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1. Introduction 

Comparing strings of symbols is an interesting prob- 
lem from both the theoretical and practical point of 
view [ 61. In this paper we focus on string distance 
computation based on a set of edit operations. The al- 
gorithm of Wagner and Fischer [ 93 is usually referred 

to as the standard solution to this problem. It is based 
on dynamic programming and has a time complexity 
of O(n . m), where n and m give the lengths of the 

two strings to be compared. Two faster algorithms for 
the string edit distance problem having a time com- 
plexity of 0( n2/ log n) and 0( d. m), were described 
in [ 51 and [ 81, respectively; here it is assumed that 
d is the edit distance of the two strings, and n > m. 

Other algorithms for approximate string matching are 
reported in [2,3,7,11]. 

Depending on the particular application, it can be 
an advantage to use a special representation or cod- 
ing method for the strings to be compared. One well- 
known method that has been widely used, for exam- 
ple in image processing, is run-length coding. Here, 

one does not explicitly list all individual symbols in 
a string, but considers runs of identical consecutive 
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symbols and gives only one representative symbol, to- 
gether with its multiplicity, for each run. For exam- 
ple, the run-length coding representation of the string 
~l~]~l~l~]~2~2~2~3~3~3~3 is u~u~u~ or, equivalently, 
(at, 5) (u2,3) (us, 4). This coding scheme can result 
in significant memory and access time savings if the 
strings under consideration consist of long runs of 

identical consecutive symbols. 
Recently, an algorithm for computing the edit dis- 

tance of run-length coded strings was proposed [ 11. 

Clearly, a brute force method to solve this problem is 
to first reconstruct the standard, full-length represen- 
tation of the strings under consideration from the run- 
length code, and then to apply one of the known dis- 
tance computation algorithms. However, this approach 
needs additional effort for string decoding. Also, it 
does not utilize the lower data rate of the run-length 
code that may potentially lead to a speed-up of the dis- 
tance computation. In the earlier algorithm of Bunke 
and Csirik [ 11, the edit matrix of Wagner and Fis- 
cher’s algorithm was split into blocks, each block cor- 
responding to a pair of runs of identical symbols in 
the two strings to be compared. It was shown, under a 
particular cost function, that the algorithm has a time 
complexity of 0( k. I) if all runs in the two strings are 
of the same length, with k . 1 being number of blocks 
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in the edit matrix. This means that there is, indepen- 
dently of the size of a block, only a constant number 
of operations required for each block. For the general 

case, however, where the runs in the two strings to be 
matched are of different length, the earlier algorithm 
has the same time complexity as that of Wagner and 
Fischer’s algorithm. In this paper, we propose a dif- 
ferent approach. Our new algorithm will be also based 
on a division of the edit matrix into blocks. However, 
no subdivision of these blocks will ever be required. 
It will be shown that it is sufficient, in order to get the 

edit distance of two run-length coded strings, to com- 
pute for each block only its last row and column in the 

edit matrix. The new algorithm is restricted, however, 

to the special cost function under which the cost of 
any insertion and deletion is equal to 1, and the cost 
of any substitution is equal to 2. The algorithm de- 
scribed in [l] can additionally handle the case where 
all edit operations have unit cost. 

String edit distance computation for run-length 
coded strings under the cost function considered in 
this paper is a special case of the set-set longest com- 
mon subsequence problem for multisets. In [ 101 an 
algorithm for this problem was proposed that has the 
same time complexity as the method described in 

this paper. The method in the present paper, however, 
is derived in a more straightforward manner for the 
particular case of run-length coded strings. 

2. Some properties of string edit distance 

We consider strings A = ala2. . . a, and B = 
b,b2.. . b, over a finite alphabet V. The empty string 
is denoted by E. An edit operation is a pair (a, b), 
also denoted by a + b, where a, b E V U {E}, 
(a, b) # (E, E) , a # b. String B results from string 
A through the edit operation a 4 b if A = xay and 
B = xby for some strings x and y over V. We call 
a + b a substitution if a # E an b # E, a deletion 
if b = E, and an insertion if a = E. A sequence E of 
edit operations will be called an edit sequence. Let 
E = el,ez,, . . , ek be an edit sequence. We say that 
B is derivable from A via E if there is a sequence 

Do,&,. . . , Dk of strings such that A = DO, B = Dk 
and Di results from Di-1 through ei, i = 1, . . . , k. 

