q ′) | p′ ∈ δ(p, x), q ′ ∈ δ(q, y)}.
– For all x → y ∈ �M , and qf ∈ FM , we also add qf to δM(qf , x → y). That is, there is a loop on every final

state on all possible inputs. Once an alignment satisfies the regular expression constraint, i.e. once a final state
is reached in M , the rest of the alignment does not alter the satisfaction of the constraint. Therefore, M has the
option of staying in a final state on any input after that final state is reached.

Fig. 3 includes an example weighted N ×N automaton in part (b) for the finite automaton N shown in part (a) that
is equivalent to regular expression R = A(C + G)∗(S + T). For clarity, we choose as an example a simple regular
expression, and we do not show the weights of the N × N automaton in part (b).

As M moves on edit operation x → y ∈ �M , the weights of its states are updated as described in the following two
steps:

Step 1. For all (p, q) ∈ QM , if there exists (p′, q ′) such that (p, q) ∈ δM((p′, q ′), x → y) and WM(p′, q ′) �= −∞
then WM(p,q) = max{WM(p′, q ′) + γ (x → y) | (p, q) ∈ δM((p′, q ′), x → y)}. New active states are those that
are reachable from the active states on input x → y. The weights of the active states are updated using the weight
γ (x → y) of the edit operation x → y, and the weights of the states through which new states are reached.

Step 2. For all (p, q) ∈ QM , if there does not exist (p′, q ′) such that (p, q) ∈ δM((p′, q ′), x → y) and WM(p′, q ′) �=
−∞ then WM(p,q) = −∞. After the move some previously active states may become inactive. This may occur
at some intermediate point (i, j) when a suffix of S1[1..i] (or S2[1..j]) partially matching the regular expression R

no longer partially matches R when the alignment ending at (i, j) is extended with the next edit operation x → y.
If a state is no longer active then its weight is reset to −∞.

It is important that the state weights in M for each move are updated in these two steps, first Step 1, and then Step 2,
because otherwise, the newly reachable states (new active states), and their weights may not be updated correctly.

For any given weighted N × N automaton M we denote by Mx→y for any x → y ∈ �M a copy of the automaton
after M finishes its move on x → y ∈ �M .

We will use multiple copies of the same weighted N × N automaton M . The weights will be updated as the
alignment computations progress. At any given time the set of weights determine the current context in that copy of
the automaton M . Otherwise all copies are identical.

Given two weighted N × N automata M1 and M2, we define a commutative and associative operation maxM such
that maxM{M1,M2} is a weighted N × N automaton M with state weights calculated as follows:

(2)for all (p, q) ∈ QM, WM(p,q) = max
{
WM1(p, q),WM2(p, q)

}
.

A.N. Arslan / Journal of Discrete Algorithms 5 (2007) 647–661 653
Fig. 3. (a) Finite automaton N equivalent to R = A(C + G)∗(S + T). (b) Weighted N × N automaton M .

5. The algorithm

Let |S1| = n, |S2| = m with n � m, and let N be a nondeterministic automaton with no ε-moves equivalent to
regular expression R, and let M be a weighted N × N automaton constructed from N as we describe in Section 4.

We denote by S[i..j] the substring of S from positions i to j , i � j . Let S[i] denote the ith symbol of string S.
We say that a substring s matches a regular expression R if s ∈ L(R).
Instead of optimal alignment scores in the classical dynamic programming solution we will compute optimal finite

automata. A weighted N × N automaton Mi,j is optimally weighted for S[1..i], and S2[1..j] (or we simply say that
Mi,j is optimal since S1[1..i] and S2[1..j] are implied by the indices i and j in Mi,j) if the following two properties
hold:

Property 1. For all final states (p, q) ∈ FMi,j , WMi,j (p, q) is the maximum alignment score between S1[1..i] and
S2[1..j] over all alignments that include a region in which substring s1 of S1[1..i] is aligned with substring s2 of
S2[1..j], and s1, s2 ∈ L(R), i.e. N on input s1 enters final state p ∈ F , and on input s2 enters final state q ∈ F . If there
do not exist such s1 and s2 then WMi,j (p, q) is −∞ (i.e. (p, q) is an inactive state in Mi,j).

