Effectiveness I ssuesin Automatic Text Categorization

, 2002 6 68 62-83

12

Abstract:

Text categorization or document classification is a task to assign predefined
labels to documents based on their content. This article discusses twelve issues that
are related to the effectiveness of automatic text categorization based on a literature
review and the author experiences in this task. Parts of the conclusions include: (1)
Automatic summarization, based on our experiments, does not improve classification
effectiveness, as opposite to some previous studies. (2) Inconsistency (in assigning
labels) seemsinevitable in this task and thus may adversely affect the effectiveness of
better classifiers, especialy when the test documents are highly inconsistent (3)
Performance measure should go beyond traditional precision/recal metrics. Some
cost functions should be considered to better meet users needs. (4) Machine
classifiers seem to be more consistent than humans in assigning labels to documents.
Thus classifiers can aid human experts to do the job in a cost-effective way, as is
manifested in 2 reported real-world cases.
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