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Abstract Time-series classification (TSC) problems present a specific challenge for
classification algorithms: how to measure similarity between series. A shapelet is a
time-series subsequence that allows for TSC based on local, phase-independent sim-
ilarity in shape. Shapelet-based classification uses the similarity between a shapelet
and a series as a discriminatory feature. One benefit of the shapelet approach is that
shapelets are comprehensible, and can offer insight into the problem domain. The
original shapelet-based classifier embeds the shapelet-discovery algorithm in a deci-
sion tree, and uses information gain to assess the quality of candidates, finding a new
shapelet at each node of the tree through an enumerative search. Subsequent research
has focused mainly on techniques to speed up the search. We examine how best to
use the shapelet primitive to construct classifiers. We propose a single-scan shapelet
algorithm that finds the best k shapelets, which are used to produce a transformed
dataset, where each of the k features represent the distance between a time series and a
shapelet. The primary advantages over the embedded approach are that the transformed
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data can be used in conjunction with any classifier, and that there is no recursive
search for shapelets. We demonstrate that the transformed data, in conjunction with
more complex classifiers, gives greater accuracy than the embedded shapelet tree. We
also evaluate three similarity measures that produce equivalent results to information
gain in less time. Finally, we show that by conducting post-transform clustering of
shapelets, we can enhance the interpretability of the transformed data. We conduct our
experiments on 29 datasets: 17 from the UCR repository, and 12 we provide ourselves.

1 Introduction

In time-series classification (TSC), a class label is applied to an unlabelled set of
ordered data. The data need not be ordered temporally; any logical ordering is suf-
ficient (for example, images may be represented as time series, see Fig. 1). In tradi-
tional classification problems, the order of the attributes is unimportant, and interaction
between variables is considered to be independent of their relative positions. For time-
series data, the order of the variables is often crucial for finding the best discriminating
features. TSC research has focused on alternative distance measures for nearest neigh-
bour (NN) classifiers, based on either the raw data, or on compressed or smoothed
data (see Ding et al. 2008 for a comprehensive summary). The experimental evidence
suggests that I-NN with an elastic measure, such as dynamic time warping (DTW),
is the best approach for smaller datasets; however, as the number of series increases
“the accuracy of elastic measures converge with that of Euclidean distance” Ding et
al. (2008). This idea has propagated through current research. For example, Batista
et al. state that “there is a plethora of classification algorithms that can be applied to
time series; however, all of the current empirical evidence suggests that simple nearest
neighbor classification is very difficult to beat” Batista et al. (2011). Recently, there
have been several alternative approaches, such as weighted dynamic time warping
Jeong et al. (2010), support vector machines built on variable intervals Rodriguez and
Alonso (2005), tree-based ensembles constructed on summary statistics Deng et al.
(2011), and a fusion of alternative distance measures Buza (2011).

These approaches are focused on problems where the series from each class are
observations of an underlying common curve in the time dimension. Variation around
this underlying shape is caused by noise in observation, and also by noise in indexing,
which may cause a slight phase shift. A classic example of this type of similarity is the
cylinder-bell-funnel artificial dataset, where there is noise around the underlying shape

1 512
Fig. 1 A 1D representation (left) of an image (right). The shapelet subsequence is highlighted in blue
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and in the index where the shape transitions. Intuitively, time-domain NN classifiers
are ideal for this type of problem, as DTW can be used to mitigate noise in the indexing.

There is another set of problems involving cases where similarity in shape defines
class membership. Series within a class may be distinguished by common sub-shapes
that are phase independent; i.e., the defining shape may begin at any point in the series.
If the underlying phase-independent shape that defines class membership is global,
that is to say, the shape is (approximately) the length of the series, then techniques
based on transformation into the frequency domain can be employed to construct
classifiers Janacek et al. (2005). However, if the discriminatory shape is local, i.e.
significantly shorter than the series as a whole, then it is unlikely that the differences
between classes will be detected using spectral approaches. Ye and Keogh (2009)
propose shapelets to address this type of problem.

A shapelet is a time-series subsequence that can be used as a primitive for TSC based
on local, phase-independent similarity in shape. Shapelet-based classification involves
measuring the similarity between a shapelet and each series, then using this similarity
as a discriminatory feature for classification. The original shapelet-based classifier
embeds the shapelet discovery algorithm in a decision tree, and uses information
gain to assess the quality of candidates. A shapelet is found at each node of the tree
through an enumerative search. Shapelets have been used in applications such as early
classification Xing et al. (2011, 2012), gesture recognition Hartmann and Link (2010),
gait recognition Sivakumar et al. (2012), and clustering Zakaria et al. (2012).

