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Summary. Efficient algorithms for computing the longest common subsequence 
(LCS for short) are discussed. O(p n) algorithm and O(p(m -p) log n) algorithm 
[Hirschberg 1977] seem to be best among previously known algorithms, 
where p is the length of an LCS and m and n are the lengths of given two strings 
(m < n). There are many applications where the expected length of an LCS is 
close to m. 

In this paper, O(n(m-p)) algorithm is presented. When p is close to m 
(in other words, two given strings are similar), the algorithm presented here 
runs much faster than previously known algorithms. 

1. Introduction 

The longest common subsequence (LCS) problem is to determine one of the 
longest subsequences that can be obtained by deleting zero or more symbols from 
each of two given strings. For  example, TUSDAY is the longest common sub- 
sequence of TUESDAY and ThUrSDAY. This paper presents an efficient algo- 
rithm for the LCS problem, which is especially suitable when two given strings 
have a long LCS. 

Algorithms for this problem can be used to locate differences of two text 
strings such as a text and a revised text (or a program and a revised program). 
Algorithms can be also used to compress data when we need to store similar text 
strings, since the common subsequences are required to be stored once. The 
problem is also regarded as a generalization of the string matching problem 
(for example, see [-5]) where some errors in strings are permitted. For  example, 
an algorithm for the LCS problem can be used to find all titles of research papers 
which contain some given words or words similar to them. 

Hirschberg has presented O(pn) and O(p(m-p) log n) LCS algorithms where 
p is the length of an LCS and m and n are the lengths of two given text strings 
(m < n is assumed). The former runs in almost linear time when p is small and the 
latter runs in time of O(m log n) when p is large I-3]. 
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In the applications discussed above, usually p is very close to m. This paper 
presents an O(n(m-p)) algorithm which runs in linear time when p is close to m. 
Thus to compare two similar text strings, the algorithm presented here is much 
more suitable than the previously known algorithms. Moreover, when only the 
length of an LCS is required, an algorithm requiring O(m + n) storage space can 
be easily obtained from our algorithm. 

There are, however, many cases when the possible p is unpredictable. A com- 
parison of the above three algorithms is also given in this paper. 

2. Basic Definitions and Previous Results 

In this section, some basic definitions are presented. 

Definition 1. Let 2; = {al, a 2 . . . .  , ak} be any finite set of symbols called an alphabet. 
A string over s is any finite sequence of elements from s 22* means the set of all 
strings over 22, including the empty string A. 22*-{A} is denoted by 22+. 1221 
denotes the number of elements in 22 and ]0.L (0.e22") denotes the length of 0.. 

Definition 2. A string 0.(0. ~22 +)isdenotedby 0.(1) 0.(2)... 0.(m) (0.(i)e22, 1 _< i _< m = Io-[) 
and 0.'=0.(i0 0.(i2)... 0.(ik) (1 <=il<i2<...<ik<=m) is called a subsequence of 0.. 
In other words, a subsequence of a string is obtained by deleting zero or more 
symbols from the string. 

Example 1. For the string 0. = abcbcab, 0.'= abca is a subsequence of 0.. 

Definition 3. For given two strings 0. and ~ defined over 22, string 0 is a common 
subsequence of 0. and ~ if 0 is a subsequence of both 0. and r. String 0 is a longest 
common subsequence (LCS for short) of 0. and T if 0 is a common subsequence of 
0. and z of maximum length. The problem for finding an LCS of two given strings 
is called the LCS problem. 

Throughout  this paper, m and n denote the lengths of strings 0. and ~, re- 
spectively, m < n is assumed without loss of generality. 

Example2. For the given two strings 0.=abcdbb and z=cbacbaaba, 0.'=bcbb 
and 0." = acbb are the two LCSs of the strings 0. and z. 

Aho et al. have shown that unless the alphabet size is fixed, every solution to 
the problem by the "equal-unequal" comparison will consume an amount of time 
that is proportional to the product of the lengths of two strings [1]. O(m log n) 
has been proved to be a lower bound to solve the LCS problem by the "less than- 
equal-greater than" comparison for an unrestricted alphabet [4]. We consider the 
problem by "equal-unequal" comparison approach. 

Though Aho et al. suggested the existence of linear time algorithms for the 
LCS problem when the alphabet size is fixed, previously published algorithms 
require only slightly less running time than O(mn) in the worst case [2, 6]. 

Hunt and Szymanski presented an algorithm which has the running time of 
O((r + m) log n), where r is the total number of ordered pairs of positions at which 
two strings match [2]. Mukhopadhyay has also shown an algorithm with running 
time of the same time complexity [6]. r will be m n/k on the average, where k = 1221. 
These algorithms are not so efficient when m and n are large and k is small. 
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Hirschberg presented two algorithms [33. The first one requires O(pn) time 
and it is efficient when p is small, while the other one requires O(p(m + 1 - p) log n) 
time and it is suitable when p is large, where p is the length of an LCS. 