Property 2. For all non-final states (p, q) ∈ QM
i,j − FMi,j , WMi,j (p, q) is the maximum alignment score between

S1[1..i] and S2[1..j] over all alignments that include a region in which s1 is aligned with s2, and s1 is a suffix of
S1[1..i], and s2 is a suffix of S2[1..j], and N on input s1 enters state p ∈ Q, and on input s2 enters state q ∈ Q.
If there do not exist such s1 and s2 then WMi,j (p, q) is −∞ (i.e. (p, q) is an inactive state in Mi,j).

654 A.N. Arslan / Journal of Discrete Algorithms 5 (2007) 647–661
We compute all optimal Mi,j ’s based on the dynamic programming solution in (1), and output the weight
max{WMn,m(p, q) | (p, q) ∈ FMn,m}. That is, the maximum regular expression constrained alignment score is the
maximum weight of the final states in the optimal automaton Mn,m.

Our solution computes Mi,j for all i, j by simulating automata Mi−1,j , Mi−1,j−1, and Mi,j−1 on the corresponding
edit operations, and taking the maxima of the resulting optimal state-weights based on the dynamic programming
solution in (1).

For all i, j , 0 � i � n, 0 � j � m, Mi,j ’s are identical weighted N × N automata except that the weights can
be different. In M0,0 the state-weights are all −∞ except that we set the weight of the start state (q0, q0) to 0, i.e.
WM0,0(q0, q0) = 0.

On the boundary, M[0, j] and M[i,0] are defined as follows:

• for all j , 1 � j � m, the only possible alignment is obtained by extending an optimal alignment ending at
(0, j − 1) by the edit operation ε → S2[j], therefore,

(3)M0,j = M
ε→S2[j]
0,j−1 ,

• and for all i, 1 � j � n, the only possible alignment is obtained by extending an optimal alignment ending at
(i − 1,0) by the edit operation S1[i] → ε, therefore,

(4)Mi,0 = M
S1[i]→ε
i−1,0 .

We use Eq. (2) to compute the dynamic programming step in (1) as the following: for all i, j , 1 � i � n, 1 � j � m,

(5)Mi,j = max
M

{
M

S1[i]→ε
i−1,j ,M

S1[i]→S2[j]
i−1,j−1 ,M

ε→S2[j]
i,j−1

}
.

In this step, we consider automaton Mi−1,j after its move on edit operation S1[i] → ε, and similarly automaton
Mi−1,j−1 after its move on S1[i] → S2[j], and automaton Mi,j−1 after its move on ε → S2[j]. In each of these
resulting automata, weight of each state (p, q) is updated as we describe in Section 4. That is, each state (p, q) has
the optimal weight obtainable by alignments ending with the corresponding edit operation. With maxM operation, we
examine the weight of each (p, q) in all these automata, and the maximum weight is taken as the weight of (p, q) in
automaton Mi,j .

Fig. 4 schematically describes the computations of Mi,j . We claim that for all i, j , Mi,j computed in (5) is optimal.
The correctness can be proved by induction on nodes (i, j). We consider an ordering for the nodes in which (i, j)

comes after its neighbors (i − 1, j), (i, j − 1), and (i − 1, j − 1) if they exist. This ordering can be generated by two
nested loops: the outer loop i = 0 to n, and the inner loop j = 0 to m. The base case is when i = 0 for all j in which
all weights are −∞ in M0,j , and the claim is true. Assuming that the claim is true for Mi−1,j , Mi,j−1, and Mi−1,j−1
we will show that each of the following automata is optimally weighted for S1[1..i], and S2[1..j] when the alignments
are constrained to use the indicated arc:

1. M
S1[i]→ε
i−1,j when ((i − 1, j), (i, j)) is a required arc for the alignments,

2. M
ε→S2[j]
i,j−1 when ((i, j − 1), (i, j)) is a required arc for the alignments,

3. M
S1[i]→S2[j]
i−1,j−1 when ((i − 1, j − 1), (i, j)) is a required arc for the alignments.

Optimality of Mi,j will follow from these results since an optimal constrained alignment at node (i, j) uses one of
these arcs, and we compute maximum scores for all possible optimal alignments (as state-weights) which partially or
completely satisfy the regular expression constraint in the resulting optimal automaton in (5).