The exhaustive search for shapelets is time consuming. Thus, the majority of
shapelet research has focused on techniques to speed up the search He et al. (2012),
Mueen et al. (2011), Rakthanmanon and Keogh (2013), Ye and Keogh (2009, 2011).
This makes the search for shapelets more tractable, but does not address the funda-
mental issue of how best to use shapelets to solve TSC problems. Decision trees are
useful and robust classifiers, but are outperformed in many problem domains by other
classifiers, such as support vector machines, Bayesian networks and random forests.

We propose a single-scan algorithm that finds the best k shapelets in a set of n time
series. We use this algorithm to produce a transformed dataset, where each of the k
features is the distance between the series and one shapelet. Hence, the value of the ith
attribute of the jth record is the distance between the jth record and the ith shapelet.
The primary advantages of this approach are that we can use the transformed data
in conjunction with any classifier, and that we do not have to search sequentially for
shapelets at each node. Threading the shapelet transform is an embarrassingly parallel
problem.

Many of the shapelets generated by the transform are similar to one another. In
terms of accuracy, this is not a problem if the classifier employed can handle correlated
attributes; however, it does reduce the interpretability of the transformed dataset. To
mitigate this problem, we propose a post-transform clustering procedure that groups
similar shapelets. We demonstrate that this dimensionality reduction allows us to map
the shapelets back to the problem domain easily, without substantially reducing the
accuracy of the classifiers.

We also address how to assess shapelet quality. The similarity between each can-
didate shapelet and each series is measured, and this sequence of distances, with
associated class membership, is used to assess shapelet quality. One implication of
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constructing a recursive decision tree is that there is a need to find a split point at each
node based on the sequence of distances. This requirement makes it natural to use
information gain as the shapelet quality measure. However, calculating information
gain for a continuous attribute requires the evaluation of all split points, and only
evaluates binary splits. This introduces a time overhead, and means that, for multi-
class problems, information gain may not capture fully the quality of the shapelet. In
contrast, there is no need to split the data when constructing the shapelet transform.
Therefore, we can base the quality measure on a hypothesis test of differences in dis-
tribution of distances between class populations. This allows us to assess multi-class
problems fully, and provides some speed improvement. We experiment with measures
based on the analysis of variance test for differences in means, and the non-parametric
Kruskal-Wallis and Mood’s median tests for difference in medians.

We conduct our experiments on 29 datasets, 17 from the UCR repository and 12
of we provide ourselves. This research is an extension of the work presented at two
conferences Lines and Bagnall (2012), Lines et al. (2012). The code and datasets are
available from Bagnall et al. (2012). Our contributions can be summarised as follows:

1. We describe a shapelet-discovery algorithm to find the best k shapelets in a single
pass, and evaluate it with numerous experiments on benchmark time-series datasets
and on new data.

2. We evaluate three alternative quality measures for use with our algorithm. Two
measures were proposed for the shapelet tree in Lines and Bagnall (2012). We per-
form comprehensive experiments and show that the new measures offer improved
speed over information gain.

3. We demonstrate that classifiers built on the shapelet-transformed data are more
accurate than the tree-based shapelet classifier on a wide range of problems.

4. We compare the performance of classifiers constructed on shapelet-transformed
data to classifiers constructed in the time domain.

5. We extend the original shapelet transform by using post-transform clustering to
relate the shapelets to the problem domain.

6. We provide three new time-series classification problems: Beetle/Fly,
Bird/Chicken, and Otoliths.

The paper is structured as follows. Section 2 provides background on time-series
classification and shapelets. In Sect. 3, we define three shapelet quality measures that
are an alterative to information gain. In Sect. 4, we propose a shapelet transform
algorithm. We discuss the datasets used for our experiments in Sect. 5. In Sect. 6, we
describe our experimental design and results, and perform qualitative analysis. Finally,
in Sect. 7, we form our conclusions.

2 Background
2.1 Time-series classification
A time series is a sequence of data that is typically recorded in temporal order at

fixed intervals. Suppose we have a set of n time series T = {T1, 1>, ..., T}, where
each time series 7; has m real-valued ordered readings 7; =< #i1,ti2, ..., tim >,
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and a class label ¢;. We assume that all series in T are of length m, but this is not a
requirement (see Hu et al. 2013 for discussion of this issue). Given a dataset T, the
time-series classification problem is to find a function that maps from the space of
possible time series to the space of possible class values.

