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Tree Edit Distance, Alignment Distance and Inclusion

Philip Bille*
March 28, 2003

Abstract

We survey the problem of comparing labeled trees based guiesiocal operations of deleting,
inserting and relabeling nodes. These operations leackttrele edit distance, alignment distance
and inclusion problem. For each problem we review the resaugilable and present, in detail,
one or more of the central algorithms for solving the prohlem

1 Introduction

Trees are among the most common and well-studied combialttructures in computer science.
In particular, the problem of comparing trees occurs in svdiverse areas such as computational
biology, structured text databases, image analysis, attoriveorem proving and compiler optimiza-
tion [Tai79, ZS89, KM95, KTSK00, HO82, RR92, ZSW94]. For exde, in computational biology,
computing the similarity between trees under various disgameasures is used in the comparison of
RNA secondary structures [ZS89, JWZ95].

Let T be a rooted tree. We cdll alabeled tredf each node is a assigned a symbol from a fixed
finite alphabet:. We callT anordered tredf a left-to-right order among siblings ifi is given. In this
paper we consider matching problems based on simple pramiperations applied to labeled trees.
If T is an ordered tree these operations are defined as follows:

relabel Change the label of a nodein T'.

delete Delete a non-root nodein 7" with parentv’, making the children of become the children of
v’. The children are inserted in the placewdhs a subsequence in the left-to-right order of the
children ofv’.

insert The complement of delete. Insert a nadas a child of a’ in T"makingv the parent of a
consecutive subsequence of the children’of

Figure 1 illustrates the operations. For unordered tree®perations can be defined similarly. In this
case, the insert and delete operations works gnlsetinstead of a subsequence. We define three
problems based on the edit operations. TeandT, be labeled trees (ordered or unordered).

Tree edit distance Assume that we are givencast functiordefined on each edit operation. Adit
script S betweenl; andTs is a sequence of edit operations turnifiginto 7. The cost ofS is the
sum of the costs of the operations $h An optimal edit scriptbetweenT; and 75 is an edit script
betweenT; andT; of minimum cost and this cost is theee edit distance Thetree edit distance
problemis to compute the edit distance and the corresponding edit.sc

*The IT University of Copenhagen, Glentevej 67, DK-2400 Guomgen NV, Denmark. Emaibeet |l e@'t - c. dk.
This work is part of the DSSCV project supported by the ISTgPamme of the European Union (IST-2001-35443).
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Figure 1: (a) A relabeling of the node labglto i;. (b) Deleting the node labeldd. (c) Inserting a
node labeled, as the child of the node labeleéd

Tree alignment distance Assume that we are given a cost function defined on pair ofidab&n
alignmentA of 17 andT; is obtained as follows. First we insert nodes labeled wjthcesnto T3 and

T, so that they become isomorphic when labels are ignored. 8hdting trees are thesverlayedon

top of each other giving the alignmeAt which is a tree where each node is labeled by a pair of labels.
Thecostof A is the sum of costs of all pairs of opposing labelstinAn optimal alignmenbf 77 and

T5 is an alignment of minimum cost and this cost is calledalgnment distancef 77 andT,. The
alignment distance probleis to compute the alignment distance and the correspondiigignazent.

Tree inclusion T isincludedin 15 if and only if T3 can be obtained by deleting nodes fr@n The
tree inclusion problenis to determine iff} can be included ifT5.

In this paper we survey each of these problems and discuseshéis obtained for them. For
reference, Table 1 on page 22 summarizes most of the awailabllts. All of these and a few others
are covered in the text. The tree edit distance is problerneisiost general of three. The alignment
distance corresponds to a kind of restricted edit distawbde tree inclusion is a special case of both
the edit and alignment distance problem. Apart from thesgks relationsships, interesting variations
on the edit distance problem has been studied leading to @ coonplex picture.
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Both the ordered and unordered version of the problems aiewed. For the unordered case, it
turns out that all of the problems in general are NP-hardedul] the tree edit distance and alignment
distance problems are even MAX SNP-hard [AIE®R]. However, under various interesting restric-
tions, or for special cases, polynomial time algorithms arailable. For instance, if we impose a
structure preservingestriction on the unordered tree edit distance problerwh fat disjoint subtrees
are mapped to disjoint subtrees, it can be solved in polyabtime. Also, unordered alignment for
constant degree trees can be solved very efficiently.

For the ordered version of the problems polynomial time alljms exists. These are all based on
the classic technique dfynamic programmingsee e.g, [CLRS01, Chapter 15]) and most of them are
simple combinatorial algorithms. Recently, however, madeganced techniques such as fast matrix
multiplication have been applied to the tree edit distarroblpm [Che01].

The survey covers the problems in the following way. For gaciblem and variations of it we
review results for both the ordered and unordered versidris Will in most cases include a formal
definition of the problem, a comparison of the available ltssand a description of the techniques used
to obtain the results. More importantly, we will also pickeoar more of the central algorithms for
each of the problems and present it in almost full detail.c8jpally, we will describe the algorithm,
prove that it is correct and analyse its time complexity. Biavity, we will omit the proofs of a few
lemmas and skip over some less important details. Commoathéoalgorithms presented in detail is
that, in most cases, they are the basis for more advancedthigs. Typically, most of the algorithms
for one of the above problems are refinements of the same dgnqaogram.

The main technical contribution of this survey is to prestr@ problems and algorithms in a
common framework. Hopefully, this will enable the readergain a better overview and deeper
understanding of the problems and how they relate to eaddr.oth the litterature, there are some
discrepancies in the presentations of the problems. Ftarins, the ordered edit distance problem
was considered by Klein [Kle98] who used edit operationsdges. He presented an algorithm using
a reduction to a problem defined on balanced parenthesigystriln contrast, Zhang and Shasha
[2S89] gave an algorithm based on the postorder numberingeas. In fact, these algorithms share
many features, which become apparent if considered in ¢ setting. In this paper we present these
algorithms a new framework bridging the gap between the tascdptions.

