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Abstract. A repetition in a string x is a substring w = ue of x, max-
imum e ≥ 2, where u is not itself a repetition in w. A run in x is a
substring w = ueu∗ of “maximal periodicity”, where ue is a repetition
and u∗ a maximum-length possibly empty proper prefix of u. A run may
encode as many as |u| repetitions. The maximum number of repetitions
in any string x = x[1..n] is well known to be Θ(n log n). In 2000 Kolpakov
& Kucherov showed that the maximum number of runs in x is O(n); they
also described a Θ(n)-time algorithm, based on Farach’s Θ(n)-time suffix
tree construction algorithm (STCA), Θ(n)-time Lempel-Ziv factoriza-
tion, and Main’s Θ(n)-time leftmost runs algorithm, to compute all the
runs in x. Recently Abouelhoda et al. proposed a Θ(n)-time Lempel-Ziv
factorization algorithm based on an “enhanced” suffix array — a suffix
array together with other supporting data structures. In this paper we
introduce a collection of fast space-efficient algorithms for computing all
the runs in a string that appear in many circumstances to be superior
to those previously proposed.

1 Introduction

Periodicity (repetition) in infinite strings was the first topic of stringology [30];
counting and computing the maximum-length adjacent repeating substrings
(repetitions) in a finite string was, along with pattern-matching, one of the ear-
liest computational problems on strings to be studied [17,19]. Given a nonempty
string u and an integer e ≥ 2, we call ue a repetition ; if u itself is not a repe-
tition, then ue is a proper repetition. Given a string x, a repetition in x is
a substring

x[i..i+e|u|−1] = ue,

where ue is a proper repetition and neither x
[
i+e|u|..i+(e+1)|u|−1)

]
nor

x[i−|u|..i−1] equals u. Following [29], we say the repetition has generator u,
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period |u|, and exponent e; it can be specified by the integer triple (i, |u|, e).
It is well known [17,3] that the maximum number of repetitions in a string x =
x[1..n] is Θ(n log n), and that the number of repetitions in x can be computed
in Θ(n log n) time [3,2,20].

A string u is a run iff it is periodic of (minimum) period p ≤ |u|/2. Thus
x = abaabaabaabaab = (aba)4ab is a run of period |aba| = 3. A substring
u = x[i..j] of x is a run in x iff it is a run of period p and neither x[i−1..j]
nor x[i..j+1] is a run of period p (nonextendible). The run u has exponent
e = �|u|/p� and possibly empty tail t = x[i+ep..j] (proper prefix of x[i..i+p−1]).
Thus

1 2 3 4 5 6 7 8 9 10 11 12 13 14

x = b a a a b a a b a a b a b a

has a run x[3..12] of period p = 3 and exponent e = 3 with tail t = a of length
t = |t| = 1. It can also be specified by a triple (i, j, p) = (3, 12, 3), and it includes
the repetitions (aab)3, (aba)3 and (baa)2 of period p = 3. In general, for e = 2
a run encodes t+1 repetitions; for e > 2, p repetitions. Clearly, computing all
the runs in x specifies all the repetitions in x.

Runs were introduced by Main [18], who showed how to compute the leftmost
occurrence of every run in x = x[1..n] by

(1) computing STx, the suffix tree of x [32];
(2) using STx to compute LZx, the Lempel-Ziv factorization of x [16];
(3) using LZx to compute leftmost runs.

Since steps (2) and (3) require only Θ(n) (linear) time, the use of Farach’s linear-
time STCA [5] enables the leftmost runs to be computed in linear time. In [14]
Kolpakov & Kucherov proved that the maximum number of runs in any string
of length n is Θ(n), and then showed how to compute all the runs in x from
the leftmost ones in linear time. Thus in theory all runs, hence all repetitions,
could be computed in linear time, though Farach’s algorithm is not practical for
large n.

In [1] Abouelhoda, Kurtz & Ohlebusch show how to compute LZx from a
suffix array SAx, together with other linear structures, rather than from STx.
Since there now exist practical linear-time suffix array construction algorithms
(SACAs) [9,12], it thus becomes feasible to compute all the runs in x in Θ(n)
time for large values of n.

