
ELSEVIER

Information
Processing

Information Processing Letters 54 (1995) 93-96
Letters

An improved algorithm for computing the edit distance of
run-length coded strings

H. Bunke a,*, J. Csirik b
a Institut fiir lnformatik und Angewandte Mathematik, Liinggassstrasse 51, 3012 Bern, Switzerland

b Department of Applied Commputer Science, University of Szeged, Arpad ter 2, H-6720 Szeged, Hungary

Communicated by M.J. Atallah; received 7 November 1994; revised 22 December 1994

Keywords: Algorithms; Approximate string matching; String edit distance

1. Introduction

Comparing strings of symbols is an interesting prob-
lem from both the theoretical and practical point of
view [61. In this paper we focus on string distance
computation based on a set of edit operations. The al-
gorithm of Wagner and Fischer [93 is usually referred

to as the standard solution to this problem. It is based
on dynamic programming and has a time complexity
of O(n . m), where n and m give the lengths of the

two strings to be compared. Two faster algorithms for
the string edit distance problem having a time com-
plexity of 0(n2/ log n) and 0(d. m), were described
in [51 and [81, respectively; here it is assumed that
d is the edit distance of the two strings, and n > m.

Other algorithms for approximate string matching are
reported in [2,3,7,11].

Depending on the particular application, it can be
an advantage to use a special representation or cod-
ing method for the strings to be compared. One well-
known method that has been widely used, for exam-
ple in image processing, is run-length coding. Here,

one does not explicitly list all individual symbols in
a string, but considers runs of identical consecutive

* Corresponding author. Email: bunke@iam.unibe.ch.

symbols and gives only one representative symbol, to-
gether with its multiplicity, for each run. For exam-
ple, the run-length coding representation of the string
~l~]~l~l~]~2~2~2~3~3~3~3 is u~u~u~ or, equivalently,
(at, 5) (u2,3) (us, 4). This coding scheme can result
in significant memory and access time savings if the
strings under consideration consist of long runs of

identical consecutive symbols.
Recently, an algorithm for computing the edit dis-

tance of run-length coded strings was proposed [11.

Clearly, a brute force method to solve this problem is
to first reconstruct the standard, full-length represen-
tation of the strings under consideration from the run-
length code, and then to apply one of the known dis-
tance computation algorithms. However, this approach
needs additional effort for string decoding. Also, it
does not utilize the lower data rate of the run-length
code that may potentially lead to a speed-up of the dis-
tance computation. In the earlier algorithm of Bunke
and Csirik [11, the edit matrix of Wagner and Fis-
cher’s algorithm was split into blocks, each block cor-
responding to a pair of runs of identical symbols in
the two strings to be compared. It was shown, under a
particular cost function, that the algorithm has a time
complexity of 0(k. I) if all runs in the two strings are
of the same length, with k . 1 being number of blocks

0020.0190/95/$09.50 @ 1995 Elsevier Science B.V. All rights reserved

SSDIOO20-0190(95)00005-4

94 H. Bunke, J. Csirik/lnformation Processing Letters 54 (1995) 93-96

in the edit matrix. This means that there is, indepen-
dently of the size of a block, only a constant number
of operations required for each block. For the general

case, however, where the runs in the two strings to be
matched are of different length, the earlier algorithm
has the same time complexity as that of Wagner and
Fischer’s algorithm. In this paper, we propose a dif-
ferent approach. Our new algorithm will be also based
on a division of the edit matrix into blocks. However,
no subdivision of these blocks will ever be required.
It will be shown that it is sufficient, in order to get the

edit distance of two run-length coded strings, to com-
pute for each block only its last row and column in the

edit matrix. The new algorithm is restricted, however,

to the special cost function under which the cost of
any insertion and deletion is equal to 1, and the cost
of any substitution is equal to 2. The algorithm de-
scribed in [l] can additionally handle the case where
all edit operations have unit cost.

