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Tree Edit Distance, Alignment Distance and Inclusion

Philip Bille∗

March 28, 2003

Abstract

We survey the problem of comparing labeled trees based on simple local operations of deleting,
inserting and relabeling nodes. These operations lead to the tree edit distance, alignment distance
and inclusion problem. For each problem we review the results available and present, in detail,
one or more of the central algorithms for solving the problem.

1 Introduction

Trees are among the most common and well-studied combinatorial structures in computer science.
In particular, the problem of comparing trees occurs in several diverse areas such as computational
biology, structured text databases, image analysis, automatic theorem proving and compiler optimiza-
tion [Tai79, ZS89, KM95, KTSK00, HO82, RR92, ZSW94]. For example, in computational biology,
computing the similarity between trees under various distance measures is used in the comparison of
RNA secondary structures [ZS89, JWZ95].

Let T be a rooted tree. We callT a labeled treeif each node is a assigned a symbol from a fixed
finite alphabetΣ. We callT anordered treeif a left-to-right order among siblings inT is given. In this
paper we consider matching problems based on simple primitive operations applied to labeled trees.
If T is an ordered tree these operations are defined as follows:

relabel Change the label of a nodev in T .

delete Delete a non-root nodev in T with parentv′, making the children ofv become the children of
v′. The children are inserted in the place ofv as a subsequence in the left-to-right order of the
children ofv′.

insert The complement of delete. Insert a nodev as a child of av′ in T makingv the parent of a
consecutive subsequence of the children ofv′.

Figure 1 illustrates the operations. For unordered trees the operations can be defined similarly. In this
case, the insert and delete operations works on asubsetinstead of a subsequence. We define three
problems based on the edit operations. LetT1 andT2 be labeled trees (ordered or unordered).

Tree edit distance Assume that we are given acost functiondefined on each edit operation. Anedit
script S betweenT1 andT2 is a sequence of edit operations turningT1 into T2. The cost ofS is the
sum of the costs of the operations inS. An optimal edit scriptbetweenT1 andT2 is an edit script
betweenT1 andT2 of minimum cost and this cost is thetree edit distance. The tree edit distance
problemis to compute the edit distance and the corresponding edit script.

∗The IT University of Copenhagen, Glentevej 67, DK-2400 Copenhagen NV, Denmark. Email:beetle@it-c.dk.
This work is part of the DSSCV project supported by the IST Programme of the European Union (IST-2001-35443).
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Figure 1: (a) A relabeling of the node labell1 to l2. (b) Deleting the node labeledl2. (c) Inserting a
node labeledl2 as the child of the node labeledl1.

Tree alignment distance Assume that we are given a cost function defined on pair of labels. An
alignmentA of T1 andT2 is obtained as follows. First we insert nodes labeled withspacesinto T1 and
T2 so that they become isomorphic when labels are ignored. The resulting trees are thenoverlayedon
top of each other giving the alignmentA, which is a tree where each node is labeled by a pair of labels.
Thecostof A is the sum of costs of all pairs of opposing labels inA. An optimal alignmentof T1 and
T2 is an alignment of minimum cost and this cost is called thealignment distanceof T1 andT2. The
alignment distance problemis to compute the alignment distance and the corresponding alignment.

Tree inclusion T1 is includedin T2 if and only if T1 can be obtained by deleting nodes fromT2. The
tree inclusion problemis to determine ifT1 can be included inT2.

In this paper we survey each of these problems and discuss theresults obtained for them. For
reference, Table 1 on page 22 summarizes most of the available results. All of these and a few others
are covered in the text. The tree edit distance is problem is the most general of three. The alignment
distance corresponds to a kind of restricted edit distance,while tree inclusion is a special case of both
the edit and alignment distance problem. Apart from these simple relationsships, interesting variations
on the edit distance problem has been studied leading to a more complex picture.
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Both the ordered and unordered version of the problems are reviewed. For the unordered case, it
turns out that all of the problems in general are NP-hard. Indeed, the tree edit distance and alignment
distance problems are even MAX SNP-hard [ALM+92]. However, under various interesting restric-
tions, or for special cases, polynomial time algorithms areavailable. For instance, if we impose a
structure preservingrestriction on the unordered tree edit distance problem, such that disjoint subtrees
are mapped to disjoint subtrees, it can be solved in polynomial time. Also, unordered alignment for
constant degree trees can be solved very efficiently.

For the ordered version of the problems polynomial time algorithms exists. These are all based on
the classic technique ofdynamic programming(see,e.g., [CLRS01, Chapter 15]) and most of them are
simple combinatorial algorithms. Recently, however, moreadvanced techniques such as fast matrix
multiplication have been applied to the tree edit distance problem [Che01].

The survey covers the problems in the following way. For eachproblem and variations of it we
review results for both the ordered and unordered version. This will in most cases include a formal
definition of the problem, a comparison of the available results and a description of the techniques used
to obtain the results. More importantly, we will also pick one or more of the central algorithms for
each of the problems and present it in almost full detail. Specifically, we will describe the algorithm,
prove that it is correct and analyse its time complexity. Forbrevity, we will omit the proofs of a few
lemmas and skip over some less important details. Common forthe algorithms presented in detail is
that, in most cases, they are the basis for more advanced algorithms. Typically, most of the algorithms
for one of the above problems are refinements of the same dynamic program.

The main technical contribution of this survey is to presentthe problems and algorithms in a
common framework. Hopefully, this will enable the reader togain a better overview and deeper
understanding of the problems and how they relate to each other. In the litterature, there are some
discrepancies in the presentations of the problems. For instance, the ordered edit distance problem
was considered by Klein [Kle98] who used edit operations on edges. He presented an algorithm using
a reduction to a problem defined on balanced parenthesis strings. In contrast, Zhang and Shasha
[ZS89] gave an algorithm based on the postorder numbering ontrees. In fact, these algorithms share
many features, which become apparent if considered in the right setting. In this paper we present these
algorithms a new framework bridging the gap between the two descriptions.

Another problem in the litterature is the lack of an agreement on a definition of the edit distance
problem. The definition given here is by far the most studied and in our opinion the most natu-
ral. However, several alternatives ending in very different distance measures have been considered
[Lu79, TT88, Sel77, Lu84]. In this paper we review these other variants and compare the them to
our definition. We should note the edit distance problem defined here is sometimes refered to as the
tree-to-tree correction problem.

This survey adopts atheoreticalpoint of view. However, the problems above are not only in-
teresting mathematical problems, but they also occur in many practical situation and it is impor-
tant to develop algorithms that perform well onreal-life problems. For pratical issues see,e.g.,
[WZJS94, TSKK98, SWSZ02].