A cost function c is a function assigning a non- 
negative real number c( a + b) to each edit operation 

a~b.ThecostofasequenceE=et,e2,...,ekof 
edit operations is defined by c(E) = Et, c( ei) and 
the edit distance of strings A and B by d(A, B) = 

min{c( E) ) B is derivable from A via E}. Through- 
out this paper, we will restrict our considerations to the 
cost function c(a -+ E) = C(E -t a) = 1, c( a + b) = 
2 for any a, b E Ya # b. Notice that under this cost 
function, string edit distance computation is equiva- 
lent to finding the longest common subsequence of A 

and B 191. 
First we recall that, when matching two strings, the 

edit distance will either increase or decrease by the 
value of 1 if we extend one of the two strings by one 

symbol. 

Lemma 1. Let a, b E V be two symbols and x, y E 

V* two strings. Then Id(xa,y) - d(x,y)l = 1 and 

Jd(x,yb) - d(x,y)l = 1. 

The proof follows immediately from a simple case 

analysis. 

Lemma 2. Let a E V be a symbol and x, y E V* two 
strings. Then d(xa,ya) = d(x,y). 

Proof. From Wagner and Fischer’s algorithm it fol- 

lows that d(xa,ya) = min{d(n,y),d(xa,y) + 
1, d(x, ya) + 1) and from Lemma 1 we know 

that d(x,y) < d(xa,y) + 1 and d(x,y) < 

d(x,ya) + 1. Cl 

Lemma 3. Let a E V be a symbol and x, y E V* two 

strings. Then d(xa", yan) = d(x, y) for any n > 0. 

This lemma is an immediate consequence of 
Lemma 2. The next lemma follows from Lemma 1. 

Lemma 4. Let a, b E V with a # b be two sym- 

bols and x, y E V* two strings. Then d(xa, yb) = 

min{d(xa,y) + l,d(x,yb) + I}. 

Lemma 5. Let a, b, x, y be the same as in Lemma 4. 
Thend(xa”,ybm) =min{d(xan,y)+m,d(x,yb”*)+ 

n} for any n, m 2 0. 

Proof. By Lemma 4 we have d( xa”, yb”!) = 
min{d(xa”,yb”-I) + l,d(xa”-‘,yb”*) + 1). Ap- 
plying Lemma 4 again to both d(xa”, ybm- ) 
and d(xa”-‘, ybm) and resubstituting, we get 
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Fig. 1. Subdivision of the edit matrix. 

d(xa”,yb”) = min{d(xan,yb”-2 + 2), d(xan--l, 
yb”‘-1) + 2, d(xa”-2 ,yb”‘) + 2). Repeating this 
process of expansion and resubstitution, we get 

d( xa”, yb”) 

=min{d(x,y) +m+n,d(xa,y) +m+n- 1, 

d(xa2,y) + m + n - 2,. . . ,d(xa”,y) + m, 

d(x,yb) +m+n- l,d(x,yb’)+m+n-2, 

. . . . d(x, yb”) + n}. 

Applying Lemma 1, we conclude that the min- 

imum of d(x,y) + m + n,d(nn,y) + M + IZ - 
1 . . ,d(xa”,y) +m is equal to d(xa”,y) +m. Sim- 
ilky, the minimum of d(x, y) + m + n, d( x, yb) + 

m+n-l,... ,d(x,yb”)+r~isequaltod(x,b~)+n. 
This concludes the proof. q 

3. The algorithm 

Let A = (u1,rq)(u2,rz2) . ..(uk.nk) and B = 

(h~~l)(b2,~2)~~~ (bl, WZ~) with ai, bi E V, II = 

nl+n2+...+n~,m=ml+m:!+..~+ml,u~ Z ui+l3 
bj # bj+l,i=l,..., k-l,j=l,..., I-l,betwo 
run-length coded strings that are to be compared. We 
will call (ai, ni) and (bj, mj) the ith run of A and the 
jth run of B, respectively. Our proposed algorithm 

will be based on a subdivision of the edit matrix D 

into submatrices Di,j, i = 0, 1,. . . , k, j = 0, 1,. . . , I 
as shown in Fig. 1. Similar to Wagner and Fischer’s 
algorithm, the submatrix Di,j holds string distance 
values that arise during the computation of the dis- 
tance between the ith run of A and the jth run of B. 

From the results derived in the last section it fol- 
lows that it is sufficient to compute for each submatrix 
Di,j only the last row and column in order to derive 
d(A, B). The elements of the last row and column 
of the submatrix Di,j can be directly computed, by 
means of a constant number of operations, from the 

elements of the last row of the submatrix Di_ 1 ,j and 

the last column of Di,j-1. We call the last column and 
row of a submatrix Di,j its output column and output 
row. As there is no need to compute any of the inte- 
rior elements, the algorithm needs only O(ni + mj) 

operations for any of the submatrices Di,j, instead of 
O(ni . mj) operations required by Wagner and Fis- 
cher’s algorithm. Also, there is no need to split any 
of the submatrices Di,j into smaller pieces as its is 
required in the earlier algorithm for run-length coded 
string matching [ I]. 