Another problem in the litterature is the lack of an agreenmena definition of the edit distance
problem. The definition given here is by far the most studiad & our opinion the most natu-
ral. However, several alternatives ending in very différdistance measures have been considered
[Lu79, TT88, Sel77, Lu84]. In this paper we review these ptaiants and compare the them to
our definition. We should note the edit distance problem éeffinere is sometimes refered to as the
tree-to-tree correction problem

This survey adopts #heoretical point of view. However, the problems above are not only in-
teresting mathematical problems, but they also occur inyn@actical situation and it is impor-
tant to develop algorithms that perform well oeal-life problems. For pratical issues semg,
[WZJS94, TSKK98, SWSZ02].

We restrict our attention teequentialalgorithms. However, there has been some research in
parallel algorithms for the edit distance problesyy, [ZS89, Zha96b, SZ90].

This summarizes the contents of this paper. Due to the furdtahnature of comparing trees
and its many applications, several other ways to compaes thave been devised. In this paper, we
have chosen to limit ourselves to a handfull of problems Whie describe in detail. Other problems
include tree pattern matchingkos89, DGM90] and [HO82, RR92, ZSW94haximum agreement
subtree[KA94, FT94], largest common subtreAH94, KMY95] and smallest common supertree
[NRTOO, GN9g].



1.1 Outline

In Section 2 we give some preliminaries. In Sections 3, 4 ameeSurvey the tree edit distance,
alignment distance and inclusion problems respectivelg ddhclude in Section 6 with some open
problems.

2 Preliminaries and notation

In this section we define notations and definitions we will tiseughout the paper. For a graphwe
denote the set of nodes and edgedtiyr) and E(G) respectively. Lefl” be a rooted tree. The root
of T is denoted byoot(T"). Thesizeof T', denoted byT|, is |V (T)|. Thedepthof a nodev € V(T),
depth(v), is the number of edges on the path frono root(7"). Thein-degreeof a nodev, deg(v)

is the number of children of. We extend these definitions such tdapth(7") anddeg(7") denotes
the maximum depth and degree respectively of any node iA node with no children is a leaf and
otherwise an internal node. The number of leave® &f denoted byeaves(T'). We denote the parent
of nodew by parent(v). Two nodes are siblings if they have the same parent. ForreesT; and75,
we will frequently refer tdeaves(T;), depth(7;) anddeg(T;) by L;, D; andl;, i = 1,2.

Let # denote the empty tree and [E{v) denote the subtree df rooted at a node € V(7). If
w € V(T'(v)) thenw is an ancestor ofv, and ifw € V(T'(v))\{v} thenv is a proper ancestor of
w. If v is a (proper) ancestor ab thenw is a (proper) descendant of A treeT is orderedif a
left-to-right order among the siblings is given. A fordstis ordered if a left-to-right order among the
trees is given and each tree is ordered. T'die an ordered tree and letinV (7). If v has children
v1,...,v; defineF(vg, v), wherel < s < t < 4, as the forest’(vs),...,T(v,). For convenience,
we setF'(v) = F(vy,v;).

We assume throughout the paper that labels assigned to amglesosen from a finite alphalet
Let A ¢ X denote a specidllank symbol and defin&, = > U A. We often define &ost function
v (2 x Z))\(A\,A) — R, on pairs of labels. We will always assume thaits a distance metric.
That is, for anyly,l2,l3 € X, the following conditions are satisfied:

1. 7(ll7l2) > 07 ’Y(llall) =0.
2. v(ly1,l2) = v(l2, ).
3. y(l1,13) < (lh,12) + (12, 13).

3 Tree Edit Distance

In this section we survey the tree edit distance problem.usgsthat we are given eost function
defined on each edit operation. Axdlit script S between two tree§; andT; is a sequence of edit
operations turningy into T>. The cost ofS is the sum of the costs of the operationsSinAn optimal
edit scriptbetweenl; andT; is an edit script betweel, andT» of minimum cost. This cost is called
thetree edit distancedenoted by (77, 7). An example of an edit script is shown in Figure 2.

The rest of the section is organized as follows. First, inti®aa.1, we present some preliminaries
and formally define the problem. In Section 3.2 we survey #wiits obtained for the ordered edit
distance problem and present two of the currently best ilgos for the problem. The unordered
version of the problem is reviewed in Section 3.3. In SecBchwe review results on the edit dis-
tance problem when variowdructure-preservingonstraints are imposed. Finally, in Section 3.5 we
consider some other variants of the problem.
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Figure 2. Transforming (a) into (c) via editing operatiorfa) A tree. (b) The tree after deleting the
node labeled. (c) The tree after inserting the node labeteahd relabelingf to a ande to d.

3.1 Edit operations and edit mappings

Let 77 andT; be labeled trees. Following [Tai79] we represent each guétation by(l; — [3),
where(l1,l2) € (Xx x Xx)\(A,A). The operation is a relabeling if # X andls # A, a deletion if
l» = XAand an insertion if; = A. We extend the notation such th{at— w) for nodesv andw denotes
(label(v) — label(w)). Here, as with the labels, or w may be\. Given a metric cost function
defined on pairs of labels we define the cost of an edit operayisettingy(l; — lz2) = v(l1,12). The
cost of a sequencE = sy, ..., s, of operations is given by/(S) = Zle v(si). The edit distance
betweenl’; andT5 is formally defined as:

d(Th,T>) = min{7(S) | S is a sequence of edit operations transformifignto 75 }.

Since~ is a distance metrié becomes a distance metric too.

An edit distance mappin@or just amapping between?} and7> is a representation of the edit
operations, which is used in many of the algorithms for the &dit distance problem. Formally, define
the triple (M, Ty, T>) to be anordered edit distance mappirfigom 7} to Ty, if M C V(T3) x V(1)
and for any paifvy, wy), (v2, ws) € M:

1. v; = vy iff w1 = wo. (ONe-to-one condition)
2. vy is an ancestor ofs iff wy is an ancestor af,. (ancestor condition)
3. vy is to the left ofvy iff wy is to the left ofws. (sibling condition)

Figure 3 illustrates a mapping that corresponds to the edijitsn Figure 2. We define thenordered
edit distance mappinbetween two unordered trees as the same, but without thiegidndition. We
will use M instead of(M, Ty, T») when there is no confusion. Léd, T3, T,) be a mapping. We say
that a nodev in T3 or T is touched by a linén M if v occurs in some pair id/. Let N; and N, be
the set of nodes iff; and7; respectively not touched by any line M. The cost ofM is given by:

YM)= > Av—w)+ Y =N+ D vA—w)

(v,w)eM vEN] wEN>

Mappings can be composed. LEt, T andT3 be labeled trees. Let/; and M; be a mapping from
T, to T, andT5 to T3 respectively. Define

My o My = {(v,w) | Ju € V(T3) such thatv,u) € M; and(u,w) € My}
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Figure 3: The mapping corresponding to the edit script inuFa.