To show that M
S1[i]→ε
i−1,j is optimally weighted for S1[1..i] and S2[1..j] when the alignments are constrained to use

the arc ((i − 1, j), (i, j)), we need to show that Properties 1 and 2 hold for M
S1[i]→ε
i−1,j with the given requirement.

In this case, we consider only the alignments that include the arc ((i − 1, j), (i, j)). An optimal regular expression
constrained score with this requirement is obtained from an optimal score obtained at node (i − 1, j) by adding to it
the score γ (S1[i] → ε). For Property 1, for final states (p, q) ∈ FMi,j

there are two cases to consider: (1) If a final
state (p, q) was already an active state in Mi−1,j then the optimality of the weight WMi,j is followed from Property 1

A.N. Arslan / Journal of Discrete Algorithms 5 (2007) 647–661 655
Fig. 4. Computations of weighted N × N automata.

of Mi−1,j , and the fact that all optimal alignment scores in this case include the score γ (S1[i] → ε). (2) If a final
state (p, q) is entered newly, i.e. (p, q) is an active state in Mi,j but not an active state in Mi−1,j then the optimality
is obtained in this case from the optimality of the weights of all non-final states in Mi−1,j (Property 2), the fact
that all optimal alignment scores in this case include the score γ (S1[i] → ε), and the regular expression match is
obtained through one of these non-final states. For Property 2, the optimality is followed from the fact that all optimal
alignments in this case use the same arc, ((i − 1, j), (i, j)).

Proving the case for M
S1[i]→ε
i,j−1 with the constraint that the alignments are required to use the arc ((i, j − 1), (i, j))

is very similar to the case for M
S1[i]→ε
i,j−1 and arc ((i − 1, j), (i, j)) because these two cases are symmetric.

The proof of the case for M
S1[i]→S2[j]
i−1,j−1 with the required arc ((i − 1, j − 1), (i, j)) is also similar. In this case, (1) if

a final state (p, q) was already an active state in Mi−1,j−1 then the optimality of the weight WMi,j is followed from
Property 1 of Mi−1,j−1, and the fact that all optimal alignment scores in this case include the score γ (S1[i] → S2[j]).
(2) If a final state (p, q) is entered newly, i.e. (p, q) is an active state in Mi,j but not in Mi−1,j−1 then the optimality
is obtained in this case from the optimality of the weights of all non-final states in Mi−1,j−1 (Property 2), and the fact
that all alignment scores in this case include the score γ (S1[i] → S2[j]). Property 2 holds because of the fact that all
optimal alignments in this case use the same arc, ((i − 1, j − 1), (i, j)). This concludes the proof.

5.1. Implementation issues and complexity

Let t be the number of states in automaton N accepting the language L(R). Automaton M we construct has O(t2)

states.
We note that each Mi,j is identical except for the state weights. Therefore, we can store for each Mi,j only a list

Ai,j of active states with their weights. We can implement Ai,j as an array such that Ai,j [p] holds the weight of the
state p which is active if it is not −∞.

We maintain a single complete copy of M to access the transition function. For a given state and an edit operation
the set of next states is stored in a list.

We can implement the two-step move of Mi,j on any given input x → y ∈ �M as follows: we initialize a new
empty list A. For every (p,wp) ∈ Ai,j where p is an active state with weight wp in Mi,j , if (p,w′

p) is not in A with
any w′

p then we add (p,wp + γ (x → y)) to A; if (p,w′
p) is in A then we update p’s weight in A to wp + γ (x → y)

656 A.N. Arslan / Journal of Discrete Algorithms 5 (2007) 647–661
if wp + γ (x → y) > w′
p . The resulting list A at the end of this process is the list of active states, and their weights

in M
x→y
i,j . Since there is no ε → ε transition in M , from any state (p, q) ∈ QM on input x → y there are transitions

to O(t2) states. Therefore, the result of the two-step move of Mi,j on input x → y that we describe above can be
computed in O(t4) time since Ai,j contains O(t2) active states. The maxM operation in (2) can be performed in O(t2)

time. Hence, our algorithm takes O(t4nm) time.
If we are given a deterministic finite automaton D with td states that accepts the language L(R) described by the

given regular expression R then our construction for M creates a deterministic N × N automaton Md from D when
we use D for N in our construction that we describe in Section 4. It is easy to see that Md is deterministic because
in Md for every state p on every input x → y ∈ �M , the next state is unique since D is deterministic, and there is no
null-transition since ε → ε is not an edit operation. The number of states in Md is O(t2