String edit distance computation for run-length
coded strings under the cost function considered in
this paper is a special case of the set-set longest com-
mon subsequence problem for multisets. In [101 an
algorithm for this problem was proposed that has the
same time complexity as the method described in

this paper. The method in the present paper, however,
is derived in a more straightforward manner for the
particular case of run-length coded strings.

2. Some properties of string edit distance

We consider strings A = ala2. . . a, and B =
b,b2.. . b, over a finite alphabet V. The empty string
is denoted by E. An edit operation is a pair (a, b),
also denoted by a + b, where a, b E V U {E},
(a, b) # (E, E) , a # b. String B results from string
A through the edit operation a 4 b if A = xay and
B = xby for some strings x and y over V. We call
a + b a substitution if a # E an b # E, a deletion
if b = E, and an insertion if a = E. A sequence E of
edit operations will be called an edit sequence. Let
E = el,ez,, . . , ek be an edit sequence. We say that
B is derivable from A via E if there is a sequence

Do,&,. . . , Dk of strings such that A = DO, B = Dk
and Di results from Di-1 through ei, i = 1, . . . , k.

A cost function c is a function assigning a non-
negative real number c(a + b) to each edit operation

a~b.ThecostofasequenceE=et,e2,...,ekof
edit operations is defined by c(E) = Et, c(ei) and
the edit distance of strings A and B by d(A, B) =

min{c(E)) B is derivable from A via E}. Through-
out this paper, we will restrict our considerations to the
cost function c(a -+ E) = C(E -t a) = 1, c(a + b) =
2 for any a, b E Ya # b. Notice that under this cost
function, string edit distance computation is equiva-
lent to finding the longest common subsequence of A

and B 191.
First we recall that, when matching two strings, the

edit distance will either increase or decrease by the
value of 1 if we extend one of the two strings by one

symbol.

Lemma 1. Let a, b E V be two symbols and x, y E

V* two strings. Then Id(xa,y) - d(x,y)l = 1 and

Jd(x,yb) - d(x,y)l = 1.

The proof follows immediately from a simple case

analysis.

Lemma 2. Let a E V be a symbol and x, y E V* two
strings. Then d(xa,ya) = d(x,y).

Proof. From Wagner and Fischer’s algorithm it fol-

lows that d(xa,ya) = min{d(n,y),d(xa,y) +
1, d(x, ya) + 1) and from Lemma 1 we know

that d(x,y) < d(xa,y) + 1 and d(x,y) <

d(x,ya) + 1. Cl

Lemma 3. Let a E V be a symbol and x, y E V* two

strings. Then d(xa", yan) = d(x, y) for any n > 0.

This lemma is an immediate consequence of
Lemma 2. The next lemma follows from Lemma 1.

Lemma 4. Let a, b E V with a # b be two sym-

bols and x, y E V* two strings. Then d(xa, yb) =

min{d(xa,y) + l,d(x,yb) + I}.

Lemma 5. Let a, b, x, y be the same as in Lemma 4.
Thend(xa”,ybm) =min{d(xan,y)+m,d(x,yb”*)+

n} for any n, m 2 0.

Proof. By Lemma 4 we have d(xa”, yb”!) =
min{d(xa”,yb”-I) + l,d(xa”-‘,yb”*) + 1). Ap-
plying Lemma 4 again to both d(xa”, ybm-)
and d(xa”-‘, ybm) and resubstituting, we get

H. Bunke, J. Csirik/lnformaiion Processing L.etters 54 (1995) 93-96 95

Fig. 1. Subdivision of the edit matrix.

d(xa”,yb”) = min{d(xan,yb”-2 + 2), d(xan--l,
yb”‘-1) + 2, d(xa”-2 ,yb”‘) + 2). Repeating this
process of expansion and resubstitution, we get

d(xa”, yb”)

=min{d(x,y) +m+n,d(xa,y) +m+n- 1,

d(xa2,y) + m + n - 2,. . . ,d(xa”,y) + m,

d(x,yb) +m+n- l,d(x,yb’)+m+n-2,

. . . . d(x, yb”) + n}.