In this paper we describe variants of a worst-case linear-time algorithm (CPS)
that, given SAx and the corresponding longest common prefix array LCPx,
computes LZx in guaranteed Θ(n) time and, according to our experiments, does
so generally faster and generally with lower space requirements than either of the
algorithms AKO [1] or KK-LZ (a suffix tree-based implementation of Ukkonen’s
algorithm [31] by Kolpakov & Kucherov specifically designed for alphabet size
α ≤ 4 [13]). Ukkonen’s algorithm constructs ST on-line and so permits LZ to be
built from subtrees of ST; this gives it an advantage, at least in terms of space,
over the fast and compact version of McCreight’s STCA [25] due to Kurtz [15].
Note also [26] that the linear-time algorithms [9,12] for computing SAx are not,
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in practice, as fast as other algorithms [24,22] that have only supralinear worst-
case time bounds. Thus in testing AKO and CPS we make use of the supralinear
SACA [22] that is probably at present the fastest in practice.

In Section 2 we describe our new algorithms. Section 3 summarizes the results
of experiments that compare the algorithms with each other and with existing
algorithms. Section 4 outlines future work.

2 Description of the Algorithms

Given a string x = x[1..n] on an alphabet A of size α, we refer to the suffix x[i..n],
i ∈ 1..n, simply as suffix i. Then SAx is an array 1..n in which SAx[j] = i

iff suffix i is the jth in lexicographical order among all the suffixes of x. Let
lcpx(i1, i2) denote the longest common prefix of suffixes i1 and i2 of x. Then
LCPx is an array 1..n+1 in which LCPx[1] = LCPx[n+1] = −1, while for
j ∈ 2..n,

LCPx[j] =
∣
∣∣lcpx

(
SAx[j−1], SAx[j]

)∣∣∣.

Given x and SAx, LCPx can be quickly computed in Θ(n) time [11,23]. When
the context is clear, we write SA for SAx, LCP for LCPx. For example:

1 2 3 4 5 6 7 8 9

x = a b a a b a b a
SAx = 8 3 6 1 4 7 2 5

LCPx = -1 1 1 3 3 0 2 2 -1

The LZ factorization LZx of x is a factorization x = w1w2 · · ·wk such that
each wj , j ∈ 1..k, is

(a) a letter that does not occur in w1w2 · · ·wj−1; or otherwise
(b) the longest substring that occurs at least twice in w1w2 · · ·wj .

For our example string, w1 = a, w2 = b, w3 = a, w4 = aba, w5 = ba. Typically,
integer pairs (POS, LEN) specify the factorization, where POS gives a position
in x and LEN the corresponding length at that position (by convention zero if
the position contains a “new” letter). The example thus yields (POS, LEN) =
(1, 0), (2, 0), (3, 1), (4, 3), (7, 2). Normally LZx is computed by first computing
POS and LEN as arrays POS[1..n] and LEN[1..n], where POS[i] = j < i, j > 0,
means that the longest match for a prefix of suffix i of x that occurs left of i in x
is at position j = POS[i] and has length LEN[i]; POS[i] = 0 means that i is the
leftmost occurrence of letter x[i] in x. As mentioned above, LZx can be quickly
computed from STx in Θ(n) time [33], also from SAx [1]. Our new algorithm is
displayed in Figure 1.

The basic strategy of CPS is first to locate, in a left-to-right traversal of
SA, a next position i2 such that LCP[i2] > LCP[i3] for some least i3 > i2;
then second to backtrack (using stack S) from i2, setting POS[p2] ← p1 or
POS[p1] ← p2 according as p1 = SA[i1] < p2 = SA[i2] or not. until the LCP
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— Using SAx and LCPx, compute POS[1..n] and LEN[1..n].
i1 ← 1; i2 ← 2; i3 ← 3
while i3 ≤ n+1 do
— Identify the next position i2 < i3 with LCP[i2] > LCP[i3].

while LCP[i2] ≤ LCP[i3] do
push(S, i1); i1 ← i2; i2 ← i3; i3 ← i3+1

— Backtrack using the stack S to locate the first i1 < i2 such that
— LCP[i1] < LCP[i2], at each step setting the larger position in POS
— corresponding to equal LCP to point leftwards to the smaller one,
— if it exists; if not, then POS[i] ← i.

p2 ← SA[i2]; �2 ← LCP[i2]
assign(POS, LEN, p2)
while LCP[i1] = �2 do

i1 ← pop(S)
assign(POS, LEN, p2)

SA[i1] ← p2

— Reset pointers for the next stage.
if i1 > 1 then

i2 ← i1; i1 ← pop(S)
else

i2 ← i3; i3 ← i3+1

procedure assign(POS, LEN, p2)
p1 ← SA[i1]
if p1 < p2 then

POS[p2] ← p1; LEN[p2] ← �2; p2 ← p1

else
POS[p1] ← p2; LEN[p1] ← �2

Fig. 1. Algorithm CPS: computing LZx

value for the position i1 popped from S falls below LCP[i2]. This processing does
not guarantee that, for equal LCP (LEN), each corresponding position in POS
necessarily points to the leftmost occurrence in x, the norm for LZ factorization;
however, the Main and KK runs algorithms do not require this property for their
correct functioning, they require only that each position in POS should point
left. In other terminology, what is in fact computed by CPS is a quasi suffix
array (QSA) [6]. We call the algorithm of Figure 1 CPSa.