We restrict our attention tosequentialalgorithms. However, there has been some research in
parallel algorithms for the edit distance problem,e.g., [ZS89, Zha96b, SZ90].

This summarizes the contents of this paper. Due to the fundamental nature of comparing trees
and its many applications, several other ways to compare trees have been devised. In this paper, we
have chosen to limit ourselves to a handfull of problems which we describe in detail. Other problems
include tree pattern matching[Kos89, DGM90] and [HO82, RR92, ZSW94],maximum agreement
subtree[KA94, FT94], largest common subtree[AH94, KMY95] and smallest common supertree
[NRT00, GN98].
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1.1 Outline

In Section 2 we give some preliminaries. In Sections 3, 4 and 5we survey the tree edit distance,
alignment distance and inclusion problems respectively. We conclude in Section 6 with some open
problems.

2 Preliminaries and notation

In this section we define notations and definitions we will usethroughout the paper. For a graphG we
denote the set of nodes and edges byV (G) andE(G) respectively. LetT be a rooted tree. The root
of T is denoted byroot(T ). Thesizeof T , denoted by|T |, is |V (T )|. Thedepthof a nodev ∈ V (T ),
depth(v), is the number of edges on the path fromv to root(T ). The in-degreeof a nodev, deg(v)
is the number of children ofv. We extend these definitions such thatdepth(T ) anddeg(T ) denotes
the maximum depth and degree respectively of any node inT . A node with no children is a leaf and
otherwise an internal node. The number of leaves ofT is denoted byleaves(T ). We denote the parent
of nodev by parent(v). Two nodes are siblings if they have the same parent. For two treesT1 andT2,
we will frequently refer toleaves(Ti), depth(Ti) anddeg(Ti) by Li, Di andIi, i = 1, 2.

Let θ denote the empty tree and letT (v) denote the subtree ofT rooted at a nodev ∈ V (T ). If
w ∈ V (T (v)) thenv is an ancestor ofw, and if w ∈ V (T (v))\{v} thenv is a proper ancestor of
w. If v is a (proper) ancestor ofw thenw is a (proper) descendant ofv. A tree T is ordered if a
left-to-right order among the siblings is given. A forestF is ordered if a left-to-right order among the
trees is given and each tree is ordered. LetT be an ordered tree and letv inV (T ). If v has children
v1, . . . , vi defineF (vs, vt), where1 ≤ s ≤ t ≤ i, as the forestT (vs), . . . , T (vr). For convenience,
we setF (v) = F (v1, vi).

We assume throughout the paper that labels assigned to nodesare chosen from a finite alphabetΣ.
Let λ 6∈ Σ denote a specialblank symbol and defineΣλ = Σ ∪ λ. We often define acost function,
γ : (Σλ × Σλ)\(λ, λ) → R, on pairs of labels. We will always assume thatγ is a distance metric.
That is, for anyl1,l2,l3 ∈ Σλ the following conditions are satisfied:

1. γ(l1, l2) ≥ 0, γ(l1, l1) = 0.

2. γ(l1, l2) = γ(l2, l1).

3. γ(l1, l3) ≤ γ(l1, l2) + γ(l2, l3).

3 Tree Edit Distance

In this section we survey the tree edit distance problem. Assume that we are given acost function
defined on each edit operation. Anedit scriptS between two treesT1 andT2 is a sequence of edit
operations turningT1 into T2. The cost ofS is the sum of the costs of the operations inS. An optimal
edit scriptbetweenT1 andT2 is an edit script betweenT1 andT2 of minimum cost. This cost is called
the tree edit distance, denoted byδ(T1, T2). An example of an edit script is shown in Figure 2.

The rest of the section is organized as follows. First, in Section 3.1, we present some preliminaries
and formally define the problem. In Section 3.2 we survey the results obtained for the ordered edit
distance problem and present two of the currently best algorithms for the problem. The unordered
version of the problem is reviewed in Section 3.3. In Section3.4 we review results on the edit dis-
tance problem when variousstructure-preservingconstraints are imposed. Finally, in Section 3.5 we
consider some other variants of the problem.
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Figure 2: Transforming (a) into (c) via editing operations.(a) A tree. (b) The tree after deleting the
node labeledc. (c) The tree after inserting the node labeledc and relabelingf to a ande to d.

3.1 Edit operations and edit mappings

Let T1 andT2 be labeled trees. Following [Tai79] we represent each edit operation by(l1 → l2),
where(l1, l2) ∈ (Σλ × Σλ)\(λ, λ). The operation is a relabeling ifl1 6= λ andl2 6= λ, a deletion if
l2 = λ and an insertion ifl1 = λ. We extend the notation such that(v → w) for nodesv andw denotes
(label(v) → label(w)). Here, as with the labels,v or w may beλ. Given a metric cost functionγ
defined on pairs of labels we define the cost of an edit operation by settingγ(l1 → l2) = γ(l1, l2). The
cost of a sequenceS = s1, . . . , sk of operations is given byγ(S) =

∑k
i=1 γ(si). The edit distance

betweenT1 andT2 is formally defined as:

δ(T1, T2) = min{γ(S) | S is a sequence of edit operations transformingT1 into T2}.

Sinceγ is a distance metricδ becomes a distance metric too.
An edit distance mapping(or just amapping) betweenT1 andT2 is a representation of the edit

operations, which is used in many of the algorithms for the tree edit distance problem. Formally, define
the triple(M,T1, T2) to be anordered edit distance mappingfrom T1 to T2, if M ⊆ V (T1) × V (T2)
and for any pair(v1, w1), (v2, w2) ∈ M :

1. v1 = v2 iff w1 = w2. (one-to-one condition)

2. v1 is an ancestor ofv2 iff w1 is an ancestor ofw2. (ancestor condition)

3. v1 is to the left ofv2 iff w1 is to the left ofw2. (sibling condition)

Figure 3 illustrates a mapping that corresponds to the edit script in Figure 2. We define theunordered
edit distance mappingbetween two unordered trees as the same, but without the sibling condition. We
will useM instead of(M,T1, T2) when there is no confusion. Let(M,T1, T2) be a mapping. We say
that a nodev in T1 or T2 is touched by a linein M if v occurs in some pair inM . Let N1 andN2 be
the set of nodes inT1 andT2 respectively not touched by any line inM . The cost ofM is given by:

γ(M) =
∑

(v,w)∈M

γ(v → w) +
∑

v∈N1

γ(v → λ) +
∑

w∈N2

γ(λ → w)

Mappings can be composed. LetT1, T2 andT3 be labeled trees. LetM1 andM2 be a mapping from
T1 to T2 andT2 to T3 respectively. Define

M1 ◦ M2 = {(v,w) | ∃u ∈ V (T2) such that(v, u) ∈ M1 and(u,w) ∈ M2}

5
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Figure 3: The mapping corresponding to the edit script in Figure 2.