Applying Lemma 1, we conclude that the min-

imum of d(x,y) + m + n,d(nn,y) + M + IZ -
1 . . ,d(xa”,y) +m is equal to d(xa”,y) +m. Sim-
ilky, the minimum of d(x, y) + m + n, d(x, yb) +

m+n-l,... ,d(x,yb”)+r~isequaltod(x,b~)+n.
This concludes the proof. q

3. The algorithm

Let A = (u1,rq)(u2,rz2) . ..(uk.nk) and B =

(h~~l)(b2,~2)~~~ (bl, WZ~) with ai, bi E V, II =

nl+n2+...+n~,m=ml+m:!+..~+ml,u~ Z ui+l3
bj # bj+l,i=l,..., k-l,j=l,..., I-l,betwo
run-length coded strings that are to be compared. We
will call (ai, ni) and (bj, mj) the ith run of A and the
jth run of B, respectively. Our proposed algorithm

will be based on a subdivision of the edit matrix D

into submatrices Di,j, i = 0, 1,. . . , k, j = 0, 1,. . . , I
as shown in Fig. 1. Similar to Wagner and Fischer’s
algorithm, the submatrix Di,j holds string distance
values that arise during the computation of the dis-
tance between the ith run of A and the jth run of B.

From the results derived in the last section it fol-
lows that it is sufficient to compute for each submatrix
Di,j only the last row and column in order to derive
d(A, B). The elements of the last row and column
of the submatrix Di,j can be directly computed, by
means of a constant number of operations, from the

elements of the last row of the submatrix Di_ 1 ,j and

the last column of Di,j-1. We call the last column and
row of a submatrix Di,j its output column and output
row. As there is no need to compute any of the inte-
rior elements, the algorithm needs only O(ni + mj)

operations for any of the submatrices Di,j, instead of
O(ni . mj) operations required by Wagner and Fis-
cher’s algorithm. Also, there is no need to split any
of the submatrices Di,j into smaller pieces as its is
required in the earlier algorithm for run-length coded
string matching [I].

The description of the proposed algorithm uses
two three-dimensional arrays, outcol(i, j; r) and
outrow(i,j;s), i = l,..., k, j = l,..., I, r =

(Xl,. ..,ni, S = O,l,..., mj where we store the
elements of the output row and output column of
submatrix Di,j, respectively. In an implementation of
the algorithm we can use the two-dimensional array
D(i, j) because outcol(i, j; r) is equivalent to the
matrix element D (I, J) of Wagner and Fischer’s algo-
rithm, and outrow(i,j; s) is equivalent to D(I’, J’),

where I = nl + . . . + TZi_1 + r, J = ml + . . . + mj,

I' = n1 + . . .+TZi, J'= ml + . ..+mj_l + S.

In Fig. 2 the algorithm is shown in pseudo code. For

notational convenience, we use the following abbrevi-
ations: NO = Me = 0; Ni = Cl=, II, for i = 1,. . . , k;

Mj=Cjy=,my,fOrj=l ,..., 2.

Theorem 6. After termination of procedure rlc-
string-match, we have

outcoZ(k, I; nk) = outrow(k, 1; ml) = d(A, B).

The proof is by induction on the lengths of A and
B using the lemmas of Section 3.

Theorem 7. Algorithm rlcstringmatch has a time

and space complexity of 0(Zn + km).

The proof follows directly from the pseudo code of
the algorithm.