d). We note that in this case the
two-step move of Mi,j on input x → y can be computed in O(t2

d) time since from each active state on input x → y

there is only one transition. In this case, our algorithm takes O(t2
d nm) time. This is faster than using M if td < t2. In

general constructing an equivalent deterministic automaton D from a given nondeterministic finite automaton N (and
minimizing the number of states afterward in D) takes in the worst case exponential time and space [9]. However,
in some cases we can obtain D from N with simple modifications. For example, we can modify the automaton N

shown in Fig. 3 part (a) and obtain a deterministic automaton D. In N , we add a trap state with a self-loop on all
possible input, and transitions from all the states in N to this trap state on all possible input. The resulting automaton
is deterministic, and it has only one more state (the trap state) than N .

For the complexity results, we assume without loss of generality that n = |S1| � m = |S2|. If we only want to
compute the optimum score, then our algorithm can be implemented using O(t2m) space (or O(t2

dm) space if we use
given Md). In this case, the dynamic programming computations are done column by column (it can also be done row
by row but this is more advantageous since n � m) and we only need to store the lists Ai,j ’s of active states, and their
weights for the previous and current columns when we compute Ai,j ’s in the current column.

If we want to reconstruct an optimal alignment path, we first show a naive method to achieve this. We store all
Ai,j ’s, and for every active state in Ai,j , from which neighboring automaton (left, diagonal, or up neighbor, respec-
tively, Mi,j−1, Mi−1,j−1, or Mi−1,j), and from which state in that neighbor the maximum score is obtained. We
note that this information is enough for the reconstruction of an optimal alignment. We generate this information by
modifying the maximum operation maxM in (2) such that along with the maximum score, the neighbor and state
information (we call them source neighbor and source state) from which this score is obtained is also recorded. Then
we can start with a final state p with maximum score at position (n,m). Next, we consider the neighboring source
automaton-position recorded for p, and the source state q (not necessarily a final state) in that neighboring-automaton.
If we repeat this process for all source automaton and state pairs until reaching position (0,0), and the start state in
M0,0, we can construct an optimal alignment in reverse. This method requires that we maintain for all (i, j), for all
active states in Ai,j neighboring source automaton position (left, diagonal, or up) and source state information along
with the weights. Therefore, the space requirement increases to O(t2nm) (or O(t2

d nm) if we use given Md). The
additional work to reconstruct an optimal alignment after all Ai,j ’s are computed is O(n + m).

We propose another method that uses the linear space sequence alignment algorithm of Hirschberg [8], and the
naive method we present above. We first use our algorithm only to compute the regular expression constrained se-
quence alignment score, and along with it in the alignment graph the start position (is , js) and the end position (ie, je)

in an optimal alignment path where the regular expression match occurs. We can do this by modifying the dynamic
programming formulation so that in non-final states we carry along with the optimum score the start position of the
regular expression match that occurs in an alignment this optimum score is obtained, and in every final state the regular
expression match start position, and the first position this final state is reached (i.e. the end position of the regular ex-
pression match). This way, when the optimum score is computed using O(t2m) space, we know the positions (is, js),
and (ie, je). Then we use Hirschberg’s linear space algorithm for computing optimal unconstrained alignments be-
tween (0,0) and (is, js), and between (ie, je) and (n,m). We can use the naive method that we describe above to find
an optimal alignment between (is , js) and (ie, je). This part takes O(t2|s1||s2|) space (or O(t2

d |s1||s2|) space if Md is
given and used) where s1 and s2 are the substrings, respectively, of S1 and S2, and both s1, s2 ∈ L(R), and both appear
in the alignment that we construct. Therefore, the total space requirement of this method is O(t2m + t2|s1||s2|) (or
O(t2m + t2|s1||s2|) if Md is given and used).
d d

A.N. Arslan / Journal of Discrete Algorithms 5 (2007) 647–661 657
6. Affine gaps and local alignments

In sequence alignment, for presentation we usually use alignment matrices instead of edit paths. We can change
our automata construction such that the automata we construct move on alignment columns instead of edit operations.
In the remaining text for convenience we use [a, b] to represent an alignment column containing a and b, i.e. [a, b]T .
We redefine the construction of N × N automaton by replacing moves (transitions) on edit operations by those on
the corresponding alignment columns: we use [S1[i],−] for edit operation S1[i] → ε, [−, S2[j]] for ε → S2[j], and
[S1[i], S2[j]] for S1[i] → S2[j]. We show an example to such an automaton in Fig. 5. The weights of transitions on
alignment columns are the same as those that are on the corresponding edit operations.