The description of the proposed algorithm uses 
two three-dimensional arrays, outcol( i, j; r) and 
outrow(i,j;s), i = l,..., k, j = l,..., I, r = 

(Xl,. ..,ni, S = O,l,..., mj where we store the 
elements of the output row and output column of 
submatrix Di,j, respectively. In an implementation of 
the algorithm we can use the two-dimensional array 
D( i, j) because outcol( i, j; r) is equivalent to the 
matrix element D (I, J) of Wagner and Fischer’s algo- 
rithm, and outrow( i,j; s) is equivalent to D( I’, J’), 

where I = nl + . . . + TZi_1 + r, J = ml + . . . + mj, 

I' = n1 + . . .+TZi, J'= ml + . ..+mj_l + S. 

In Fig. 2 the algorithm is shown in pseudo code. For 

notational convenience, we use the following abbrevi- 
ations: NO = Me = 0; Ni = Cl=, II, for i = 1,. . . , k; 

Mj=Cjy=,my,fOrj=l ,..., 2. 

Theorem 6. After termination of procedure rlc- 
string-match, we have 

outcoZ( k, I; nk) = outrow( k, 1; ml) = d( A, B). 

The proof is by induction on the lengths of A and 
B using the lemmas of Section 3. 

Theorem 7. Algorithm rlcstringmatch has a time 

and space complexity of 0( Zn + km). 

The proof follows directly from the pseudo code of 
the algorithm. 

4. Concluding remarks 

If it is desired not only to compute the edit distance 
of a pair of run-length coded strings, but also to get 
the optimal sequence of edit operations that transform 
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procedure rlcstringmatch( A, B) 

input: two run-length coded strings A and B 
output: the edit distance d( A, B) 

method: 
/* initialization*/ 

1. for i = 1 to k do /* initial column */ 

2. for r = 0 to ni do outcol(i,O; r) = Ni-1 + r; 
3. forj=l toIdo/*initialrow*/ 

4. for s = 0 to mj do outco&O, j;s) = Mj-1 + S; 

I* main loop *I 

5. fori=l tokdo 

6. for j = 1 to 1 do 

/* outputcolumn */ 

I. outCol(i, j; 0) = outrow( i - 1, j; Wlj); 

8. for r = 1 to ni do 

9. if ai = bj then 
10. if r < mj then 

outcol(i, j;r) = outrow(i- 1,j;mj -r) 

11. else I* r > i?lj *I 

outcol(i, j; r) = outcol(i, j - 1; r - mj) 

12. else I* ai # bj *I 
13. outcol(i, j; r) = min{outcol(i, j;O) + r, 

oufcol(i, j - l;r) + mj}; 

/* outputrow */ 

14. oufrow(i, j;O) = outcol(i, j - 1;n;); 

15. for s = 1 to mj do 
16. if ai = bj then 

17. if s < ni then 

oufrow( i, j; s) = ourcol( i, j - 1; ni - s) 

18. else I* s > ni *I 
outrow(i, j;s) = oufrow(i - 1, j;s - ni) 

19. else /* ai # bj */ 
20. outrow( i. j; s) = min{outrow( i, j; 0) + s, 

outrow(i-l,j;s)+ni} 

1 
2 1. end rlcstring-match 

Fig. 2. Procedure rlcstringmatch. 

one string into the other, we can augment algorithm 
rlcstringmatch by pointers similar to Wagner and 
Fischer’s algorithm. If these pointers are not needed, 
the space complexity of the algorithm can be reduced 
to O(n) similarly to the method proposed in [41. 

It is an open question if an algorithm similar to 
rlc_stringmatch exists for other cost functions. As an 
example, for cost function c( a + E) = c( E + a) = 
c( a ---f b) = 1, a # b, it seems that the elements 
outcol( i, j; r) and outrow( i, j; s) cannot be computed 
in constant time. Instead, the statements equivalent 
to 13 and 20 of rlc-stringmatch need to determine, 
in each execution cycle, the minimum of a set of ele- 
ments, the size of which is proportional to the length 
of the runs. As a consequence, the complexity of the 
algorithm increases by a factor of ni and mj, respec- 
tively, resulting in 0( nm) time. 
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