4. Concluding remarks

If it is desired not only to compute the edit distance
of a pair of run-length coded strings, but also to get
the optimal sequence of edit operations that transform

96 ff. Bunke, J. Csirik/lnformation Processing L&ters 54 (1995) 93-96

procedure rlcstringmatch(A, B)

input: two run-length coded strings A and B
output: the edit distance d(A, B)

method:
/* initialization*/

1. for i = 1 to k do /* initial column */

2. for r = 0 to ni do outcol(i,O; r) = Ni-1 + r;
3. forj=l toIdo/*initialrow*/

4. for s = 0 to mj do outco&O, j;s) = Mj-1 + S;

I* main loop *I

5. fori=l tokdo

6. for j = 1 to 1 do

/* outputcolumn */

I. outCol(i, j; 0) = outrow(i - 1, j; Wlj);

8. for r = 1 to ni do

9. if ai = bj then
10. if r < mj then

outcol(i, j;r) = outrow(i- 1,j;mj -r)

11. else I* r > i?lj *I

outcol(i, j; r) = outcol(i, j - 1; r - mj)

12. else I* ai # bj *I
13. outcol(i, j; r) = min{outcol(i, j;O) + r,

oufcol(i, j - l;r) + mj};

/* outputrow */

14. oufrow(i, j;O) = outcol(i, j - 1;n;);

15. for s = 1 to mj do
16. if ai = bj then

17. if s < ni then

oufrow(i, j; s) = ourcol(i, j - 1; ni - s)

18. else I* s > ni *I
outrow(i, j;s) = oufrow(i - 1, j;s - ni)

19. else /* ai # bj */
20. outrow(i. j; s) = min{outrow(i, j; 0) + s,

outrow(i-l,j;s)+ni}

1
2 1. end rlcstring-match

Fig. 2. Procedure rlcstringmatch.

one string into the other, we can augment algorithm
rlcstringmatch by pointers similar to Wagner and
Fischer’s algorithm. If these pointers are not needed,
the space complexity of the algorithm can be reduced
to O(n) similarly to the method proposed in [41.

It is an open question if an algorithm similar to
rlc_stringmatch exists for other cost functions. As an
example, for cost function c(a + E) = c(E + a) =
c(a ---f b) = 1, a # b, it seems that the elements
outcol(i, j; r) and outrow(i, j; s) cannot be computed
in constant time. Instead, the statements equivalent
to 13 and 20 of rlc-stringmatch need to determine,
in each execution cycle, the minimum of a set of ele-
ments, the size of which is proportional to the length
of the runs. As a consequence, the complexity of the
algorithm increases by a factor of ni and mj, respec-
tively, resulting in 0(nm) time.

References

[l] H. Bunke and J. Csirik, An algorithm for matching run-

length coded strings, Computing 50 (1993) 297-314.
[21 Z. Galil and R. Giancarlo, Data structures and algorithms for

approximate string matching, J. Complexity 4 (1988) 33-72.
[31 Z. Galil and K. Park, An improved algorithm for approximate

string matching, SIAM J. Compur. 19 (6) (1990) 989-999.
[4] D.S. Hirschberg, A linear space algorithm for computing

maximal common subsequences, Comm. ACM 18 (6)

(1975) 341-343.

[5] W.J. Masek and M.S. Paterson, A faster algorithm for

comparing string-edit distances, J. Compuf. System Sci. 20
(1) (1980) 18-31.

[6] D. Sankoff and J.B. Kruskal, Eme Warps, String Edits,
and Macromolecules; The Theory and Practice of Sequence
Comparison (Addison-Wesley, Reading, MA, 1983).

[7] J. Tarhio and E. Ukkonen, Approximate Boyer-Moore string

matching, SIAM J. Compur. 22 (2) (1993) 243-260.
[8] E. Ukkonen, Algorithms for approximate string matching,

Inform. and Confrol64 (1985) 100-I 18.
[91 R.A. Wagner and M.J. Fischer, The string-to-string correction

problem, J. ACM 21 (1) (1974) 168-173.

[lo] B.-F. Wang, G.-H. Chen and K. Park, On the set LCS and

set-set LCS problems, J. Algorithms 14 (1953) 466-477.
[111 S. Wu and U. Manber, Fast text searching allowing errors,

Comm. ACM 35 (10) (1992) 83-91.