It is possible to modify our algorithm for scoring schemes other than the simple scoring scheme. For example,
affine gap penalties is another common scoring scheme in which the total penalty for a gap of size k, i.e. a block
of k insertions (or deletions), is α + (k − 1)μ where α is the gap open penalty, and μ is called the gap extension
penalty. The dynamic programming formulation for computing the maximum alignment score in this case can be
described as follows (see [15] for more details on affine gaps): let H0,0 = 0, and for all j , 1 � j � m, H0,j = E0,j =
max{H0,j−1 − α,E0,j−1 − μ}, and for all i, 1 � i � n, Hi,0 =Fi,0 = max{Hi−1,0 − α,Fi−1,0 − μ}, and define

Ei,j = max{Hi,j−1 − α,Ei,j−1 − μ}, Fi,j = max{Hi−1,j − α,Fi−1,j − μ},
(6)Hi,j = max

{
Hi−1,j−1 + γ

([
S1[i], S2[j]]),Ei,j ,Fi,j

}

where γ ([S1[i], S2[j]]) is the match score (usually 1) if S1[i] = S2[j], and the mismatch penalty (usually −1) other-
wise. E and F keep track of optimum alignment scores that are obtained by alignments that end with an opened gap.
H stores the maximum score of all possible alignments. Matrices E and F have the optimum scores that belong to
alignments ending with a gap. In H we consider extensions of optimal alignment scores in E and F , and optimum
scores that can be obtained by alignments that do not end with a gap (that end with a substitution or a match). Affine
gap penalties do not increase the asymptotic complexity of the alignment problem.

We can use our method to compute regular expression constrained sequence alignment for affine gap penalties.
Using our redefinition of N × N automaton for alignment columns, we create three N × N automata. One of these
automata is the automaton M which we describe in Section 4 but we redefine it by replacing in the construction,

Fig. 5. N × N automaton that moves on alignment columns. This is equivalent to the automaton in Fig. 3(b).

658 A.N. Arslan / Journal of Discrete Algorithms 5 (2007) 647–661
Fig. 6. N × N automaton E has the same states as the automaton M shown in Fig. 5, but E has only the transitions of M on alignment columns of
type [−, y]. The weight of each transition in E is −μ, whereas each of the corresponding transition in M is −α.

every edit operation by the corresponding alignment column. We show this automaton, M , in Fig. 5. In addition we
create two more N × N automata namely E and F which are obtained from M . We design these automata such that
M in its state weights stores the optimum scores in matrix H, and E and F in their state weights store the optimum
scores in matrices E and F respectively. Both E and F have the same states as automaton M . Their set of transitions
are subsets of that of M . E moves only on alignment columns of type [−, S2[j]], and F moves only on alignment
columns of type [S1[i],−]. We show automaton E in Fig. 6, and F in Fig. 7. A difference between automaton M ,
and automata E, and F is that the transition weights are not identical. Each move on E, and each move on F has
score −μ. The score of each of these same moves in M is −α. M has transitions that are neither in E nor in F . These
transitions are for substitutions, and matches, and their weights are, respectively, the given mismatch penalty and the
given match score.

For all i, j , 0 � i � n, 0 � j � m, Mi,j ’s are identical weighted N ×N automata that move on alignment columns
except that the weights can be different. This is true for Ei,j ’s, and Fi,j ’s. That is, except for state weights all Ei,j ’s
are identical, and except for state weights all Fi,j ’s are identical. In M0,0 the state-weights are all −∞ except that we
set the weight of the start state (q0, q0) to 0, i.e. WM0,0(q0, q0) = 0. In E0,0 and F0,0 the weights of all states are −∞.