With this definition it follows easily thatM1 ◦ M2 itself becomes a mapping. Sinceγ is a metric, it is
not hard to show that a minimum cost mapping is equivalent to the edit distance:

δ(T1, T2) = min{γ(M) | (M,T1, T2) is an edit distance mapping}.

Hence, to compute the edit distance we can compute the minimum cost mapping. We extend the
definition of edit distance to forests. That is, for two forests F1 andF2, δ(F1, F2) denotes the edit
distance betweenF1 andF2. The operations are defined as in the case of trees, however, roots of the
trees in the forest may now be deleted or inserted. The definition of a mapping is extended in the same
way.

3.2 General ordered edit distance

The ordered edit distance problem was introduced by Tai [Tai79] as a generalization of the well-
knownstring edit distance problem[WF74]. Tai presented an algorithm for the ordered version using
O(|T1||T2||L1|

2|L2|
2) time and space. Subsequently, this result has been improvedZhang and Shasha

[ZS89] usingO(|T1||T2|min(L1, |D1|)min(L2, |D2|)) time andO(|T1||T2|) space. This algorithm
was modified by Klein [Kle98] to get a better worst case time bound ofO(|T1|

2|T2| log |T2|) under the
same space bounds. We present the latter two algorithms in detail below. Recently, Chen [Che01] has
presented an algorithm usingO(|T1||T2|+L2

1|T2|+L2.5
1 L2) time andO((|T1|+L2

1)min(L2, |D2|)+
|T2|) space. Hence, for certain kinds of tree the algorithm improves the previous bounds. This algo-
rithm is more complex than all of the above and uses results onfast matrix multiplication.

3.2.1 A simple algorithm

We first present a simple recursion which will form the basis for the two dynamic programming algo-
rithms we present in the next two sections. We will only show how to compute the edit distance. The
corresponding edit script can be easily obtained within thesame time and space bounds. The algo-
rithm is due to Klein [Kle98]. However, we should note that the presentation given here is somewhat
different. We believe that our framework is more simple and provides a better connection to previous
work.

Let F be a forest andv be a node inF . We denote byF − v the forest obtained by deletingv from
F . Furthermore, defineF − T (v) as the forest obtained by deletingv and all descendants ofv. The
following lemma provides a way to compute edit distances forthe general case of forests.
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Lemma 1 Let F1 andF2 be ordered forests andγ be a metric cost function defined on labels. Letv

andw be the rightmost (if any) roots of the trees inF1 andF2 respectively. We have,

δ(θ, θ) = 0

δ(F1, θ) = δ(F1 − v, θ) + γ(v → λ)

δ(θ, F2) = δ(θ, F2 − w) + γ(λ → w)

δ(F1, F2) = min











δ(F1 − v, F2) + γ(v → λ)

δ(F1, F2 − w) + γ(λ → w)

δ(F1(v), F2(w)) + δ(F1 − T1(v), F2 − T2(w)) + γ(v → w)

Proof. The first three equations are trivially true. To show the lastequation consider a minimum cost
mappingM betweenF1 andF2. There are three possibilities forv andw:

Case 1: v is not touched by a line. Then(v, λ) ∈ M and the first case of the last equation applies.

Case 2: w is not touched by a line. Then(λ,w) ∈ M and the second case of the last equation applies.

Case 3: v andw are both touched by lines. We show that this implies(v,w) ∈ M . Suppose(v, h)
and(k,w) are inM . If v is to the right ofk thenh must be to right ofw by the sibling condition.
If v is a proper ancestor ofk thenh must be a proper ancestor ofw by the ancestor condition.
Both of these cases are impossible sincev andw are the rightmost roots and hence(v,w) ∈ M .
By the definition of mappings the equation follows. �

Lemma 1 suggests a dynamic program. The value ofδ(F1, F2) depends on a constant number of
subproblems of smaller size. Hence, we can computeδ(F1, F2) by computingδ(S1, S2) for all pairs
of subproblemsS1 andS2 in order of increasing size. Each new subproblem can be computed in
constant time. Hence, the time complexity is bounded by the number of subproblems ofF1 times the
number of subproblems ofF2.

To count the number of subproblems, define for a rooted, ordered forestF the (i, j)-deleted sub-
forest, 0 ≤ i + j ≤ |F |, as the forest obtained fromF by first deleting the rightmost root repeatedly
j times and then, similarly, deleting the leftmost rooti times. We call the(0, j)-deleted and(i, 0)-
deleted subforests, for0 ≤ j ≤ |F |, theprefixesand thesuffixesof F respectively. The number of

(i, j)-deleted subforests ofF is
∑|F |

k=0 k = O(|F |2), since for eachi there are|F | − i choices forj.
It is not hard to show that all the pairs of subproblemsS1 andS2 that can be obtained by the

recursion of Lemma 1 are deleted subforests ofF1 andF2. Hence, by the above discussion the time
complexity is bounded byO(|F1|

2|F2|
2). In fact, fewer subproblems are needed, which we will show

in the next sections.

3.2.2 Zhang and Shasha’s algorithm

The following algorithm is due to Zhang and Shasha[ZS89]. Define thekeyrootsof a rooted, ordered
treeT as follows:

keyroots(T ) = {root(T )} ∪ {v ∈ T (V ) | v has a left sibling}

Thespecialsubforests ofT is the forestsF (v), wherev ∈ keyroots(T ). Therelevant subproblems of
T with respect to the keyrootsis the prefixes of all special subforestsF (v). In this section we refer to
these as just therelevant subproblems.
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Lemma 2 For each nodev ∈ V (T ), F (v) is a relevant subproblem.

It is easy to see that, in fact, the subproblems that can occurin the above recursion are either subforests
of the formF (v), wherev ∈ V (T ), or prefixes of a special subforest ofT . Hence, it follows by
Lemma 2 and the definition of a relevant subproblem, that to computeδ(F1, F2) it is sufficient to
computeδ(S1, S2) for all relevant subproblemsS1 andS2 of T1 andT2 respectively.

The relevant subproblems of a treeT can be counted as follows. For a nodev ∈ V (T ) define the
collapsed depthof v, cdepth(v), as the number of keyroot ancestors ofv. Also, definecdepth(T ) as
the maximum collapsed depth of all nodesv ∈ V (T ).

Lemma 3 For an ordered treeT the number of relevant subproblems, with respect to the keyroots is
bounded byO(|T |cdepth(T )).