With this definition it follows easily thab/; o M, itself becomes a mapping. Singds a metric, it is
not hard to show that a minimum cost mapping is equivalertieécedit distance:

0(Th,Tp) = min{y(M) | (M, T, T») is an edit distance mappifig

Hence, to compute the edit distance we can compute the nimicmst mapping. We extend the
definition of edit distance to forests. That is, for two fdeeB; and F», 6(Fy, F>) denotes the edit
distance betweefR; and F,. The operations are defined as in the case of trees, howewts, af the
trees in the forest may now be deleted or inserted. The defirof a mapping is extended in the same
way.

3.2 General ordered edit distance

The ordered edit distance problem was introduced by Tai7HJaas a generalization of the well-
knownstring edit distance problefWF74]. Tai presented an algorithm for the ordered versisingi
O(|Th||T2||L1|?|L2|?) time and space. Subsequently, this result has been impZhety and Shasha
[2S89] usingO(|T1||T>| min(Ly, | D1|) min(Ls, |Ds|)) time andO(|T1||7%|) space. This algorithm
was modified by Klein [Kle98] to get a better worst case timerzbofO(| T} |?|T5 | log | T3|) under the
same space bounds. We present the latter two algorithmdaii below. Recently, Chen [Che01] has
presented an algorithm usiiig(| 7y ||Ts| + L?|T3| + L5 Ls) time andO((|T1| + L?) min (L, | D2|) +
|T»|) space. Hence, for certain kinds of tree the algorithm imesathe previous bounds. This algo-
rithm is more complex than all of the above and uses resulfagirmatrix multiplication.

3.2.1 A simple algorithm

We first present a simple recursion which will form the basisthe two dynamic programming algo-
rithms we present in the next two sections. We will only shawho compute the edit distance. The
corresponding edit script can be easily obtained withinghme time and space bounds. The algo-
rithm is due to Klein [Kle98]. However, we should note that firesentation given here is somewhat
different. We believe that our framework is more simple anavftles a better connection to previous
work.

Let F' be a forest and be a node irf’. We denote by" — v the forest obtained by deletingfrom
F'. Furthermore, definég” — T'(v) as the forest obtained by deletimgand all descendants of The
following lemma provides a way to compute edit distancegHergeneral case of forests.



Lemma 1 Let F; and F; be ordered forests angl be a metric cost function defined on labels. Let
andw be the rightmost (if any) roots of the treeshh and F; respectively. We have,

5(6,0) = 0
5(F1,9) = 6(F1 — U,H) —{—’y(’U — )\)
5(9,F2) = 6(9,F2 — w) —{—’}/()\ — w)

6(F1 — v, F2) + (v — A)
6(F1, o) = min  6(Fy, Fy —w) +y(\ — w)
6(F1(v), Fo(w)) + 0(F1 — T1(v), Fa — Ta(w)) + (v — w)

Proof. The first three equations are trivially true. To show the &giation consider a minimum cost
mappingM betweenF; and F». There are three possibilities forandw:

Case 1: v is not touched by a line. Thew, \) € M and the first case of the last equation applies.
Case 2: w is not touched by a line. Theih, w) € M and the second case of the last equation applies.

Case 3: v andw are both touched by lines. We show that this impliesw) € M. Suppos€v, h)
and(k,w) are inM. If v is to the right ofk thenh must be to right ofv by the sibling condition.
If v is a proper ancestor df thenh must be a proper ancestor @fby the ancestor condition.
Both of these cases are impossible sinendw are the rightmost roots and hengew) € M.
By the definition of mappings the equation follows. O

Lemma 1 suggests a dynamic program. The valué(éf, F») depends on a constant number of
subproblems of smaller size. Hence, we can compk&, F») by computingd (S, S2) for all pairs

of subproblemsS; and .S, in order of increasing size. Each new subproblem can be ctedgn
constant time. Hence, the time complexity is bounded by tieber of subproblems aof; times the
number of subproblems df.

To count the number of subproblems, define for a rooted, edifarestF’ the (i, j)-deleted sub-
forest 0 < i+ 5 < |F|, as the forest obtained frod by first deleting the rightmost root repeatedly
j times and then, similarly, deleting the leftmost rédtmes. We call thg0, j)-deleted andz, 0)-
deleted subforests, fdr < j < |F|, the prefixesand thesuffixesof F' respectively. The number of
(i, 7)-deleted subforests df is Z',QO k = O(|F|?), since for eacli there ard F'| — i choices for;.

It is not hard to show that all the pairs of subproblefisand S; that can be obtained by the
recursion of Lemma 1 are deleted subforestd’ofind F;>. Hence, by the above discussion the time
complexity is bounded b§) (| F} |2| F»|?). In fact, fewer subproblems are needed, which we will show
in the next sections.

3.2.2 Zhang and Shasha’s algorithm

The following algorithm is due to Zhang and Shagh889. Define thekeyrootsof a rooted, ordered
treeT as follows:

keyroots(T') = {root(T")} U{v € T(V) | v has a left sibling

Thespecialsubforests of is the forestsF'(v), wherev € keyroots(7'). Therelevant subproblems of
T with respect to the keyroots the prefixes of all special subforedi§v). In this section we refer to
these as just theelevant subproblems



Lemma 2 For each nodey € V(T'), F(v) is a relevant subproblem.

Itis easy to see that, in fact, the subproblems that can déed¢hie above recursion are either subforests
of the form F'(v), wherev € V(T'), or prefixes of a special subforest ®f Hence, it follows by
Lemma 2 and the definition of a relevant subproblem, that toprdge §(F}, F») it is sufficient to
computei (.S, Se) for all relevant subproblemsS; andS; of 77 andT; respectively.

The relevant subproblems of a tréecan be counted as follows. For a nade V (T') define the
collapsed deptlof v, cdepth(v), as the number of keyroot ancestorsvofAlso, definecdepth(T") as
the maximum collapsed depth of all nodes V (7).