On the boundary, we define M[0, j],M[i,0],E[0, j],E[i,0],F [0, j], and F [i,0] as follows:

– for all j , 1 � j � m,

(7)E0,j = max
M

{
M

[−,S2[j]]
0,j−1 ,E

[−,S2[j]]
0,j−1

}
,

M0,j has the same state-weights as E0,j . In this case, there is only one possible alignment: S2[1..j] is aligned to
all ′−′’s (a gap of size j),

– and for all i, 1 � j � n

(8)Fi,0 = max
M

{
M

[S1[i],−]
i−1,0 ,F

[S1[i],−]
i−1,0

}
,

Mi,0 has the same state-weighs as Fi,0. In this case, the only possible alignment is the one in which S1[1..i] is
aligned to all ′−′’s (a gap of size i).

A.N. Arslan / Journal of Discrete Algorithms 5 (2007) 647–661 659
Fig. 7. N × N automaton F has the same states as the automaton M shown in Fig. 5, but F has only the transitions of M on alignment columns of
type [x,−]. The weight of each transition in F is −μ, whereas each of the corresponding transition in M is −α.

We use Eq. (2) to compute the dynamic programming step in (6) as follows: for all i, j , 1 � i � n, 1 � j � m,

Ei,j = max
M

{
M

[−,S2[j]]
i,j−1 ,E

[−,S2[j]]
i,j−1

}
, Fi,j = max

M

{
M

[S1[i],−]
i−1,j ,F

[S1[i],−]
i−1,j

}
,

(9)Mi,j = max
M

{
M

[S1[i],S2[j]]
i−1,j−1 ,Ei,j ,Fi,j

}
.

In automata E and F , some states can be active because they are active in M even though these states are not
reachable in E and F from their respective start states. We simulate automaton Mi,j−1 on [−, S2[j]], and Ei,j−1 on
[−, S2[j]]. These simulations update the state weights. In Mi,j−1, the weight of [−, S2[j]] is −α, and a transition from
an active state p to q defined on this alignment column adds this weight −α to the weight of state p, and if this sum
is greater than the weight of state q then it becomes the new weight of state q . The weights of unreachable states are
reset to −∞. Similarly, in Ei,j−1 the weight of [−, S2[j]] is −μ, and a transition from an active state p to q defined
on this alignment column adds this weight −μ to the weight of state p, and this sum may become a new maximum
weight at state q in which case the weight of state q is updated. The weights of unreachable states are reset to −∞.
We note that in Ei,j−1 since only a subset of transitions in Mi,j−1 are defined, normally there are many inactive states
in Ei,j−1. Automaton Ei,j receives in its states the maximum state weights obtained at the end of these simulations.
We similarly, simulate automaton Mi−1,j on [S1[i],−], and Fi−1,j on [S1[i],−], and obtain automaton Fi,j . Finally,
automaton Mi−1,j−1 is simulated on [S1[i], S2[j]] in which each transition defined on this column from an active
state has weight −α. This maximum state weights obtained by this simulation, and the corresponding maximum state
weights in Ei,j , and Fi,j are compared, and the maximum weights become the state weights in automaton Mi,j .

Sometimes we are interested in finding local similarities. A local alignment can start at any position in sequences
with initial score 0. The Smith–Waterman local alignment algorithm [15] modifies the dynamic programming solution
for the global alignment such that at any given point (i, j) if extending existing alignments at (i, j) all result in non-
positive scores then a new alignment starts with score 0. That is, this solution considers 0 as an argument to the
maximum operation in Eqs. (1) (in the case of simple scoring scheme), and (6) (in the case the affine gap penalties).
The maximum local alignment score is achieved at any point, therefore it is expressed as maxi,j Hi,j .

In the case of local alignment, we modify the simulation of automaton M such that the weight of the start state
never becomes negative. That is, if a simulation of an edit operation leads to a non-positive weight in the start state then
the weight of the start state becomes 0. This is because a local alignment can start at any position with initial score 0

660 A.N. Arslan / Journal of Discrete Algorithms 5 (2007) 647–661
if the extensions of all existing alignments would have non-positive weights at this position. To find the maximum
regular expression constrained local alignment score we keep track of the running maximum weight in final states in
Mi,j ’s that we compute. We output the running maximum at the end of computing all Mi,j ’s. These modifications are
the same in both simple scoring, and affine gap penalties cases. In the case of affine gap penalties we do not make any
changes in simulating automata E, and F .