Proof. The relevant subproblems can be counted using the followingexpression:
∑

v∈keyroots(T )

|F (v)| <
∑

v∈keyroots(T )

|T (v)| =
∑

v∈V (T )

cdepth(v) ≤
∑

v∈V (T )

cdepth(T ) = |T |cdepth(T )

Since the number prefixes of a subforestF (v) is |F (v)| the first sum counts the number of relevant
subproblems ofF (v). To prove the first equality note that for each nodev the number of special sub-
forests containingv is the collapsed depth ofv. Hence,v contributes the same amount to the left and
right side. The other equalities/inequalities follow immediately. �

Lemma 4 For a treeT , cdepth(T ) ≤ min{depth(T ), leaves(T )}

Hence, we can solve the problem using dynamic programming bycomputingδ(S1, S2) for all relevant
subproblemsS1 andS2 in time (and space)O(|T1||T2|min{D1, L1)}min{D2, L2}). Furthermore,
by carefully discarding distances between prefixes of special forests the space used in the computation
can be reduced toO(|T1||T2|). Hence,

Theorem 1 ([ZS89]) For ordered treesT1 and T2 the edit distance problem can be solved in time
O(|T1||T2|min{|D1|, L1}min{|D2|, L2}) and spaceO(|T1||T2|).

3.2.3 Klein’s algorithm

In the worst case, that is for trees with linear depth and a linear number of leaves, Zhang and Shasha’s
algorithm of the previous section still requiresO(|T1|

2|T2|
2) time as the simple algorithm. In [Kle98]

Klein obtained a better worst case time bound ofO(|T1|
2|T2| log |T2|) while maintaining the same

space bound ofO(|T1||T2|). It should be noted that the paper only statesO(|T1|
2|T2| log |T2|) as the

space bound. However, it is straightforward to improve thisto O(|T1||T2|) [Kle02].
The algorithm is based on an extension of the recursion in Lemma 1. The main idea is to consider

all of theO(|T1|
2) deleted subforests ofT1 but onlyO(|T2| log |T2|) deleted subforests ofT2. In total

the worst case number of subproblems is thus reduced to the desired bound above.
A key concept in the algorithm is the decomposition of a rooted treeT into disjoint paths called

heavy paths. This technique was introduced by Harel and Tarjan [HT84]. We define thesizea node
v ∈ V (T ) as|T (v)|. We classify each node ofT as eitherheavyor light as follows. The root is light.
For each internal nodev we pick a childu of v of maximum size among the children ofv and classify
u as heavy. The remaining children are light. We call an edge toa light child alight edge, and an edge
to a heavy child aheavy edge. Thelight depthof a nodev, ldepth(v), is the number of light edges on
the path fromv to the root.

8



Lemma 5 ([HT84]) For any treeT and anyv ∈ V (T ), ldepth(v) ≤ log |T | + O(1).

By removing the light edgesT is partitioned into heavy paths.
We define therelevant subproblems ofT with respect to the light nodesbelow. We will refer to

these asrelevant subproblemsin this section. First fix a heavy path decomposition ofT . For a nodev
in T we recursively define the relevant subproblems ofF (v) as follows:F (v) is relevant. Ifv is not a
leaf, letu be the heavy node ofv and letl andr be the number of nodes to the left and to the right of
u in F (v) respectively. Then, the(i, 0)-deleted subforests ofF (v), 0 ≤ i ≤ l, and the(l, j)-deleted
subforests ofF (v), 0 ≤ j ≤ r are relevant subproblems. Recursively, all relevant subproblems of
F (u) are relevant.

The relevant subproblems ofT with respect to the light nodes is the union of all relevant subprob-
lems ofF (v) wherev ∈ V (T ) is a light node.

Lemma 6 For an ordered treeT the number of relevant subproblems with respect to the lightnodes
is bounded byO(|T | ldepth(T )).

Proof. Follows by the same calculation as in the proof of Lemma 3. �

Also note that Lemma 2 still holds with this new definition of relevant subproblems. LetS be a
relevant subproblem ofT and letvl andvr denote the leftmost and rightmost root ofS respectively.
The difference nodeof S is eithervr if S − vr is relevant orvl if S − vl is relevant. The recursion
of Lemma 1 compares the rightmost roots. Clearly, we can alsochoose to compare the leftmost
roots resulting in a new recursion, which we will refer to as the dual of Lemma 1. Depending on
which recursion we use, different subproblems occur. We nowgive a modified dynamic program for
calculating the tree edit distance. LetS1 be a deleted tree ofT1 and letS2 be a relevant subproblem
of T2. Let d be the difference node ofS2. We computeδ(S1, S2) as follows. There are two cases to
consider:

1. If d is the rightmost root ofS2 compare the rightmost roots ofS1 andS2 using Lemma 1.

2. If d is the leftmost root ofS2 compare the leftmost roots ofS1 andS2 using the dual of Lemma 1.

It is easy to show that in both cases the resulting smaller subproblems ofS1 will all be deleted
subforests ofT1 and the smaller subproblems ofS2 will all be relevant subproblems ofT2. Using
a similar dynamic programming technique as in the algorithmof Zhang and Shasha we obtain the
following:

Theorem 2 ([Kle98]) For ordered treesT1 and T2 the edit distance problem can be solved in time
O(|T1|

2|T2| log |T2|) and spaceO(|T1||T2|).

Klein [Kle98] also showed that his algorithm can be extendedwithin the same time and space
bounds to theunrooted ordered edit distance problembetweenT1 andT2, defined as the minimum
edit distance betweenT1 andT2 over all possible roots ofT1 andT2.

3.3 General unordered edit distance

In the following section we survey the unordered edit distance problem. This problem has been shown
to be NP-complete [ZSS92, Zha89, ZSS91] even for binary trees with a label alphabet of size2. The
reduction is from the Exact Cover by3-set problem [GJ79]. Subsequently, the problem was shown to
be MAX-SNP hard [ZJ94]. Hence, unless P=NP there is no PTAS for the problem [ALM+92]. It was
shown in [ZSS92] that for special cases of the problem polynomial time algorithms exists. IfT2 has
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Figure 4: (a) A mapping which is constrained and less-constrained. (b) A mapping which is less-
constrained but not constrained. (c) A mapping which is neither constrained nor less-constrained.

one leaf,i.e., T2 is a sequence, the problem can be solved inO(|T1||T2|) time. More generally, there
is an algorithm running in timeO(|T1||T2| + L2!3

L2(L3
2 + D2

1)|T1|). Hence, if the number of leaves
in T2 is logarithmic the problem can be solved in polynomial time.