As with all time-series data mining, time-series classification relies on a similar-
ity measure to compare data. Similarity measures can be embedded into the clas-
sifier or introduced through data transformation prior to classification. Discrimina-
tory similarity features typically fall into one of three categories: similarity in time
(correlation-based), similarity in change (autocorrelation-based), and similarity in
shape (shape-based). We focus on representations that best capture similarity in shape.

If function f, describes the common shape for class ¢, then a time series can be
described as

ti,j = fe;(J.si) +€j,

where s; is the offset for series i, and €; is some form of noise. Similarity in shape
can be differentiated into global and local similarity. Global shape similarity is where
the underlying shape that defines class similarity is approximately the same length as
the series, but series within the same class can have different offsets. So, for example,
function f. could be sinusoidal,

Sfei(j,s) =sin (j—i—s)'
Ci - T

This form of global similarity can be detected through explicit realignment or, more
commonly, through transformation into the frequency domain Janacek et al. (2005),
Wau et al. (2000). However, these approaches are unlikely to work when the shape-
based similarity is local. In this scenario, the discriminating shape is much smaller
than the series, and can appear at any point. For example, the shape could be a sine
wave embedded in noise that is triggered randomly for a short period. The function
fe would then be of the form

G sin (L) ifs=j<s+l
Ccq ’ - . ’
0 otherwise

where [ is length of the shape. It is unlikely that techniques based on Fourier trans-
forms of the whole series will detect these embedded shapes, and spectral envelope
approaches based on sliding windows are inappropriate, as we are assuming / is small.
Shapelets were introduced in Ye and Keogh (2009) to measure this type of similarity.

2.2 Shapelets
A shapelet is a subsequence of one time series in a dataset T. Every subsequence of

every series in T is a candidate. Shapelets are found via an exhaustive search of every
candidate between lengths min and max. Shapelets are independently normalised,;
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since we are interested in detecting localised shape similarity, they must be invariant to
scale and offset. Shapelet discovery has three main components: candidate generation,
asimilarity measure between a shapelet and a time series, and some measure of shapelet
quality. The generic shapelet-finding algorithm is defined in Algorithm 1.

Algorithm 1 ShapeletSelection (T, min, max)

1: best < 0
2: bestShapelet < ()
3: for | < min to max do

4: W < generateCandidates(T, 1)

5:  for all subsequence S in W; do

6: Dg < findDistances(S, T)

7 quality < assessCandidate(S, Dg)
8: if quality > best then

9: best < quality

10: bestShapelet <— S

11: return bestShapelet

2.2.1 Generating candidates

A time series of length m contains (m — [) + 1 distinct candidate shapelets of length
. We denote the set of all normalised subsequences of length / for series 7; to be W;
and the set of all subsequences of length / for dataset T to be

Wi ={WiiUWy U---UW, i}
The set of all candidate shapelets for dataset T is
W= {Wmin U Wmin+l u---u Wmax}»

where min > 3 and max < m. The set W has |[W| = > "% . n(m —[+ 1) candidate
shapelets.

2.2.2 Shapelet distance calculations

The squared Euclidean distance between two subsequences S and R, where both are
of length /, is defined as

l

dist(S, R) = Z(si —r)?

i=1

The distance between a time series 7; and a subsequence S of length [ is the
minimum distance between S and all normalised length / subsequences of T;

ds; = min dist(S, R)
ReW;
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We compute distances between a candidate shapelet S and all series in T to generate
a list of n distances,

DS =< ds,lvd5,29 AR adS,n >
2.2.3 Shapelet assessment

Algorithm 1 requires a function to assess shapelet quality. Shapelet quality is based
on how well the class values V are separated by the set of distances Dg. The standard
approach is to use information gain (IG) Shannon et al. (1949) to determine the quality
of a shapelet Mueen et al. (2011), Ye and Keogh (2009, 2011). Dy is sorted, and the
IG at each possible split point sp is assessed for S, where a valid split point is the
average between any two consecutive distances in Dg. For each possible split point, IG
is calculated by partitioning all elements of Dg < sp into Ag, and all other elements
into Bg. The IG at sp is calculated as

H(As) + ——H(By)

IG<Ds,sp>==H(Ds>—-(tiﬂ |Bs )
1Ds| 1Ds|

where |Dg]| is the cardinality of the set Dg, and H (Dyg) is the entropy of Dy,

H(Ds) =—>_ py log py

veV

The IG of shapelet S, Gy, is calculated as

I1Gs = max IG(Dg, sp)
speDg

The fact that the IG calculation requires sorting Dg and then evaluating all split
points introduces a time overhead of O(nlogn) for each shapelet, although this is
generally trivial in comparison to the time taken to calculate Dg, which is O (nml).