Correctness in the local alignment case follows essentially from the correctness of our algorithm in computing an
optimal global alignment that satisfies a given regular expression constraint since in the local alignment case with our
modification we allow an alignment to start at any point with initial score 0. A noteworthy difference between our
algorithm in this case and an ordinary local alignment algorithm is that we also let a local alignment have a zero or
negative score in an intermediate point during the course of satisfying the given regular expression constraint. That
is we extend an alignment with 0 or negative score if it partially satisfies (matches) the given regular expression R.
Automaton M allows this because active states can have zero or negative weights. This is necessary because an optimal
alignment we seek has to satisfy the given regular expression constraint, and it is possible that during this process it
incurs zero or negative score.

More formally, let p be an alignment with the maximum score obtained over all alignments that satisfy the given
regular expression constraint. We represent p by a sequence (i1, j1), (i2, j2), . . . , (ik, jk) of points in the alignment
graph where the alignment passes. This sequence identifies a sequence of edit operations. For example, we describe the
alignment shown in Fig. 2 by the sequence (0,0), (1,1), (2,2), (3,3), (3,4), (3,5), (4,6), (5,7), (6,7). Any two con-
secutive points in this sequence uniquely identify an edit operation at a given position in the alignment. For example,
from (0,0) and (1,1) we know that the first edit operation on the alignment is represented by the arc ((0,0), (1,1))

corresponding to the match S1[1] → S2[1], and ((3,3), (3,4)) corresponds to the edit operation ε → S2[4]. A local
alignment can start at any point in the alignment graph. We imagine the given optimal alignment p in three parts: part
one is from the beginning to the point preceding where the regular expression match starts, part two is where the reg-
ular expression match occurs, and part three is the rest of the alignment. For the example alignment in Fig. 2, part one
contains only (0,0), and part two is (1,1), (2,2), (3,3), (3,4), (3,5), (4,6), and part three is (5,7), (6,7). We claim
that after Mik,jk

is computed, in Mik,jk
there is a final state whose weight is the score of the given optimal alignment p.

To prove this we trace the computations on parts of the given optimal alignment p. Part two in p is not empty since the
alignment satisfies the given regular expression constraint which we suppose, without loss of generality, is not empty
(if it is empty then the problem becomes the ordinary local sequence alignment problem which we can solve using the
Smith–Waterman local alignment algorithm [15]). Part one is not empty because of our representation of alignments.
Part one contains at least the beginning point of the arc that corresponds to the first edit operation in part two. For the
alignment shown in Fig. 2 part one only includes (0,0). Part three is empty if any extension of p starting at the end of
its part two in the direction of increasing indices in the sequences does not increase the total score.

The points (i,0)’s and (0, j)’s on the boundary in the alignment graph can only be part of part one of an optimal
alignment p. In the corresponding automata Mi,0’s and M0,j ’s (formulas (3) and (4) in the case of simple scoring,
and (7) and (8) in the case of affine gap penalties), the only active state is the start state whose weight in the maximum
of 0, and the total score of the corresponding alignment of a block of insertions, or deletions (0, in general, because
of the negative total score of any such block in a usual setting of the parameters). Therefore, any local alignment can
start at any of these boundary points with initial score 0.

Let part two start with an edit operation from (i′0, j ′
0) to (i′1, j ′

1) that initiates the matching of the regular expres-
sion R. Let Mi′2,j ′

2
be the last automaton that is generated at the end of part two. It is easy to see that, in Mi′0,j ′

0
, the

weight of the start state is the score of part one because of the loop on the start state on all possible edit operations in
�M in all copies of M . Similarly, we can see that in Mi′1,j ′

1
there is an active final state f whose score is the total of

the scores obtained in parts one and two. We note that in all states including f the weights are computed using the
maxM operation that involves all neighboring automata, and the states from which f can be reached (formula (5) in
the simple scoring scheme, and (9) in the case of the affine gap penalties). However, from the optimality of the given
alignment f we know that the weight of f in Mi′1,j ′

1
is the total score of part one and two. We also note that, this

weight can be negative. This happens because any optimal alignment is required to satisfy the given regular expres-
sion constraint although this process may add negative scores for the alignments. In one extreme example, an optimal
regular expression constrained local alignment has empty part three, a single point in part one (essentially empty since
this only leads to part two), and part two whose score is 0 or negative. If part three exists the weight of f is increased
by the score of part three. In any case, after our algorithm computes Mik,jk

, the weight of one final state in Mik,jk
is

A.N. Arslan / Journal of Discrete Algorithms 5 (2007) 647–661 661
the score of p. The running maximum in the algorithm records this value, and returns it at the end. This concludes the
correctness proof of our algorithm for the local alignment case.