Lemma 3 For an ordered tre€l’ the number of relevant subproblems, with respect to theokéyiis
bounded by)(|T|cdepth(T)).

Proof. The relevant subproblems can be counted using the folloexpgession:

Z |F(v)] < Z |T(v)| = Z cdepth(v) < Z cdepth(T') = |T|cdepth(T)

ve€keyroots(T) vekeyroots(T) veV(T) veV(T)

Since the number prefixes of a subforéi) is |F'(v)| the first sum counts the number of relevant
subproblems of'(v). To prove the first equality note that for each nadéae number of special sub-
forests containing is the collapsed depth ef Hencew contributes the same amount to the left and
right side. The other equalities/inequalities follow imafiedely. O

Lemma 4 For atreeT’, cdepth(7") < min{depth(T"),leaves(T")}

Hence, we can solve the problem using dynamic programmirgpbyputingd(S1, Sz ) for all relevant
subproblemsS; and Ss in time (and spaced) (|7} ||T2| min{D;, L)} min{Ds, Lo}). Furthermore,
by carefully discarding distances between prefixes of gpémiests the space used in the computation
can be reduced tO(|T7||T%|). Hence,

Theorem 1 ([2S89]) For ordered treesl; and 75 the edit distance problem can be solved in time
O(’TlHTQ‘ min{]Dl ’, Ll} min{\Dg\, LQ}) and spaceO(\TlHTgl).

3.2.3 Kilein’'s algorithm

In the worst case, that is for trees with linear depth andeslimumber of leaves, Zhang and Shasha’s
algorithm of the previous section still requir€ |7} |?|T|?) time as the simple algorithm. In [Kle98]
Klein obtained a better worst case time bounddfT;|?|T3|log |T|) while maintaining the same
space bound af (|7} ||T3|). It should be noted that the paper only stafd$T7|?|T»|log |T»|) as the
space bound. However, it is straightforward to improve thi® (|7} ||7z]) [Kle02].

The algorithm is based on an extension of the recursion inrharh. The main idea is to consider
all of the O(|T1|?) deleted subforests @ but only O(|T»|log |T3|) deleted subforests @h. In total
the worst case number of subproblems is thus reduced to gireddound above.

A key concept in the algorithm is the decomposition of a rddteeT into disjoint paths called
heavy paths This technique was introduced by Harel and Tarjan [HT84¢ d&fine thesizea node
v e V(T) as|T(v)|. We classify each node @f as eithetheavyor light as follows. The root is light.
For each internal node we pick a childu of v of maximum size among the children ofind classify
u as heavy. The remaining children are light. We call an edggelight child alight edge and an edge
to a heavy child &eavy edgeThelight depthof a nodev, ldepth(v), is the number of light edges on
the path fromw to the root.



Lemma 5 ([HT84]) For any treeT and anyv € V(T'), ldepth(v) < log |T| + O(1).

By removing the light edge®' is partitioned into heavy paths.

We define theelevant subproblems d&f with respect to the light noddselow. We will refer to
these aselevant subproblemis this section. First fix a heavy path decompositiorf ofFor a nodev
in T" we recursively define the relevant subproblemg-¢f) as follows: F'(v) is relevant. Ifv is not a
leaf, letu be the heavy node af and let/ andr be the number of nodes to the left and to the right of
win F(v) respectively. Then, thg, 0)-deleted subforests df(v), 0 < i < [, and the(l, j)-deleted
subforests off'(v), 0 < j < r are relevant subproblems. Recursively, all relevant satipms of
F(u) are relevant.

The relevant subproblems @fwith respect to the light nodes is the union of all relevartsob-
lems of F'(v) wherev € V(T') is a light node.

Lemma 6 For an ordered tre€l’ the number of relevant subproblems with respect to the lighles
is bounded by)(|7’| Idepth(T")).

Proof. Follows by the same calculation as in the proof of Lemma 3. d

Also note that Lemma 2 still holds with this new definition efevant subproblems. Lé& be a
relevant subproblem df and lety; andv, denote the leftmost and rightmost root $frespectively.
The difference nod®f S is eitherv, if S — v, is relevant ory; if S — v; is relevant. The recursion
of Lemma 1 compares the rightmost roots. Clearly, we can ellsmse to compare the leftmost
roots resulting in a new recursion, which we will refer to &e tual of Lemma 1. Depending on
which recursion we use, different subproblems occur. We g a modified dynamic program for
calculating the tree edit distance. L&t be a deleted tree df; and letSs; be a relevant subproblem
of T,. Letd be the difference node df,. We computei(Sy, S2) as follows. There are two cases to
consider:

1. If d is the rightmost root ob; compare the rightmost roots 6f andS; using Lemma 1.
2. If disthe leftmost root of5; compare the leftmost roots 6f andS; using the dual of Lemma 1.

It is easy to show that in both cases the resulting smalleprslbtems ofS; will all be deleted
subforests off; and the smaller subproblems 8§ will all be relevant subproblems df,. Using
a similar dynamic programming technique as in the algoritiizhang and Shasha we obtain the
following:

Theorem 2 ([Kle98]) For ordered treesl; and 1> the edit distance problem can be solved in time
O(|T1*| 3| log | T2]) and spaceD(|T: || T3]).

Klein [Kle98] also showed that his algorithm can be extendetthin the same time and space
bounds to thaunrooted ordered edit distance probldmtweenT; andT5, defined as the minimum
edit distance betwe€eh; andT, over all possible roots ¢f; andTs.

3.3 General unordered edit distance

In the following section we survey the unordered edit diseaproblem. This problem has been shown
to be NP-complete [2SS92, Zha89, ZSS91] even for binanstvéth a label alphabet of size The
reduction is from the Exact Cover 3yset problem [GJ79]. Subsequently, the problem was shown to
be MAX-SNP hard [2J94]. Hence, unless P=NP there is no PTASproblem [ALM"92]. It was
shown in [Z2SS92] that for special cases of the problem patyiabtime algorithms exists. [T, has
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Figure 4: (a) A mapping which is constrained and less-caistd. (b) A mapping which is less-
constrained but not constrained. (c) A mapping which ishegitonstrained nor less-constrained.

one leaf,.e, T is a sequence, the problem can be solve@{ii}||7>|) time. More generally, there
is an algorithm running in timé (|71 ||Tz| + L2!3%2(L3 + D?)|Ty|). Hence, if the number of leaves
in T5 is logarithmic the problem can be solved in polynomial time.