3.4 Constrained edit distance

The fact that the general edit distance problem is difficult to solve has led to the study of restricted ver-
sions of the problem. In [Zha95, Zha96a] Zhang introduced the constrained edit distance, denoted by
δc, which is defined as an edit distance under the restriction that disjoint subtrees should be mapped to
disjoint subtrees. Formally,δc(T1, T2) is defined as a minimum cost mapping(Mc, T1, T2) satisfying
the additional constraint, that for all(v1, w1), (v2, w2), (v3, w3) ∈ Mc:

• nca(v1, v2) is a proper ancestor ofv3 iff nca(w1, w2) is a proper ancestor ofw3.

According to [LST01], Richter [Ric97b] independently introduced thestructure respecting edit
distanceδs. Similar to the constrained edit distance,δs(T1, T2) is defined as a minimum cost mapping
(Ms, T1, T2) satisfying the additional constraint, that for all(v1, w1), (v2, w2), (v3, w3) ∈ Ms such
that none ofv1, v2 andv3 is an ancestor of the others,

• nca(v1, v2) = nca(v1, v3) iff nca(w1, w2) = nca(w1, w3).

It is straightforward to show that both of these notions of edit distance are equivalent. Henceforth,
we will refer to them simply as the constrained edit distance. As an example consider the map-
pings of Figure 4. (a) is a constrained mapping sincenca(v1, v2) 6= nca(v1, v3) andnca(w1, w2) 6=

10



nca(w1, w3). (b) is not constrained sincenca(v1, v2) = v4 6= nca(v1, v3) = v5, while nca(w1, w2) =
w4 = nca(w1, w3). (c) is not constrained sincenca(v1, v3) = v5 6= nca(v2, v3), while nca(w1, w3) =
v5 6= nca(w2, w3) = w4.

In [Zha95, Zha96a] Zhang presents algorithms for the computing the minimum cost constrained
mappings. For the ordered case he gives an algorithm usingO(|T1||T2|) time and for the unordered
case he obtains a running time ofO(|T1||T2|(I1 + I2) log(I1 + I2)). Both use spaceO(|T1||T2|). The
idea in both algorithms is similar. Due to the restriction onthe mappings fewer subproblem need to
be considered and a faster dynamic program is obtained. In the ordered case the key observation is
a reduction to the string edit distance problem. For the unordered case the corresponding reduction
is to a maximum matching problem. Using an efficient algorithm for computing a minimum cost
maximum flow Zhang obtains the time complexity above. Richter presented an algorithm for the
ordered constrained edit distance problem, which usesO(|T1||T2|I1I2) time andO(|T1|D2I2) space.
Hence, for small degree, low depth trees this algorithm gives a space improvement over the algorithm
of Zhang.

Recently, Luet al. [LST01] introduced theless-constrained edit distance, δl, which relaxes the
constrained mapping. The requirement here is that for all(v1, w1), (v2, w2), (v3, w3) ∈ Ml such that
none ofv1, v2 andv3 is an ancestor of the others,

• depth(nca(v1, v2)) ≥ depth(nca(v1, v3)) and alsonca(v1, v3) = nca(v2, v3) if and only if
depth(nca(w1, w2)) ≥ depth(nca(w1, w3)) andnca(w1, w3) = nca(w2, w3).

For example, consider the mappings in Figure 4. (a) is less-constrained because it is constrained.
(b) is not a constrained mapping as discussed above, howeverthe mapping is less-constrained since
depth(nca(v1, v2)) > depth(nca(v1, v3)), nca(v1, v3) = nca(v2, v3), nca(w1, w2) = nca(w1, w3)
andnca(w1, w3) = nca(w2, w3). (c) is not a less-constrained mapping sincedepth(nca(v1, v2)) >

depth(nca(v1, v3)) andnca(v1, v3) = nca(v2, v3), while nca(w1, w3) 6= nca(w2, w3)
In the paper [LST01] an algorithm for the ordered version of the less-constrained edit distance

problem usingO(|T1||T2|I
3
1I3

2 (I1+I2)) time and space is presented. For the unordered version, unlike
the constrained edit distance problem, it is shown that the problem is NP-complete. The reduction used
is similar to the one for the unordered edit distance problem. It is also reported that the problem is
MAX SNP-hard. Furthermore, it is shown that there is no absolute approximation algorithm1 for the
unordered less-constrained edit distance problem unless P=NP.

3.5 Other variants

In this section we survey results for other variants of edit distance. LetT1 andT2 be rooted trees.
The unit cost edit distancebetweenT1 andT2 is defined as the number of edit operations needed
to turn T1 into T2. In [SZ90] the ordered version of this problem is consideredand a fast algo-
rithm is presented. Ifu is the unit cost edit distance betweenT1 and T2 the algorithm runs in
O(u2 min{|T1|, |T2|}min{L1, L2}) time. The algorithm uses techniques from Ukkonen [Ukk85] and
Landau and Vishkin [LV89].

In [Sel77] Selkow considered an edit distance problem whereinsertions and deletions are restricted
to leaves of the trees. This edit distance is sometimes referred to as the1-degree edit distance. He
gave a simple algorithm usingO(|T1||T2|) time and space. Another edit distance measure where edit
operations work on subtrees instead of nodes was given by Lu [Lu79]. A similar edit distance was
given in [TT88, Tan95]. A short description of Lu’s algorithm can be found in [SZ97].

1An approximation algorithmA is absoluteif there exists a constantc > 0 such that for every instanceI , |A(I) −
OPT (I)| ≤ c, whereA(I) andOPT (I) are the approximate and optimal solutions ofI respectively [Mot92].
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4 Tree Alignment Distance

In this section we consider the alignment distance problem.Let T1 andT2 be rooted, labeled trees
and letγ be a metric cost function on pairs of labels as defined in Section 2. An alignmentA of T1

andT2 is obtained by first inserting nodes labeled withλ (calledspaces) into T1 andT2 so that they
become isomorphic when labels are ignored, and thenoverlayingthe first augmented tree on the other
one. Thecostof a pair of opposing labels inA is given byγ. The cost ofA is the sum of costs of all
opposing labels inA. An optimal alignmentof T1 andT2, is an alignment ofT1 andT2 of minimum
cost. We denote this cost byα(T1, T2). Figure 5 shows an example (from [JWZ95]) of an ordered
alignment.

a a (a, a)

e d b f (e, λ) (λ, f)

b c c d (b, b) (c, λ) (λ, c) (d, d)

(a) (b) (c)

Figure 5: (a) TreeT1. (b) TreeT2. (c) An alignment ofT1 andT2.