In the following section, an algorithm which is preferred for applications 
where the expected length of an LCS is large is presented. The algorithm runs in 
time ofO(n(m -p))  for finding one LCS and thus in O(n) time when p is close to m. 

3. An Algorithm for the Longest Common Subsequence Problem 

Definition 4. For a given string a = cr(1) or(2).., o-(m), a(i: m) denotes the consecutive 
subsequence a(i) a ( i+  1)...a(m). For given strings a=a(1 )  a(2).. .a(m) and 
z=r(1)  z(2)...z(n) (re<n), Li(k ) denotes the largest h such that a(i:m) and z(h:n) 
have an LCS of length k. 

From Definition 4, next three lemmas hold. Similar lemmas have been al- 
ready presented by Hirschberg and Hunt et al. [2, 3]. Lemmas 1 and 2 are easily 
observed by the definition of Li(k ), and the proofs are omitted. 

Lemma 1. V/El-l, m], Li (1 )>L i (2 )> . . .  

Lemma 2. V ie[1, m -  1], Vje[1,  m-l, Li+l ( j )<Li ( j )  holds. 
Undefined Li(j) are not considered in above two lemmas. 

Lemma 3. 

Max(h,  Li+ 1(/')), where is the largest number such that h 

|a (i) = z (h) and h < range, where range = L i + 1 (J -- 1) /f j > 2 
Li(j) = [ else range = n + I. 

[Li+l(j)  , if  no such h exists. 

Max(x, y) denotes the larger one of  x and y. 

Proof. By the definition of Li(j), h < L i (j) holds and L i + l (J) < Li (J) holds according 
to Lemma 2. Therefore L i ( j ) > M a x ( h ,  Li+l(j))  is proved. By the definition of 
Li(j), a ( i + l : m )  and r(Li( j ):n ) must have an LCS of length j - 1  and then 
L i + 1 ( j - 1 ) > L i ( j )  holds. If we assume that L i ( j ) > M a x ( h ,  Li+l(j)  ) is true, 
Max (h, L i + 1 (J)) < L i(J) < Li + 1 (J - 1) must hold. By the definitions of h and L i(j), 
a(i:m) and r (L i(j):n) have an LCS of length j and r(L i(j)) ~ a(i) must hold. This 
suggests that a(i:m) and z (L i ( j )+  1 :n) or a( i+ 1 :m) and z(Li( j ):n ) have an LCS 
of length j. The former case contradicts the definition of Li(j)  and the latter case 
contradicts the above assumption. Figure 1 will help readers to understand the 
proof of Lemma 3. Q.E.D. 

Example3.  

123456789 123456 
a=cbacbaaba  and z=abcdbb.  

In this case, we have L9(1)=l ,  L8(1)---6, Ls(2)=undefined and L7(2)=1. 
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string a ] 

string z 

h 
+ 

L,+~U) 
+ 

i i+1 
+ + 

ILCSI=j-1  

gi+tU-1) ~ ' /  4 

Fig. 1. Lemma 3 holds considering above configuration 

We can now present  an O ( n ( m  - p ) )  algor i thm for finding one LCS. We prepare  
a t r iangular  matr ix  M to store each value of Li(j) .  An LCS can be obta ined by 
calculating all L i ( j ) ( l < i , j < m  ). Our  a lgor i thm is based on the concept  that  
only necessary elements of M which m a y  induce an LCS are calculated using 
L e m m a  3. An example  is given before the formal  descript ion of the algori thm. 

E x a m p l e  4. Strings a and z are given as follows. 

1234567 123456789 
a =bcdabab ,  z = cbacbaaba.  

First we prepare  a matr ix  as shown in Fig. 2. We will store Li( j )  in the (j, i) ele- 
ment  of the matrix.  Since j is the length of an LCS of a( i :m)  and z (L i ( j )  , n), j < m  

- i + 1 and i < m hold. Thus  we only need the left upper  par t  of the matrix.  Un-  
defined L~(j) are set to be zero for the purpose  of the uniform handling. In this 
example,  L 8 (1), L 7 (2), L 6 (3), L 5 (4) and L4(5 ) are set to be zeros. 