3.4 Constrained edit distance

The fact that the general edit distance problem is diffiqutdlve has led to the study of restricted ver-
sions of the problem. In [Zha95, Zha96a] Zhang introducexttnstrained edit distan¢celenoted by
0., Which is defined as an edit distance under the restrictiahdisjoint subtrees should be mapped to
disjoint subtrees. Formally,.(7,T5) is defined as a minimum cost mappitwy/., 71, 7>) satisfying
the additional constraint, that for dlb;, w1 ), (v, w2), (vs, w3) € M.:

e nca(vy,vy) is a proper ancestor ef; iff nca(wq,ws) is a proper ancestor afs.

According to [LSTO01], Richter [Ric97b] independently intluced thestructure respecting edit
distance),. Similar to the constrained edit distandg(77, T») is defined as a minimum cost mapping
(M,, Ty, T,) satisfying the additional constraint, that for &l , w.), (v2, w2), (vs, ws) € M, such
that none ofv;, v, andwvs is an ancestor of the others,

e nca(vy,vy) = nca(vy,v3) iff nca(wy, wy) = nca(wy, ws).

It is straightforward to show that both of these notions of didtance are equivalent. Henceforth,
we will refer to them simply as the constrained edit distandes an example consider the map-
pings of Figure 4. (a) is a constrained mapping sinc&(v;, v2) # nca(vy, vs) andnca(w;, we) #
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nca(wi, ws). (b) is not constrained sinaea(vy, vy) = vq # nca(vy, v3) = vs, While nca(wy, we) =
wy = nca(wy, ws). (C) is not constrained sinaea(vy, v3) = vs # nca(vy, v3), While nca(wy, w3) =
v5 # nca(wsy, w3) = wy.

In [Zha95, Zha96a] Zhang presents algorithms for the comguhe minimum cost constrained
mappings. For the ordered case he gives an algorithm w3 || 7>|) time and for the unordered
case he obtains a running time@f|T} ||T%|(I; + I2) log(I; + I2)). Both use spac@(|T1||12|). The
idea in both algorithms is similar. Due to the restrictiontbe mappings fewer subproblem need to
be considered and a faster dynamic program is obtained.elrtiered case the key observation is
a reduction to the string edit distance problem. For the dei@d case the corresponding reduction
is to a maximum matching problem. Using an efficient algonitfor computing a minimum cost
maximum flow Zhang obtains the time complexity above. Ricipresented an algorithm for the
ordered constrained edit distance problem, which a¥@%}||7>|1;12) time andO(|11|D212) space.
Hence, for small degree, low depth trees this algorithmgaepace improvement over the algorithm
of Zhang.

Recently, Luet al. [LSTO01] introduced thdess-constrained edit distancé&, which relaxes the
constrained mapping. The requirement here is that fofuallw; ), (ve, w2), (vs, ws) € M; such that
none ofvy, v9 andvs is an ancestor of the others,

e depth(nca(vy,ve)) > depth(nca(vi,vs)) and alsonca(vy,v3) = nca(ve,vs) if and only if
depth(nca(wy,ws)) > depth(nca(w;, ws)) andnca(wi, ws) = nca(ws, ws).

For example, consider the mappings in Figure 4. (a) is lesstcained because it is constrained.
(b) is not a constrained mapping as discussed above, howey@napping is less-constrained since
depth(nca(vi,ve)) > depth(nca(vy,v3)), nca(vy,v3) = nca(ve,vs), nca(wy, wy) = nca(wy,ws)
andnca(wi,ws) = nca(ws,ws). (C) is not a less-constrained mapping sidegth(nca(vy, v2)) >
depth(nca(vy,v3)) andnca(vy, v3) = nca(va, v3), while nca(wy, ws) # nca(ws, ws)

In the paper [LSTO01] an algorithm for the ordered versiontwf tess-constrained edit distance
problem using) (|11 || T2 |13 I3 (I, +I2)) time and space is presented. For the unordered versiokeunli
the constrained edit distance problem, it is shown that tbklem is NP-complete. The reduction used
is similar to the one for the unordered edit distance problénis also reported that the problem is
MAX SNP-hard. Furthermore, it is shown that there is no alsoapproximation algorithinfor the
unordered less-constrained edit distance problem unkeS®P

3.5 Other variants

In this section we survey results for other variants of editathce. Letl; and1; be rooted trees.
The unit cost edit distancdetweenT; and T, is defined as the number of edit operations needed
to turn Ty into 7. In [SZ90] the ordered version of this problem is consideasdl a fast algo-
rithm is presented. Ifu is the unit cost edit distance betwe#&h and 13 the algorithm runs in
O(u? min{|T1|, |T2|} min{ L1, Lo }) time. The algorithm uses techniques from Ukkonen [Ukk8%] an
Landau and Vishkin [LV89].

In [Sel77] Selkow considered an edit distance problem wimsertions and deletions are restricted
to leaves of the trees. This edit distance is sometimesreefdo as thel-degree edit distanceHe
gave a simple algorithm usin@(|7}||7%|) time and space. Another edit distance measure where edit
operations work on subtrees instead of nodes was given by ur9]. A similar edit distance was
given in [TT88, Tan95]. A short description of Lu’s algonithcan be found in [SZ97].

'An approximation algorithmA is absoluteif there exists a constant > 0 such that for every instancg |A(I) —
OPT(I)| < ¢, whereA(I) andOPT(I) are the approximate and optimal solutiong aespectively [Mot92].
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4 Tree Alignment Distance

In this section we consider the alignment distance problest. 77 and T, be rooted, labeled trees
and lety be a metric cost function on pairs of labels as defined in 8e@i An alignmentA of Ty
andTs is obtained by first inserting nodes labeled whilicalledspace¥into 77 andT5 so that they
become isomorphic when labels are ignored, and dvenlayingthe first augmented tree on the other
one. Thecostof a pair of opposing labels iA is given by~. The cost ofA is the sum of costs of all
opposing labels iM. An optimal alignmenbf T andT5, is an alignment of; and75 of minimum
cost. We denote this cost by(71,7>). Figure 5 shows an example (from [JWZ95]) of an ordered
alignment.

a a (a,a)

e d b f (67 )‘) ()‘af)

b c c d b,0) (e, A)  (Ne)  (d,d)
(a) (b) (©

Figure 5: (a) Tred. (b) TreeTs. (c) An alignment ofl; andT5.