The tree alignment distance problem is a special case of the tree editing problem. In fact, it
corresponds to a restricted edit distance where all insertions must be performed before any deletions.
Hence,δ(T1, T2) ≤ α(T1, T2). For instance, assume that all edit operations have cost1 and consider
the example in Figure1. The optimal sequence of edit operations is achieved by deleting the node
labelede and then inserting the node labeledf . Hence, the edit distance is2. The optimal alignment,
however, is the tree depicted in (c) with a value of4. It is a well known fact that edit and alignment
distance are equivalent in terms of complexity for sequences, see,e.g., Gusfield [Gus97]. However,
for trees this is not true which we will show in the following sections. In Section 4.1 and Section 4.2
we survey the results for the ordered and unordered tree alignment distance problem respectively.

4.1 Ordered tree alignment distance

In this section we consider the ordered tree alignment distance problem. LetT1 andT2 be two rooted,
ordered and labeled trees. The ordered tree alignment distance problem was introduced by Jianget
al. in [JWZ95]. The algorithm presented there usesO(|T1||T2|(I1 + I2)

2) time and space. Hence, for
small degree trees, the alignment can be computed more efficiently than the edit distance. We present
this algorithm in detail in the next section. Recently, in [aAL01], a new algorithm was proposed
designed forsimilar trees. Specifically, if there is an optimal alignment ofT1 andT2 using at mosts
spaces the algorithm computes the alignment in timeO((|T1| + |T2|) log(|T1| + |T2|)(I1 + I2)

4s2).
This algorithm works in a way similar to the fast algorithms for comparing similar sequences, see,e.g.,
Section 3.3.4 in [SM97]. The main idea is to speedup the algorithm of Jianget al. by only considering
subtrees ofT1 andT2 whose sizes differ by at mostO(s).

12



4.1.1 Jiang, Wang and Zhang’s algorithm

In this section we present the algorithm of Jianget al. [JWZ95]. We only show how to compute the
alignment distance. The corresponding alignment can easily be constructed within the same complex-
ity bounds. Letγ be a metric cost function on the labels. For simplicity, we will refer to nodes instead
labels, that is, we will use(v,w) for nodesv andw to mean(label(v), label(w)). Here,v or w may
beλ. We extend the definition ofα to include alignments of forests, that is,α(F1, F2) denotes the cost
of an optimal alignment of forestF1 andF2.

Lemma 7 Letv ∈ V (T1) andw ∈ V (T2) with childrenv1, . . . , vi andw1, . . . , wj respectively. Then,

α(θ, θ) = 0

α(T1(v), θ) = α(F1(v), θ) + γ(v, λ)

α(θ, T2(w)) = α(θ, F2(w)) + γ(λ,w)

α(F1(v), θ) =
i

∑

k=1

α(T1(vk), θ)

α(θ, F2(w)) =

j
∑

k=1

α(θ, T2(wk))

Lemma 8 Letv ∈ V (T1) andw ∈ V (T2) with childrenv1, . . . , vi andw1, . . . , wj respectively. Then,

α(T1(v), T2(w)) = min











α(F1(v), F2(w)) + γ(v,w)

α(θ, T2(w)) + min1≤r≤j{α(T1(v), T2(wr)) − α(θ, T2(wr)}

α(T1(v), θ) + min1≤r≤i{α(T1(vr), T2(w)) − α(T1(vr), θ)}

Proof. Consider an optimal alignmentA of T1(v) andT2(w). There are four cases: (1)(v,w) is a
label inA, (2) (v, λ) and(k,w) are labels inA for somek ∈ V (T1), (3) (λ,w) and(v, h) are labels
in A for someh ∈ V (T2) or (4) (v, λ) and(λ,w) are inA. Case (4) need not be considered since
the two nodes can be deleted and replaced by the single node(v,w) as the new root. The cost of the
resulting alignment is by the triangle inequality at least as small.

Case 1: The root ofA is labeled by(v,w). Hence,

α(T1(v), T2(w)) = α(F1(v), F2(w)) + γ(v,w)

Case 2: The root ofA is labeled by(v, λ). Hence,k ∈ V (T1(ws)) for some1 ≤ r ≤ i. It follows
that,

α(T1(v), T2(w)) = α(T1(v), θ) + min
1≤r≤i

{α(T1(vr), T2(w)) − α(T1(vr), θ)}

Case 3: Symmetric to case2. �
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Lemma 9 Let v ∈ V (T1) andw ∈ V (T2) with childrenv1, . . . , vi andw1, . . . , wj respectively. For
anys, t such that1 ≤ s ≤ i and1 ≤ t ≤ j,

α(F1(v1, vs), F2(w1, wt)) = min























































α(F1(v1, vs−1), F2(w1, wt−1)) + α(T1(vs), T2(wt))

α(F1(v1, vs−1), F2(w1, wt)) + α(T1(vs), θ)

α(F1(v1, vs), F2(w1, wt−1)) + α(θ, T2(wt))

γ(λ,wt) + min
1≤r<s

{α(F1(v1, vk−1), F2(w1, wt−1))

+ α(F1(vk, vs), F2(wk))}
γ(vs, λ) + min

1≤r<t
{α(F1(v1, vs−1), F2(w1, wk−1))

+ α(F1(vs), F2(wk, wt))}

Proof. Consider an optimal alignmentA of F1(v1, vs) andF2(w1, wt). The root of the rightmost tree
in A is labeled either(vs, wt), (vs, λ) or (λ,wt).

Case 1: The label is(vs, wt). Then the rightmost tree ofA must be an optimal alignment ofT1(vs)
andT2(wt). Hence,

α(F1(v1, vs), F2(w1, wt)) = α(F1(v1, vs−1), F2(w1, wt−1)) + α(T1(vs), T2(wt)).

Case 2: The label is(vs, λ). ThenT1(vs) is a aligned with a subforestF2(wt−k+1, wt), where0 ≤
k ≤ t. The following subcases can occur:

2.1 (k = 0). T1(vs) is aligned withF2(wt−k+1, wt) = θ. Hence,

α(F1(v1, vs), F2(w1, wt)) = α(F1(v1, vs−1), F2(w1, wt)) + α(T1(vs), θ).

2.2 (k = 1). T1(vs) is aligned withF2(wt−k+1, wt) = T2(wt). Similar to case1.

2.3 (k ≥ 2). The most general case. It is easy to see that:

α(F1(v1, vs), F2(w1, wt)) = γ(vs, λ) + min
1≤r<t

{α(F1(v1, vs−1), F2(w1, wk−1)))

+ α(F1(vs), F2(wk, wt)).