We propose three new quality measures in Sect. 3; our experimental results
(Sect. 6.1) show that the F-stat measure is significantly faster, and more discrimi-
native, than IG.

2.2.4 Speed-up techniques

Since the shapelet search is enumerative, there are n(m — [ + 1) candidates for any
given shapelet length /. Finding the distances Djy for a single candidate requires a scan
along every series, performing O (m) distance function calls, each of which requires
O (1) pointwise operations. Hence, the complexity for a single shapelet is O (nml),
and the full search is O (n?>m*). It is perhaps unsurprising that the majority of research
into shapelets has focused on speed-up techniques for shapelet discovery. Three types
of speed-up technique have been proposed.
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Early abandon of the distance calculations for shapelet S and series T;. Since dg ; 1S
a minimum of the m — [ + 1 subsequence distances between S and T;, individual cal-
culations can be abandoned if they are larger than the best found so far. Further speed
improvements, proposed in Rakthanmanon et al. (2012), can be achieved by normal-
ising subsequences during the distance calculation, and by reordering the candidate S
to compare the largest values first. Algorithm 2 summarises these improvements.

Algorithm 2 Similarity search with online normalisation and reordered early abandon

Input: A time series T =< t{, ..., t;; > and a subseries S =< sy, ..., 5 >, where [ < m.
Output: Minimum distance between S and all / length subseries in 7'.

S’ «<—normalise(S, 1, 1)
A <«sortIndexes(S’) { A; is the index of the ith largest absolute value in S'}
F <« normalise(T, 1,1)
p <0, g <[ { p stores the running sum, ¢ the running sum of squares }
b < dist(S, F) {find first distance, set to best so far, b}
{scan through all subseries }
fori < 1tom —1[do
p < p —t; {update running sums}
q < q— tl.
P pttiy
4 < aq+1y
X« ?
5 <« % —x
j<1,d <0
{distance between S and < f; 4| ...f4;4] > with early abandon}
while j </ & d <bdo

2

ti+A .—X 2 . . .
d<«d+ (SAj . yj ) { reordered online normalisation}
J<j+l1

if j =1&d < b then
b<«—d
return b

Precalculation of distance statistics between series. Because every subsequence is
compared to every other, there is duplication in the calculations. So, for example, when
the subsequence starting at position a is compared to the subsequence at position b,
many of the calculations that were previously performed in comparing the subsequence
starting at position a — 1 to the one starting at b — 1 are duplicated. A method involving
trading memory for speed is proposed in Mueen et al. (2011). For each pair of series
T;, T}, cumulative sum, squared sum, and cross products of 7; and T’ are precalculated.
With these statistics, the distance between subsequences can be calculated in constant
time, making the shaplet-discovery algorithm O (n?m?). However, precalculating of
the cross products between all series prior to shapelet discovery requires O (n>m?)
memory, which is infeasible for most problems. Instead, Mueen et al. (2011) propose
calculating these statistics prior to the start of the scan of each series, reducing the
requirement to O (nm?) memory, but increasing the time overhead.

Early abandon of the shapelet. An early abandon of the shapelet assessment is proposed
in Ye and Keogh (2011). After the calculation of each value ds ;, an upper bound on the
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1G is found by assuming the most optimistic future assignment. If this upper bound falls
below the best found so far, the calculation of Dg can be abandoned. Huge potential
speed up by abandoning poor shapelets comes at a small extra overhead for calculating
the best split and upper bound for each new dg ;. However, for multi-class problems,
a correct upper bound can be found only through enumerating split assignments for
all possible classes, which can dramatically increase the overhead.

3 Alternative shapelet quality measures

Unlike the shapelet tree, our shapelet transform does not require an explicit split point
to be found by the quality measure. IG introduces extra time overhead and may not be
optimal for multi-class problems, since it is restricted to binary splits. We investigate
alternative shapelet quality measures based on a hypothesis tests of differences in
distribution of distances between class populations. We look at three alternative ways
of quantifying how well the classes can be split by the list of distances Dy.