Beginning the scan f rom the last posi t ion of z, we can conclude L v(1) is 8 
since the first "b"  encountered  in z is at the 8-th posi t ion of z. L6(2) (<L7(1) )  
is computed  by finding the first " a "  ( " a "  is the 6-th character  of a) which appears  
in z before the posit ion L7(1 ). Such " a "  is found to be in the 7-th posi t ion in z. 
L5(3 ) can be determined by finding the first "b"  ("b" is the 5-th charac ter  of  a) 
encountered in z when z is scanned backward  f rom L 6 (2). Thus  L 5 (3) = 5 is obtained.  
Cont inuing this process, L4(4 ) = 3 is obtained.  We find L3(5 ) is undefined since 
"d"  is not contained in z. To  compute  these all values, i.e., LT(1 ), L6(2) . . . . .  L3(5), 
we only need to scan out the string z only  once. This  fact contr ibutes  to the 
reduct ion of compu ta t ion  time. After calculating all these values, we again start  
compu ta t ion  f rom L6(1 ). By L e m m a  3, we just  need to find the largest h such 
that  cr (i) = z (h) and L i + 1 (J) < h < L i + 1 ( J -  1). Values L i + x (J) and L i + 1 (J - 1) have 
been already calculated. To  calculate L 6 (1), we should notice that  L 6 (1) ~ L 7 (1) = 8. 
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1 2 3 4 5 6 7 8  
b c d a b a b  

l c  9 9 ~ 0  
2 b  8 8 ~ 0  
3 a  7 7 @ 0  
4 c  4 3 @ 0  
5 b  2 @ 0 0  
6 a  0 0  
7 a  
8 b  
9 a  

Fig. 2. Matrix M after the application of our algorithm. (Encircled elements represent one LCS ob- 
tained by our algorithm. Elements written in italics are needed only when all LCSs are required) 

Actually we can find " a "  at the 9-th position of z and L6(1 ) is found to be 9. 
Repeating the similar process as above we get L5(2)=8, L4(3)=7, L3(4)=3 and 
L2(5)=1. For  L3(4), we cannot find the corresponding position and L4(4)=3 
is assigned to L3(4 ) (Lemma3). The values L7(1)=8, L6(2)=7 , L5(3)=5 , 
L4(4)=3 and L2(5)=1 show the common subsequence z(1) z(3) z(5) z(7) r(8) 
=a(2)  a ( 4 ) a ( 5 ) a ( 6 ) a ( 7 ) = c a b a b .  We should be careful to recover an LCS, 
because L a (4) does not represent a real position of an LCS. 

We are interested in finding just one such sequence. Since we have already 
found a common subsequence of length 5, we know further improvement will 
never be possible by calculating L 5 (1), L 4 (2), L 3 (3), L 2 (4) and L 1(5) (note that L 1 (5) 
means an LCS of length 5). Since further calculation of Li(j) will not improve 
the result, we stop the computation. If all LCSs are required, L 5 (1), L 4 (2) . . . . .  L 1 (5) 
must be calculated. Then in this example, z(2) z(3)z(5)z(7)z(8)=babab, 
z(2) r(4) z(5) z(7) z(8)=bcbab and z(2) r(4) r(7) r(8) z(9)=bcaba are also LCSs 
(see Fig. 2). 

Our algorithm is formally as follows. For  the given two strings StringA and 
StringB (I StringAI = m < [ StringBI = n), we prepare (m + 1) x (m + 1) left upper 
triangular matrix M, whose (i,j) element (l<i<m, l<j<m, j<m+2-i)  de- 
notes Lj(i) (notice that the subscripts are reversed). 

Arrays LCSA and LCSB of length m are used to recover one LCS. 

Algorithm. O(n(m-p)) algorithm for the LCS problem 
(initialization) 
sl : diagonal pos*--m, length MAX .--0 

clear LCSA and LCSB. 
s2: do while (length MAX < diagonal pos) 

pos A *- diagonal pos, length LCS ,-- 1, upper B *-- n + 1. 
(calculate M (i, j) s on one diagonal) 

s 21 : do while (pos A .  0 and upper B :# 0) 
(clear an element of M for uniform handling) 
if diagonal pos = m or length LCS > length MAX 

then M(length LCS, posA + 1)*--0. 
lower B*-- Max (1, M (length LCS, pos A + 1)). 
pos B*- upper B - 1. 
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(calculate one M(i,j) according to Lemma 3) 
do while (pos B > lower B and String A (pos A) =~ String B (pos B)) 

pos B ~ pos B - 1. end. 
if pos B > lower B then upper B ~ pos B 

else upper B ~ M (length LCS, pos A + 1). 
M (length LCS, pos A) ~- upper B. 
if upper B = 0 then length LCS ~ leng th  LCS - 1. 
length MAX ~ Max (length MAX, length LCS). 
length LCS ~ length LCS + 1. 
pos A ~ pos A - 1. 

end. 
diagonal pos,--- diagonal pos - 1. 

end. 
(recover an LCS) 
s3: The length of an LCS of String A and String B is length MAX. 
if upper B = 0  then p o s A ~ - p o s A + 2  else p o s A ~ p o s A +  1. 

pos LCS ~ length MAX. 
do while (pos LCS > 0) 

do while (M (pos LCS, pos A)= [ql (pos LCS, pos A + 1)) 
p o s A ~ p o s A + l ,  end. 