Case 3: The label is(λ,wt). Symmetric to case2. �

This recursion can be used to construct a bottom-up dynamic programming algorithm. Consider
a fixed pair of nodesv andw b with childrenv1, . . . , vi andw1, . . . , wj respectively. We need to
compute the valuesα(F1(vh, vk), F2(w)) for all 1 ≤ h ≤ k ≤ i, andα(F1(v), F2(wh, wk)) for all
1 ≤ h ≤ k ≤ j. That, is we need to compute the optimal aligment ofF1(v) with each subforest of
F2(w) and, on the other hand, compute the optimal alignment ofF2(w) with each subforest ofF1(v).
For anys andt, 1 ≤ s ≤ i and1 ≤ t ≤ j, define the set:

As,t = {α(F1(vs, vp), F2(wt, wq)) | s ≤ p ≤ i, t ≤ q ≤ j}

To compute the alignments described above we need to computeAs,1 andA1,t for all 1 ≤ s ≤ i and
1 ≤ t ≤ j. Assuming that values for smaller subproblems are known it is not hard to show thatAs,t

can be computed, using Lemma 9, in timeO((i− s) · (j − t) · (i− s + j− t)) = O(ij(i+ j)). Hence,
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the time to compute both ofAs,1 andA1,t, 1 ≤ s ≤ i and1 ≤ t ≤ j, is bounded byO(ij(i + j)2). It
follows that the total time needed for all nodesv andw is bounded by:

∑

v∈V (T1)

∑

w∈V (T2)

O(deg(v) deg(w)(deg(v) + deg(w))2)

≤
∑

v∈V (T1)

∑

w∈V (T2)

O(deg(v) deg(w)(deg(T1) + deg(T2))
2)

≤ O((I1 + I2)
2

∑

v∈V (T1)

∑

w∈V (T2)

deg(v) deg(w))

≤ O(|T1||T2|(I1 + I2)
2)

In summary, we have shown the following theorem.

Theorem 3 ([JWZ95]) For ordered ordered treesT1 andT2, the tree alignment distance problem can
be solved inO(|T1||T2|(I1 + I2)

2) time and space.

4.2 Unordered tree alignment distance

The algorithm presented above can be modified to handle the unordered version of the problem in a
straightforward way [JWZ95]. If the trees have bounded degrees the algorithm still runs inO(|T1|T2|)
time. This should be seen in contrast to the edit distance problem which is MAX SNP-hard even if
the trees have bounded degree. If one tree has arbitrary degree unordered alignment becomes NP-hard
[JWZ95]. The reduction is, as the edit distance problem, from the Exact Cover by 3-Sets problem
[GJ79].

5 Tree Inclusion

In this section we survey the tree inclusion problem. LetT1 andT2 be rooted, labeled trees. We say
thatT1 is includedin T2 if there is a sequence of delete operations performed onT2 which makesT2

isomorphic toT1. The tree inclusion problemis to decide ifT1 can be included inT2. Figure 6(a)
shows an example of an ordered inclusion. The tree inclusionproblem is a special case of tree of the
editing distance problem: If insertions and relabelings, that do not change the label, all have cost0 and
all other operations have cost1, thenT1 can be included inT2 if and only if δ(T1, T2) = 0. According
to [Che98] the tree inclusion problem was initially introduced by Knuth [Knu69][exercise 2.3.2-22].
The rest of the section is organized as follows. In Section 5.1 we give some preliminaries and in
Section 5.2 and 5.3 we survey the known results on ordered andunordered tree inclusion respectively.

5.1 Orderings and embeddings

Let T be an ordered, rooted tree with rootv and childrenv1, . . . , vi. Thepostordertraversal ofT (v)
is obtained by visitingT (vk), 1 ≤ k ≤ i in order, recursively, and then visiting thev. Thepostorder
number, post(v), of a nodev ∈ V (T ) is the number of nodes preceedingv in the postorder traversal
of T . We define an ordering of the nodes ofT given byv ≺ v′ iff post(v) < post(v′). Also, v � v′

iff v ≺ v′ or v = v′. Furthermore, we extend this ordering with two special nodes⊥ and⊤ such that
for all nodesv ∈ V (T ), ⊥ ≺ v ≺ ⊤. Theleft relatives, lr(v), of a nodev ∈ V (T ) is the set of nodes
that are to the left ofv and similarly theright relatives, rr(v), are the set of nodes that are to the right
of v.
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f d e

(a) b e a

c

b

f

f d e

(b) b e a

c

b

Figure 6: (a) The tree on the left can be included in the tree onthe right by deleting the nodes labeled
d, a andc. (b) The embedding corresponding to (a).

Let T1 andT2 be rooted labeled trees. We define anordered embedding(f, T1, T2) as an injective
functionf : V (T1) → V (T2) such that for all nodesv, u ∈ V (T1),

• label(v) = label(f(v)). (label preservation condition)

• v is an ancestor ofu iff f(v) is an ancestor off(u). (ancestor condition)

• v is to the left ofu iff f(v) is to the left off(u). (sibling condition)

Hence, embeddings are special cases of mappings (see Section 3.1). An unordered embeddingis
defined as above, but without the sibling condition. An embedding (f, T1, T2) is root preservingif
f(root(T1)) = root(T2). Figure 6(b) shows an example of a root preserving embedding.

5.2 Ordered tree inclusion

Let T1 and T2 be rooted, ordered and labeled trees. The ordered tree inclusion problem has been
the attention of much research. Kilpeläinen and Mannila [KM95] (see also [Kil92]) presented the
first polynomial time algorithm usingO(|T1||T2|) time and space. Most the later improvements are
refinements of this algorithm. We present this algorithm in detail in the next section. In [Kil92]
a more space efficient version of the above was given usingO(|T1|D2) space. In [Ric97a] Richter
gave an algorithm usingO(|ΣT1

||T2| + mT1,T2
D2) time, whereΣT1

is the alphabet of the labels
of T1 and mT1,T2

is the setmatches, defined as the number of pairs(v,w) ∈ T1 × T2 such that
label(v) = label(w). Hence, if the number of matches is small the time complexityof this algorithm
improves the(|T1||T2|) algorithm. The space complexity of the algorithm isO(|ΣT1

||T2| + mT1,T2
).

In [Che98] a more complex algorithm was presented usingO(L1|T2|) time andO(L1 min{D2, L2})
space. In [AS93] an efficient average case algorithm was given.
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5.2.1 Kilpeläinen and Mannila’s algorithm

In this section we present the algorithm of Kilpeläinen andMannila [KM95] for the ordered tree
inclusion problem. LetT1 and T2 be ordered labeled trees. DefineR(T1, T2) as the set of root-
preserving embeddings ofT1 into T2. We defineρ(v,w), wherev ∈ V (T1) andw ∈ V (T2):

ρ(v,w) = min
≺

{{w′ ∈ rr(w) | ∃f ∈ R(T1(v), T2(w
′))} ∪ {⊤}}

Hence,ρ(v,w) is the closest right relative ofw which has a root-preserving embedding ofT1(v).
Furthermore, if no such embedding existsρ(v,w) is ⊤. It is easy to see that, by definition,T1 can
be included inT2 if and only if ρ(v,⊥) 6= ⊤. The following lemma shows how to search for root
preserving embeddings.