The tree alignment distance problem is a special case ofr¢leeediting problem. In fact, it
corresponds to a restricted edit distance where all imgestimust be performed before any deletions.
Hence6(T1,T2) < «(Ty1,T»). For instance, assume that all edit operations havelcast consider
the example in Figuré. The optimal sequence of edit operations is achieved bytidgléhe node
labelede and then inserting the node label¢dHence, the edit distance 3s The optimal alignment,
however, is the tree depicted in (c) with a valuedofit is a well known fact that edit and alignment
distance are equivalent in terms of complexity for sequenseeg.g, Gusfield [Gus97]. However,
for trees this is not true which we will show in the followingaions. In Section 4.1 and Section 4.2
we survey the results for the ordered and unordered treerabgt distance problem respectively.

4.1 Ordered tree alignment distance

In this section we consider the ordered tree alignment migtgproblem. Lef;, andT; be two rooted,
ordered and labeled trees. The ordered tree alignmenindistaroblem was introduced by Jiaay
al. in [JWZz95]. The algorithm presented there ugis$T: |1 |(1; + I2)?) time and space. Hence, for
small degree trees, the alignment can be computed moreeefficthan the edit distance. We present
this algorithm in detail in the next section. Recently, il\[®1], a new algorithm was proposed
designed fosimilar trees. Specifically, if there is an optimal alignmentigfandT; using at mosk
spaces the algorithm computes the alignment in g7} | + |T3|) log(|T1| + |Ta|) (11 + I2)*s?).
This algorithm works in a way similar to the fast algorithnes €omparing similar sequences, segj,
Section 3.3.4 in [SM97]. The main idea is to speedup the #dhgorof Jianget al. by only considering
subtrees of’; and7, whose sizes differ by at mo6i(s).

12



4.1.1 Jiang, Wang and Zhang’s algorithm

In this section we present the algorithm of Jiaateal. [JWZ95]. We only show how to compute the
alignment distance. The corresponding alignment canyelsitonstructed within the same complex-
ity bounds. Lety be a metric cost function on the labels. For simplicity, wé wfer to nodes instead
labels, that is, we will usév, w) for nodesv andw to mean(label(v), label(w)). Here,v or w may
be . We extend the definition af to include alignments of forests, that ég,F7, F>) denotes the cost
of an optimal alignment of forest; and F5.

Lemma 7 Letv € V(T1) andw € V(T3) with childrenvy, ..., v; andwy, . .., w; respectively. Then,
a(f,0)=0
a(T1(v),0) = a(F1(v),0) +v(v,\)
a0, To(w)) = a(f, Fa(w)) + 7\ w)

k=1
J
01(9, F2 (’U))) = Z 01(9, T2(wk))
k=1
Lemma 8 Letv € V(T1) andw € V(T3) with childrenvy, ..., v; andwy, . .., w; respectively. Then,

a(F1(v), Fa(w)) + (v, w)
a(T1(v), T (w)) = min § a(f, Th(w)) + ming<,<;{a(T1 (v), To(w;)) — (0, To(w,)}
o(T1(v), 0) + mini<y<i{e(T1 (vr), To(w)) — (T1(vr),0)}

Proof. Consider an optimal alignment of 77 (v) and7>(w). There are four cases: (1y,w) is a
label in A, (2) (v, ) and(k,w) are labels inA for somek € V(T1), (3) (A, w) and(v, h) are labels

in A for someh € V(Ty) or (4) (v, \) and (A, w) are inA. Case (4) need not be considered since
the two nodes can be deleted and replaced by the single(mode as the new root. The cost of the
resulting alignment is by the triangle inequality at leassmall.

Case 1: The root ofA is labeled by(v, w). Hence,
a(Ty(v), Ta(w)) = a(Fi(v), Fa(w)) + (v, w)
Case 2: The root ofA is labeled by(v, A). Hence,k € V(T;(wy)) for somel < r < i. It follows
" o(T1(v), Ty(w)) = o(T3(v).6) + min {a(T3(v,), Ty(w)) ~ a(Ti(v,).0))

Case 3: Symmetric to case. O
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Lemma9 Letv € V(T1) andw € V(T5) with childrenvy, ..., v; andwy, ..., w; respectively. For
anys, tsuchthatl <s <7andl <t < j,

((Fy (v1,05-1), Fa(wi, w—1)) + (T1(vs), Ta(wy))

(
a(F1(v1,vs-1), Fa(wi, we)) + a(T1(vs), 0)
(F1(v1,05), Fo(wi, we—1)) + a8, To(wy))
a(Fy (v1,vs), Fo(wy, wy)) = min YA wp) + 121328{04(1?1 (v1, V1), Fo (w1, wi—1))

+ a(F1(vg, vs), Fa(wg)) }
Y(vs, A) + fgégt{a(Fl(Uhvsfl)a Fy(wi,wk—1))

+ a(Fy(vs), Fa(wg, we))}

Q

Proof. Consider an optimal alignment of F} (vy,vs) and Fy (w1, wy). The root of the rightmost tree
in A is labeled eithefvs, w;), (vs, A) OF (A, wy).

Case 1: The label is(vs, w;). Then the rightmost tree of must be an optimal alignment @ (v)
andT(w;). Hence,

a(Fy(v1,vs), Fa(wi, wy)) = a(F1(v1, vs-1), Fa(wi, wi—1)) + a(T1(vs), Ta(we)).

Case 2: The label is(vs, A). ThenT:(v;) is a aligned with a subforedty (w;—41, w:), where0 <
k < t. The following subcases can occur:

2.1(k =0). T1(vs) is aligned withFy (w41, w:) = 0. Hence,
(X(Fl(?}l, US)7 FQ(U}l, wt)) == Oé(Fl(Ul, Us—l)a FQ(wla wt)) + a(Tl(US)7 9)

2.2(k=1). T\ (vs) is aligned wWithFs (w;_41, w) = To(w;). Similar to casd.
2.3(k > 2). The most general case. It is easy to see that:

a(Fi(vy,vs), Fo(wr,wy)) = v(vs, A) + 1Iélgl<1t{a(F1(U1aUsfl)>F2(w1,wk—l)))
+ a(Fy (vs), Fo(wg, wy)).