CPSa maintains the invariant that i1 < i2 < i3, terminating when i3 is in-
cremented beyond n+1. There are two main stages corresponding to two simple
inner while loops. The first of these pushes all entries i1 (actually, the previous
value of i2) onto S until LCP[i2] > LCP[i3]. The second while loop assigns

POS
[
max{p1, p2}

]
← min{p1, p2}

(thus ensuring that POS always points left) corresponding to the current LCP
value, until that value changes.

Now observe that none of the position pointers i1, i2, i3 will ever point to any
position i in SA such that POS

[
SA[i]

]
has been previously set. It follows that the
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storage for SA and LCP can be dynamically reused to specify the location and
contents of the array POS, thus saving 4n bytes of storage — neither the Main
nor the KK algorithm requires SA/LCP. In Figure 1 this is easily accomplished
by inserting i2 ← i1 at the beginning of the second inner while loop, then
replacing

POS[p2] ← p1 by SA[i2] ← p2; LCP[i2] ← p1

POS[p1] ← p2 by SA[i2] ← p1; LCP[i2] ← p2

POS can then be computed by a straightforward in-place compactification of SA
and LCP into SA (now redefined as POS). We call this second algorithm CPSb.

But more storage can be saved. Remove all reference to LEN from CPSb,
so that it computes only POS and in particular allocates no storage for LEN.
Then, after POS is computed, the space previously required for LCP becomes
free and can be reallocated to LEN. Observe that only those positions in LEN
that are required for the LZ-factorization need to be computed, so that the total
computation time for LEN is Θ(n). In fact, without loss of efficiency, we can
avoid computing LEN as an array and compute it only when required; given a
sentinel value POS[n+1] = $, the simple function of Figure 2 computes LEN
corresponding to POS[i]. We call the third version CPSc.

function LEN(x, POS, i)
j ← POS[i]
if j = i then

LEN ← 0
else

� ← 1
while x[i+�] = x[j+�] do

� ← �+1
LEN ← �

Fig. 2. Computing LEN corresponding to POS[i]

Since at least one position in POS is set at each stage of the main while
loop, it follows that the execution time of CPS is linear in n. For CPSa space
requirements total 17n bytes (for x, SA, LCP, POS & LEN) plus 4s bytes for
a stack of maximum size s. For x = an, s = n, but in practical cases s will be
close to the maximum height of SAx and so s is bounded by O(logα n) [10].

For CPSb and CPSc, the minimum space required is 13n and 9n bytes, respec-
tively, plus stack. Observe that for CPSa and CPSb the original (and somewhat
faster) method [11] for computing LCP can be used, since it requires 13n bytes
of storage, not greater than the total space requirements of these two variants.
For CPSc, however, to achieve 9n bytes of storage, the Manzini variant [23] for
computing LCP must be used. In fact, as described below, we test two versions
of CPSc, one that uses the original LCP calculation (and therefore requires no
additional space for the stack), the other using the Manzini variant (CPSd).
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We remark that all versions of Algorithm CPS can easily be modified (with the
introduction of another stack) to compute the LZ factorization in its usual form.

3 Experimental Results

We implemented the three versions of CPS described above, with two vari-
ants of CPSc; we call them cpsa, cpsb, cpsc (13n-byte LCP calculation), and
cpsd (9n-byte LCP calculation). We also implemented the other SA-based LZ-
factorization algorithm, ako of [1]. The implementation kk-lz of Kolpakov and
Kucherov’s algorithm was obtained from [13]. All programs were written in C or
C++. We are confident that all implementations tested are of high quality.

All experiments were conducted on a 2.8 GHz Intel Pentium 4 processor with
2Gb main memory. The operating system was RedHat Linux Fedora Core 1
(Yarrow) running kernel 2.4.23. The compiler was g++ (gcc version 3.3.2) exe-
cuted with the -O3 option. All running times given are the average of four runs
and do not include time spent reading input files. Times were recorded with the
standard C getrusage function. Memory usage was recorded with the memusage
command available with most Linux distributions.