LCS A(pos LCS) ~ pos A. LCS B (pos LCS)*- M (pos LCS, pos A). 
posA ~-posA + 1, pos LCS ~ p o s  L C S -  1. 

end. 

An LCS of StringA and String B is StringA (LCSA(length MAX)) 

String A (LCS A (length MAX - 1)) ... String A (L CSA(1)) 
= String B (LCS B (length MAX)) 

String B (LCS B (length MAX - 1)) ... String B (LCS B (1)). 
end of the algorithm. 

Theorem 1. Assuming that two symbols can be compared in one time unit, above 
algorithm requires time of n ( m - p ) + ( p +  1 ) ( m - p +  1) units, where p is the length 
of an LCS of String A and String B (p is denoted by length MAX in above algorithm). 
m and n are equal to I String A I and [String B I, respectively. Therefore above algorithm 
requires time of O(n(m-p))  when p<m. When p=m, above algorithm can run in 
time of O(n). 

Proof. In this algorithm, elements of M are computed in the order shown in Fig. 3. 
s 1 requires O(m) computation time. The subloop s21 in which elements on one 
diagonal of M are computed is repeated exactly (m - p) times when p < m. If p = m 
subloop s21 is executed only once. In the loop s21, all of the symbols in StringB 
are compared sequentially from the last symbol to the first symbol. So total 
number of comparisons of symbols in loop s 2 is ( m - p )  n. The number of elements 
of M that are computed in the algorithm is (p + 1) ( m -  p + 1) at most including the 
auxiliary elements, s3 requires time of O(m). Then total computation time is 
n ( m - p ) + ( p +  1 ) ( m - p + l ) + O ( m ) .  Q.E.D. 
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m + l  / 

p ) < - - m - p + l ~  

/ / /  
m-p . . . 2  1 

/ /  
T 

p + l  

1 

( m + l  ) 

Fig. 3. The order of computing each element of Iql 

For the convenience of understanding, an array of size m 2 is prepared. Some 
readers may think that the algorithm requires time of O(m 2) if m2 >> (m- p) n, 
since to clear the array M takes m 2 steps. Only at most (p + 1) ( m - p  + 1) elements 
of M are, however, required in the above algorithm. It is not difficult to map an 
element of M, M (i,j), to an element of a one-dimensional array, whose size is 
bounded by (m+ 1) (m-p+ 1). 

By a little modification of the above algorithm, we can get (1) an algorithm 
to generate all LCSs, (2) a linear space algorithm to calculate the length of an 
LCS and (3) another O(p(m-p) log n) algorithm. We will show an outline of our 
O(p(m-p) log n) algorithm. 

Basic procedure is the same as the preceding algorithm. The way of calculating 
each element of M is different. For each symbol al in 27, we prepare a list N i which 
is an ordered list, in the descending order, of positions in String B in which symbol 
a i occurs. In the preceding algorithm, the largest position h such as String A(i) 
=StringB(h) and Li+I(j)<h<L~+I(j-1 ) must be determined to calculate 
M(j, i). If StringA(i)=a k we can determine such h by searching the list N k in 
time ofO(log J N k [), where I Nkl is the length of Nk and it does not exceed n = I String B I. 
To prepare all N~, n log n time is required at most. The number of M(j, i) that 
should be calculated is also (p+l)(m-p+l). So total computation time is 
n(log n)+(p+ 1) (m-p+ 1) (log n)+O(m) at most. 

Formal description of our O(p(m-p) log n) algorithm is omitted. 

4. Comparison of Algorithms 

Hirschberg has shown O(np) and O(p(m-p) log n) algorithms which seem to be 
best among previously known algorithms [3]. In this paper, O(n(m-p)) algorithm 
is presented. The efficiency of these algorithms depends on given input strings 
and we need to select a suitable algorithm for a specific application. 
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Fig. 4. The computation time of four algorithms 
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Figure 4 shows the computation time of these three algorithms, where the 
coefficients of the computation time of these three algorithms are assumed to be 
the same. 

Generally speaking, when the length of an LCS is expected to be short, O(pn) 
algorithm is better and when the length of an LCS is expected to be close to 
m, O((m-p) n) algorithm is better. 

When the length of an LCS is not estimated beforehand, several approaches 
are possible. Parallel computation of the above two algorithms would offer 
shorter running time. Instead of parallel computation, we can execute both 
algorithms by switching each other step by step. This switching algorithm re- 
quires theoretically the running time of O(Min(pn, (m-p)n)), but the coefficient 
doubles. O(p(m- p) log n) algorithm may be feasible in this case against the 
worst case. 
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