Case 3: The label is(\, w;). Symmetric to case. O

This recursion can be used to construct a bottom-up dynarogramming algorithm. Consider
a fixed pair of nodes andw b with childrenvy,...,v; andw,...,w; respectively. We need to
compute the valuea(Fy (vp,vg), Fo(w)) forall 1 < h < k < 4, anda(F;(v), Fa(wp, wy)) for all
1 < h <k <j. That, is we need to compute the optimal aligmen#pfv) with each subforest of
F»>(w) and, on the other hand, compute the optimal alignme#,6fy) with each subforest af (v).
For anys and¢, 1 < s <iandl < ¢ < j, define the set:

Asy = {a(Fi(vs,vp), Fa(w,wg)) | s <p <i,t <q<j}

To compute the alignments described above we need to computand A, ; forall 1 < s < i and
1 <t < j. Assuming that values for smaller subproblems are knowsriot hard to show thad, ;
can be computed, using Lemma9, intimé(i —s) - (j—t)- (i—s+j—t)) = O(ij(i+j)). Hence,
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the time to compute both of, ; andA;;, 1 < s <iandl <t < j, is bounded by)(ij(: +7)?). 1t
follows that the total time needed for all nodeandw is bounded by:

ST Y O(deg(v) deg(w)(deg(v) + deg(w))?)

veV(Ty) weV (Tz)

< Y Y O(deg(v) deg(w)(deg(Th) + deg(T2))*)

veV (Ty) weV (T2)

<O((L + [2)2 Z Z deg(v) deg(w))

veV(Th) weV (T2)
< O(|Th||T2|(I1 + I2)?)

In summary, we have shown the following theorem.

Theorem 3 ([JWZ95]) For ordered ordered tree®; andTs, the tree alignment distance problem can
be solved irO(|Ty||T:|(I; + I3)?) time and space.

4.2 Unordered tree alignment distance

The algorithm presented above can be modified to handle thelered version of the problem in a
straightforward way [JWZ95]. If the trees have bounded degtthe algorithm still runs i@ (|77 |T3|)
time. This should be seen in contrast to the edit distancbl@mo which is MAX SNP-hard even if
the trees have bounded degree. If one tree has arbitrarg@legordered alignment becomes NP-hard
[JWZ95]. The reduction is, as the edit distance problemmftbe Exact Cover by 3-Sets problem
[GJ79].

5 Tree Inclusion

In this section we survey the tree inclusion problem. Teand T, be rooted, labeled trees. We say
thatT; is includedin T5 if there is a sequence of delete operations performe@omhich makesrs
isomorphic toT;. Thetree inclusion problenis to decide ifT; can be included if,. Figure 6(a)
shows an example of an ordered inclusion. The tree inclysioblem is a special case of tree of the
editing distance problem: If insertions and relabelingat o not change the label, all have doand

all other operations have coktthen7; can be included iff; if and only if (73, T») = 0. According

to [Che98] the tree inclusion problem was initially intraga by Knuth [Knu69][exercise 2.3.2-22].
The rest of the section is organized as follows. In Sectidnviie give some preliminaries and in
Section 5.2 and 5.3 we survey the known results on orderediaoidiered tree inclusion respectively.

5.1 Orderings and embeddings

Let T be an ordered, rooted tree with raotind childrenvy, . .., v;. Thepostordertraversal ofl'(v)

is obtained by visitindl’(v;), 1 < k < 7 in order, recursively, and then visiting the The postorder
number post(v), of a nodev € V(T') is the number of nodes preceedingn the postorder traversal
of T. We define an ordering of the nodes®Bfgiven byv < v’ iff post(v) < post(v'). Also,v < v

iff v < o' orv = v'. Furthermore, we extend this ordering with two special sodeand T such that
for all nodesv € V(T'), L < v < T. Theleft relatives Ir(v), of a nodev € V (T') is the set of nodes
that are to the left of and similarly theright relatives rr(v), are the set of nodes that are to the right
of v.
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(@)

(b)

Figure 6: (a) The tree on the left can be included in the trethemight by deleting the nodes labeled
d, a andc. (b) The embedding corresponding to (a).

Let T} andT; be rooted labeled trees. We defineadered embeddingf, T3, T>) as an injective
function f : V(T1) — V(T») such that for all nodes, u € V (T1),

e label(v) = label(f(v)). (label preservation condition)
e v is an ancestor aof iff f(v) is an ancestor of (u). (ancestor condition)
e visto the left ofu iff f(v) is to the left of f(u). (sibling condition)

Hence, embeddings are special cases of mappings (seerSa8djo Anunordered embeddings
defined as above, but without the sibling condition. An endliegl (f, 71, 75) is root preservingif
f(root(T1)) = root(T%). Figure 6(b) shows an example of a root preserving embedding

5.2 Ordered tree inclusion

Let 77 and T, be rooted, ordered and labeled trees. The ordered treesianlyproblem has been
the attention of much research. Kilpelainen and MannilMf6] (see also [Kil92]) presented the
first polynomial time algorithm usin@ (|7} ||7»|) time and space. Most the later improvements are
refinements of this algorithm. We present this algorithm étad in the next section. In [Kil92]
a more space efficient version of the above was given uSifi@; |D2) space. In [Ric97a] Richter
gave an algorithm usin@(|Xn,||T2| + mn, 1, D2) time, whereXr, is the alphabet of the labels
of Ty andmr, 1, is the setmatches defined as the number of paifs,w) € T x T, such that
label(v) = label(w). Hence, if the number of matches is small the time compleityis algorithm
improves the(|T7 || 1) algorithm. The space complexity of the algorithm($|X1, || 12| + ma, 1, ).

In [Che98] a more complex algorithm was presented ushig, |75|) time andO(L; min{ Dy, L2 })
space. In [AS93] an efficient average case algorithm wasgive
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5.2.1 Kilpeldinen and Mannila’s algorithm

In this section we present the algorithm of Kilpelainen avidnnila [KM95] for the ordered tree
inclusion problem. Lefl} and T be ordered labeled trees. Defid&Ty,7%) as the set of root-
preserving embeddings @ into 7;. We defineo(v, w), wherev € V(T) andw € V(T3):

p(v,w) = min{{w’ € rr(w) [ 3f € R(T1(v), To(w'))} U{T}}

Hence,p(v, w) is the closest right relative af which has a root-preserving embeddinglgfv).
Furthermore, if no such embedding exigts, w) is T. It is easy to see that, by definitiofi; can
be included inT5; if and only if p(v, L) # T. The following lemma shows how to search for root
preserving embeddings.