Times for the cps implementations and ako include time required for SA and
LCP array construction. The implementation of kk-lz is only suitable for strings
on small alphabets (|Σ| ≤ 4) so times are only given for some files. File chr22
was originally on an alphabet of five symbols A,C,G,T,N but was reduced by
one of replacing occurrences of N randomly by the other four symbols. The N’s
represent ambiguities in the sequencing process. Results are not given for ako
and kk-lz on some files because the memory required exceeded the capacity of
the test machine.

We conclude:

(1) If speed is the main criterion, KK-LZ remains the algorithm of choice for
DNA strings of moderate size.

(2) For other strings encountered in practice, CPSb is consistently faster than
AKO except for some strings on very large alphabets; it also uses substan-
tially less space, especially on run-rich strings.

(3) Overall, and especially for strings on alphabets of size greater than 4, CPSd
is probably preferable since it will be more robust for main-memory use on
very large strings: its storage requirement is consistently low (about half that
of AKO, including on DNA strings) and it is only 25–30% slower than CPSb
(and generally faster than AKO).

4 Discussion

The algorithms presented here make use of full-size suffix arrays, but there have
been many “succinct” or “compressed” suffix structures proposed [21,8,28] that
make use of as little as n bytes. We wish to explore the use of such structures in
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Table 1. Description of the data set used in experiments

String Size (bytes) Σ # runs Description
fib35 9227465 2 7049153 The 35th Fibonacci string (see [29])
fib36 14930352 2 11405771 The 36th Fibonacci string
fss9 2851443 2 2643406 The 9th run rich string of [7]
fss10 12078908 2 11197734 The 10th run rich string of [7]
rnd2 8388608 2 3451369 Random string, small alphabet
rnd21 8388608 21 717806 Random string, larger alphabet
ecoli 4638690 4 1135423 E.Coli Genome
chr22 34553758 4 8715331 Human Chromosome 22
bible 4047392 62 177284 King James Bible
howto 39422105 197 3148326 Linux Howto files
chr19 63811651 4 15949496 Human Chromosome 19

Table 2. Runtime in milliseconds for suffix array construction and LCP computation

String saca lcp13n lcp9n
fib35 5530 2130 3090
fib36 10440 3510 5000
fss9 1490 660 960
fss10 8180 2810 4070
rnd2 2960 2360 3030
rnd21 2840 2620 3250
ecoli 1570 1340 1700
chr22 14330 12450 16190
bible 1140 1020 1270
howto 12080 11750 14490
chr19 28400 25730 31840

Table 3. Runtime in milliseconds (in parentheses peak memory usage in bytes per input
symbol) for the LZ-factorization algorithms. Underlining indicates least time/space.

String cpsa cpsb cpsc cpsd ako kk-lz
fib35 9360(19.5) 8560(15.5) 9240(13.0) 10200 (11.5) 12870(26.9) 10060(19.9)
fib36 16730 (19.5) 15420(15.5) 16240(13.0) 17730 (11.5) 23160(26.9) 18680(20.8)
fss9 2680(19.1) 2430(15.1) 2690(13.0) 2990(11.1) 3740(25.4) 1270(21.3)
fss10 13240 (19.1) 12170(15.1) 13390(13.0) 14650 (11.1) 17890(25.4) 7850(22.5)
rnd2 6950(17.0) 6130(13.0) 7010(13.0) 7680 (9.0) 9920(17.0) 9820(11.8)
rnd21 7100(17.0) 6270(13.0) 7130(13.0) 7760 (9.0) 7810(17.0) − (−)
ecoli 3800(17.0) 3350(13.0) 3830(13.0) 4190 (9.0) 4740(17.0) 1610(11.0)
chr22 35240 (17.0) 30320(13.0) 36480(13.0) 40220 (9.0) 65360(17.0) 18240(11.1)
bible 2930(17.0) 2540(13.0) 2970(13.0) 3220 (9.0) 3670(17.0) − (−)
howto 32150 (17.0) 27750(13.0) 33760(13.0) 36500 (9.0) 23830(17.0) − (−)
chr19 70030 (17.0) 61230(13.0) 71910(13.0) 78020 (9.0) − (−) 40420(11.1)
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this context. More generally, we note that all algorithms that compute runs or
repetitions need to compute all the information required for repeats — that is,
not necessarily adjacent repeating substrings. Since runs generally occur sparsely
in strings [14], it seems that they should somehow be computable with less heavy
machinery. Recent results [7,27,4] may suggest more economical methods. In the
shorter term, we are working on methods that compute the LCP as a byproduct
of SA construction, also those that bypass LCP computation.
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