The auxiliary automata E, and F , and their simulations in the case of affine gap penalties, and simple modifications
in automata simulations in the case of local alignment do not increase the asymptotic complexity of the problem. Our
algorithms share the same time and space complexities in these cases.

7. Conclusion

We introduce the regular expression constrained sequence alignment problem, and present an algorithm for it. Our
algorithm is based on constructing an automaton from the regular expression in a given constraint. It simulates copies
of this automaton updating the state weights as the underlying dynamic programming solution for sequence alignment
dictates. This algorithm can be adapted for various scoring schemes, and it can also be used in computing local
alignments. Our algorithm guides the alignments by forcing them to contain a pattern which is described as a regular
expression. A very important application is the alignment of biological sequences that includes a given motif.

Acknowledgement

We thank an anonymous referee for bringing Ref. [10] into our attention.

References

[1] A.N. Arslan, Ö. Eğecioğlu, Algorithms for the constrained common sequence problem, Int. J. Found. Comput. Sci. 16 (6) (2005) 1099–1109.
[2] P. Bork, E.V. Koonin, Protein sequence motifs, Curr. Opin. Struct. Biol. 6 (1996) 366–376.
[3] F.Y.L. Chin, N.L. Ho, T.W. Lam, P.W.H. Wong, M.Y. Chan, Efficient constrained multiple sequence alignment with performance guarantee,

in: Proc. IEEE Computational Systems Bioinformatics (CSB 2003), 2003, pp. 337–346.
[4] F.Y.L. Chin, A.D. Santis, A.L. Ferrara, N.L. Ho, S.K. Kim, A simple algorithm for the constrained sequence problems, Inform. Process.

Lett. 90 (2004) 175–179.
[5] J.-P. Comet, J. Henry, Pairwise sequence alignment using a PROSITE pattern-derived similarity score, Computers and Chemistry 26 (2002)

421–436.
[6] R.F. Doolittle, Similar amino acid sequences: chance or common ancestry, Science 214 (1981) 149–159.
[7] L. Falquet, M. Pagni, P. Bucher, N. Hulo, C.J. Sigrist, K. Hofmann, A. Bairoch, The PROSITE database, its status in 2002, Nucleic Acids

Res. 30 (2002) 235–238.
[8] D.S. Hirschberg, Algorithms for the longest common subsequence problem, J. ACM 24 (1977) 664–675.
[9] J.E. Hopcroft, J.D. Ullman, Introduction to Automata Theory, Languages, and Computation, Addison-Wesley, 1979.

[10] E.W. Myers, W. Miller, Approximate matching of regular expressions, Bull. Math. Biol. 51 (1) (1989) 5–37.
[11] C.Y. Tang, C.L. Lu, M.D.-T. Chang, Y.-T. Tsai, Y.-J. Sun, K.-M. Chao, J.-M. Chang, Y.-H. Chiou, C.-M. Wu, H.-T. Chang, W.-I. Chou,

Constrained multiple sequence alignment tool development and its applications to rnase family alignment, in: Proceedings of the 1st IEEE
Computer Society Bioinformatics Conference (CSB 2002), 2002, pp. 127–137.

[12] Y.-T. Tsai, The constrained common sequence problem, Inform. Process. Lett. 88 (2003) 173–176.
[13] Y.-T. Tsai, C.L. Lu, C.T. Yu, Y.P. Huang, MuSiC: A tool for multiple sequence alignment with constraint, Bioinformatics 20 (14) (2004)

2309–2311.
[14] J.E. Walker, M. Saraste, M.J. Runswick, N.J. Gay, Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin,

kinases and other ATP-requiring enzymes and a common nucleotide binding fold, EMBO J. 1 (1982) 945–951.
[15] M.S. Waterman, Introduction to Computational Biology, Chapman & Hall, 1995.

	Regular expression constrained sequence alignment
	Introduction
	Previous related work
	Framework
	Weighted finite automaton for regular expression constrained sequence alignment
	The algorithm
	Implementation issues and complexity

	Affine gaps and local alignments
	Conclusion
	Acknowledgement
	References