3.1 Kruskal-Wallis

Kruskal (1952) (KW) is a non-parametric test of whether two samples originate from
a distribution with the same median. The test statistic is the squared-weighted dif-
ference between ranks within a class and the global mean rank. Given a sorted list
of distances D split by class membership into sets D1, ..., D¢, and a list of ranks
R =<1,2,...,n > split so that the ranks of elements in D; in R are assigned to set
R;, the KW statistic is defined as

12 2
T +1)Z|RI(R—R)

Z,

where R; is the mean ranks for class i and R = . This simplifies to

12 in,eR,.rf
n+ D& R

—-3(n+1).

3.2 Analysis of variance F-statistic

The F-statistic (F-stat) for analysis of variance is used to test the hypothesis of differ-
ence in means between a set of C samples. The null hypothesis is that the population
mean from each sample is the same. The test statistic for this hypothesis is the ratio of
the variability between the groups to the variability within the groups. The higher the
value, the greater the between-group variability compared to the within-group vari-
ability. A high-quality shapelet has small distances to members of one class and large
distances to members of other classes; hence, a high-quality shapelet yields a high
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F-stat. To assess a list of distances D =< dy, d3, ..., d, >, we first split them by
class membership, so that D; contains the distances of the candidate shapelet to time
series of class i. The F-statistic shapelet quality measure is

> (Di— D)*/(c—1)
F = i

C _
> > (dj—D)’/n—C)
=1d;eD;

l

where C is the number of classes, n is the number of series, Di is the average of
distances to series of class i and D is the overall mean of D.

3.3 Mood’s median

Mood et al. (1974) median (MM) is a non-parametric test to determine whether the
medians of two samples originate from the same distribution. Unlike IG and KW, MM
does not require D to be sorted. Only the median is required for calculating MM,
which can be found in O (n) time using Quickselect Hoare (1962). The median is used
to create a contingency table from D, where the counts of each class above and below
the median are recorded. Let 0;] represent the count of class i above the median and
02 the count of those below the median. If the null hypothesis is true, we would expect
the split above and below the median to be approximately the same. Let ¢;; and e;o
denote the expected number of observations above and below the median if the null
hypothesis of independence is true. The MM statistic is

c 2
M= ZZ (Oij e—ijeij)2

i=1 j=I

4 Shapelet transform

Bagnall et al. (2012) demonstrate the importance of separating the transformation
from the classification algorithm with an ensemble approach, where each member
of the ensemble is constructed on a different transform of the original data. They
show that, firstly, on problems where the discriminatory features are not in the time
domain, operating in a different data space produces greater performance improve-
ment than designing a more complex classifier. Secondly, a basic ensemble on trans-
formed datasets can significantly improve simple classifiers. We apply this intuition
to shapelets, and separate the transformation from the classifier.

Our transformation processes shapelets in three distinct stages. Firstly, the algorithm
performs a single scan of the data to extract the best k shapelets. k is a cut-off value
for the maximum number of shapelets to store, and has no effect on the quality of
the individual shapelets that are extracted. Secondly, the set of k shapelets can be
reduced, either by ignoring the shapelets below a cut-off point (e.g. reducing a set of
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256 shapelets to 10 shapelets), or by clustering the shapelets (see Sect. 4.4). Finally,
a new transformed dataset is created, where each attribute represents a shapelet, and
the value of the attribute is the distance between the shapelet and the original series.
Transforming the data in this way disassociates shapelet finding from classification,
allowing the transformed dataset to be used in conjunction with any classifier.

4.1 Shapelet generation

The process to extract the best k shapelets is defined in Algorithm 3.