Lemma 10 Let v be a node inT1 with childrenv1, . . . , vi. For a nodew in T2, define a sequence
p1, . . . , pi by settingp1 = ρ(v1,max≺ lr(w)) andpk = ρ(vk, pk−1), for 2 ≤ k ≤ i. There is a root
preserving embeddingf of T1(v) in T2(v) if and only if label(v) = label(w) andpi ∈ T2(w), for all
1 ≤ k ≤ i.

Proof. If there is a root preserving embedding betweenT1(v) andT2(w) it is straightforward to check
that there is a sequencepi, 1 ≤ i ≤ k such that the conditions are satisfied. Conversely, assume that
pk ∈ T2(w) for all 1 ≤ k ≤ i andlabel(v) = label(w). We construct a root-preserving embeddingf

of T1(v) into T2(w) as follows. Letf(v) = w. By definition ofρ there must be a root preserving em-
beddingfk, 1 ≤ k ≤ i, of T1(vk) in T2(pk). For a nodeu in T1(vk), 1 ≤ k ≤ i, we setf(u) = fk(u).
Sincepk ∈ rr(pk−1), 2 ≤ k ≤ i, andpk ∈ T2(w) for all k, 1 ≤ k ≤ i, it follows thatf is indeed a
root-preserving embedding. �

Using dynamic programming it is now straightforward to computeρ(v,w) for all v ∈ V (T1) and
w ∈ V (T2). For a fixed nodev we traverseT2 in reverse postorder. At each nodew ∈ V (T2) we
check if there is a root preserving embedding ofT1(v) in T2(w). If so we setρ(v, q) = w, for all
q ∈ lr(w) such thatx � q, wherex is the next root-preserving embedding ofT1(v) in T2(w).

For a pair of nodesv ∈ V (T1) and w ∈ V (T2) we test for a root-preserving embedding us-
ing Lemma 10. Assuming that values for smaller subproblems has been computed, the time used
is O(deg(v)). Hence, the contribution to the total time for the nodew is

∑

v∈V (T1) O(deg(v)) =
O(|T1|). It follows that the time complexity of the algorithm is bounded byO(|T1||T2|). Clearly, only
O(|T1||T2|) space is needed to storeρ. Hence, we have the following theorem,

Theorem 4 ([KM95]) For any pair of rooted, labeled and ordered treesT1 andT2, the tree inclusion
problem can be solved inO(|T1||T2|) time and space.

5.3 Unordered tree inclusion

In [KM95] it is shown that the unordered tree inclusion problem is NP-complete. The reduction used
is from the Satisfiability problem [GJ79]. Independently, Matoušek and Thomas [MT92] gave another
proof of NP-completeness.

An algorithm for the unordered tree inclusion problem is presented usingO(|T1|I12
2I1 |T2|) time.

Hence, ifI1 is constant the algorithm runs inO(|T1||T2|) time and ifI1 = log |T2| the algorithm runs
in O(|T1| log |T2||T2|

3).
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6 Conclusion and Open Problems

We have surveyed the tree edit distance, alignment distanceand inclusion problems. Furthermore, we
have presented, in our opinion, the central algorithms for each of the problems. There are several open
problems, which may be the topic of further research. We conclude this paper with a short list of some
of the most interesting.

• The currently best worst case upper bound on the ordered treeedit distance problem is the
algorithm of [Kle98] usingO(|T1|

2|T2| log |T2|). It is a major open problem to improve this
bound or to give a non-trivial lower bound.

• The unordered tree edit distance problem has been shown to beMAX SNP-hard. However, there
may still exist low-factor approximation algorithms for the problem.

• Few results are available on the ordered tree alignment distance problem. Improving the upper
bound is an interesting open problem.
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Tree edit distance
variant type time space reference
general O O(|T1||T2|D

2
1D

2
2) O(|T1||T2|D

2
1D

2
2) [Tai79]

general O O(|T1||T2|min(L1,D1)min(L2,D2)) O(|T1||T2|) [ZS89]
general O O(|T1|

2|T2| log |T2|) O(|T1||T2|) [Kle98]
general O O(|T1||T2| + L2

1|T2| + L2.5
1 L2) O((|T1| + L2

1)min(L2,D2) + |T2|) [Che01]
general U MAX SNP-hard [ZJ94]

constrained O O(|T1||T2|) O(|T1||T2|) [Zha95]
constrained O O(|T1||T2|I1I2) O(|T1||D2I2) [Ric97b]
constrained U O(|T1||T2|(I1 + I2) log(I1 + I2)) O(|T1||T2|) [Zha96a]

less-constrained O O(|T1||T2|I
3
1I3

2 (I1 + I2)) O(|T1||T2|I
3
1I3

2 (I1 + I2)) [LST01]
less-constrained U MAX SNP-hard [LST01]

unit-cost O O(u2 min(|T1|, |T2|)min(L1, L2)) O(|T1||T2|) [SZ90]
1-degree O O(|T1||T2|) O(|T1||T2|) [Sel77]

Tree alignment distance
general O O(|T1||T2|(I1 + I2)

2) O(|T1||T2|(I1 + I2)
2) [JWZ95]

general U MAX SNP-hard [JWZ95]
similar O O((|T1| + |T2|) log(|T1| + |T2|)(I1 + I2)

4s2) O((|T1| + |T2|) log(|T1| + |T2|)(I1 + I2)
4s2) [aAL01]

Tree inclusion
general O O(|T1||T2|) O(|T1|min(D2L2)) [Kil92]
general O O(|ΣT1

||T2| + mT1,T2
D2) O(|ΣT1

||T2| + mT1,T2
) [Ric97a]

general O O(L1|T2|) O(L1 min(D2L2)) [Che98]
general U NP-hard [KM95, MT92]

Table 1: Results for the tree edit distance, alignment distance and inclusion problem listed according to variant.Di, Li andIi denotes the depth, the
number of leaves and the maximum degree respectively ofTi, i = 1, 2. The type is either O for ordered or U for unordered. The valueu is the unit
cost edit distance betweenT1 andT2 and the values is the number of spaces in the optimal alignment ofT1 andT2. The valueΣT1

is set of labels
used inT1 andmT1,T2

is the number of pairs of nodes inT1 andT2 which have the same label.
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