Lemma 10 Letv be a node in; with childrenwvy,...,v;. For a nodew in T5, define a sequence
p1,-..,pi by settingp; = p(v1, max< Ir(w)) andpy, = p(vk, pr—1), for 2 < k < i. There is a root
preserving embedding of T (v) in T5(v) if and only iflabel(v) = label(w) andp; € T>(w), for all
1<k <.

Proof. If there is a root preserving embedding betw&&fw) andT»(w) it is straightforward to check
that there is a sequengg, 1 < i < k such that the conditions are satisfied. Conversely, asshate t
pr € To(w) forall 1 < k < i andlabel(v) = label(w). We construct a root-preserving embeddjhg
of T (v) into T5(w) as follows. Letf(v) = w. By definition of p there must be a root preserving em-
beddingf*, 1 < k < i, of Ty (vg) in To(pr). Foranodes in Ty (vy), 1 < k < i, we setf (u) = f*(u).
Sincepy, € rr(px—1), 2 < k < i, andp; € To(w) for all k, 1 < k < 4, it follows that f is indeed a
root-preserving embedding. O

Using dynamic programming it is now straightforward to cartgyp(v, w) for all v € V(73) and
w € V(Ty). For a fixed node we traverseT; in reverse postorder. At each nodec V(73) we
check if there is a root preserving embeddingZefv) in Tx(w). If so we setp(v,q) = w, for all
q € lr(w) such thate < ¢, wherez is the next root-preserving embedding@f(v) in Ts(w).

For a pair of nodes € V(71) andw € V(T») we test for a root-preserving embedding us-
ing Lemma 10. Assuming that values for smaller subprobleas leen computed, the time used
is O(deg(v)). Hence, the contribution to the total time for the nadés >_ ¢ (1, ) O(deg(v)) =
O(|T1]). It follows that the time complexity of the algorithm is baled byO(|T}||T%]). Clearly, only
O(|T1]|T%|) space is needed to stggeHence, we have the following theorem,

Theorem 4 ([KM95]) For any pair of rooted, labeled and ordered tréEsand 15, the tree inclusion
problem can be solved i@ (|7 ||T»|) time and space.

5.3 Unordered tree inclusion

In [KM95] it is shown that the unordered tree inclusion peahlis NP-complete. The reduction used
is from the Satisfiability problem [GJ79]. Independentlyatdusek and Thomas [MT92] gave another
proof of NP-completeness.

An algorithm for the unordered tree inclusion problem issareted using) (|71 |1,22"1|T»|) time.
Hence, ifI; is constant the algorithm runs @(|71||1%|) time and if; = log |7T%| the algorithm runs
in O(|T1|log | T T2[%).
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6 Conclusion and Open Problems

We have surveyed the tree edit distance, alignment dis@mgénclusion problems. Furthermore, we
have presented, in our opinion, the central algorithms &heof the problems. There are several open
problems, which may be the topic of further research. We lemigcthis paper with a short list of some
of the most interesting.

e The currently best worst case upper bound on the orderedetti#éedistance problem is the
algorithm of [KIe98] usingO(|T1|?|T»|log |T3|). It is a major open problem to improve this
bound or to give a non-trivial lower bound.

e The unordered tree edit distance problem has been showrMéBeSNP-hard. However, there
may still exist low-factor approximation algorithms foretiproblem.

e Few results are available on the ordered tree alignmerdraist problem. Improving the upper
bound is an interesting open problem.
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ac

Tree edit distance

variant type time space reference
general | O O(T\[[T2[D3D3) O(T\[|T:[DID3) [Tai79]
general O O(‘T1HT2’ min(Ll,Dl)min(Lg,Dg)) O(’TlHTQD [2889]
general O O(|T1 || T2 | log | T»]) O(|T1||T»]) [Kle98]
general ¢} O(ITh||Tz| + L3|Ty| + L3 Ly) O((|Ty| + L?) min(Lg, Do) + |T»]) [Che01]
general U MAX SNP-hard [Z2J94]
constrained @) O(|T1||T3]) O(|T1||T3]) [Zha95]
constrained O O(|T1||T2|11[2) O(|T1||D2[2) [R|C97b]
constrained U O(|T1||T2|(Il —{—Ig)log(ll —|—12)) O(|T1||T2|) [Zha96a]
less-constrained O O(N ||| B (I + I)) O(|N|| | B3 (I + I)) [LSTO01]
less-constrained U MAX SNP-hard [LSTO1]
unit-cost O O(u? min(|T |, |T2|) min(L1, L)) O(|T1||T»]) [SZ90]
1-degree O O(|T1||T3]) O(|11[|T>|) [Sel77]
Tree alignment distance
general o O(IT||T2| (11 + I)?) \ O(N||Tx|(I + I2)?) [JWZ95]
general U MAX SNP-hard [JWZ95]
similar O O((’Tﬂ + ’Tz’) log(]Tl\ + ‘TQD(_[:[ + 12)482) ‘ O((’Tl‘ + ‘TQD 10g(‘T1‘ + ’TQ’)(Il + 12)482) [@aALO1]
Tree inclusion
general O O(|T1||T2|) O(|T1| miH(DQLQ)) [KI|92]
general O O(|Zn || T2| + mpy, 1, D2) O(|Zn || Tz] + mny 1) [Ric97a]
general O O(L1|T3)) O(L1 min(D2L3)) [Che9s]
general U NP-hard [KM95, MT92]

Table 1: Results for the tree edit distance, alignment déggtaand inclusion problem listed according to variant, L; andI; denotes the depth, the
number of leaves and the maximum degree respectively,af= 1, 2. The type is either O for ordered or U for unordered. The valug the unit
cost edit distance betwedn and7: and the values is the number of spaces in the optimal alignmenfpfand7;. The valueX, is set of labels
used inT} andmq, 1, is the number of pairs of nodes iy and7; which have the same label.