Algorithm 3 ShapeletCachedSelection(T, min, max, k)

1: kShapelets <

2: forall 7; in T do

3. shapelets < ()

4:  for [ < min to max do

S: Wi 1 < generateCandidates(T;,1)
6: for all subsequence S in W; ; do
7
8

Dg < findDistances(S, T)
: quality < assessCandidate(S, Dg)
9: shapelets.add(S, quality)
10:  sortByQuality(shapelets)
11:  removeSelf Similar(shapelets)
12:  kShapelets <— merge(k, kShapelets, shapelets)
13: return kShapelets

The algorithm processes data in a manner similar to the original shapelet algorithm
Ye and Keogh (2011) (Algorithm 1). For each series in the dataset, all subsequences
of lengths between min and max are examined. However, unlike Algorithm 1, where
all candidates are assessed and the best is stored, our caching algorithm stores all
candidates for a given time series, along with their associated quality measures (line
9). Once all candidates of a series have been assessed, they are sorted by quality, and
self-similar shapelets are removed. Self-similar shapelets are taken from the same
series and have overlapping indices. We merge the set of non-self-similar shapelets
for a series with the current best shapelets and retain the top k, iterating through the
data until all series have been processed. We do not store all candidates indefinitely;
after processing each series, we retain only those that belong to the best k so far, and
discard all other shapelets. Thus, we avoid the large space overhead required to retain
all candidates.

When handling self-similarity between candidates, it is necessary to temporarily
store and evaluate all candidates from a single series before removing self-similar
shapelets. This prevents shapelets being rejected incorrectly. For example, in a given
series, candidate A may be added to the k-best-so-far. If candidate B overlaps with A
and has higher quality, A will be rejected. If a third candidate of even higher quality, C,
is identified that is self-similar to B, but notto A, C would replace B, and the deleted
A would be a valid candidate for the k-best. We overcome this issue by evaluating
all candidates for a given series before deleting those that are self-similar (line 9 in
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Algorithm 3). Once all candidates for a given series have been assessed, they are sorted
into descending order of quality (line 10). The sorted set of candidates can then be
assessed for self-similarity in order of quality (line 11), so that the best candidates are
always retained, and self-similar candidates are safely removed.

4.1.1 Length parameter approximation

Both the original algorithm and our caching algorithm require two length parameters,
min and max. These values define the range of candidate shapelet lengths. Smaller
ranges improve speed, but may compromise accuracy if they prevent the most infor-
mative subsequences from being considered. To accommodate running the shapelet
filter on a range of datasets without any specialised knowledge of the data, we define
a simple algorithm for estimating the min and max parameters.

Algorithm 4 EstimateMinAndMax(T)

1: shapelets < (

2: fori < 1to 10 do

3. randomiseOrder(T)

4 T « [T, Ty, ..., T10]

5:  currentShapelets < ShapeletCachedSelection(T’, 1, n, 10)
6:  shapelets.add(current Shapelets)

7: order ByLength(shapelets)

8: min < shapeletsys.length

9: max < shapeletsys.length

10: return min, max

The procedure described in Algorithm 4 randomly selects ten series from dataset T
and uses Algorithm 3 to find the best ten shapelets in this subset of the data. For this
search, min = 3 and max is set to n. The selection and search procedure is repeated
ten times in total, yielding a set of 100 shapelets. The shapelets are sorted by length,
with the length of the 25th shapelet returned as min and the length of the 75th shapelet
returned as max. While this does not necessarily result in the optimal parameters, it
does provide an automatic approach to approximate min and max across a number
of datasets. Hence, we can compare our filter fairly against the original shapelet-tree
implementation.

4.2 Data transformation

The main motivation for our shapelet transformation is to allow shapelets to be used
with a diverse range of classification algorithms, rather than the decision tree used in
previous research. Our algorithm uses shapelets to transform instances of data into
a new feature space; the transformed data can be viewed as a generic classification
problem. The transformation process is defined in Algorithm 5.

The transformation is carried out using the subsequence distance calculation
described in Sect. 2.2.2. A set of k shapelets, S, is generated from the training data
T. For each instance of data T;, the subsequence distance is computed between 7T;
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Algorithm 5 ShapeletTransform(Shapelets S, Dataset T)
LT <0

2: forall 7; in T do

3:  for all shapelets s; in S do

4 dist < subsequenceDist(sj, T;)

5 Ti,j =dist

6: T'=T'UT;

7: return T’

and s;, where j = 1,2, ..., k. The resulting k distances are used to form a new

instance of transformed data, where each attribute corresponds to the distance between
a shapelet and the original time series. When using data partitioned into training and
test sets, the shapelet extraction is carried out on the training data to avoid bias;
these shapelets are used to transform each instance of the training and test data to
create transformed data sets, which can be used with any traditional classification
algorithm.

4.3 Shapelet selection

Using k shapelets in the filter will not necessarily yield the best data for classification.
Using too few shapelets does not provide enough information to the classifier; using
too many may cause overfitting, or dilute the influence of important shapelets. For our
experiments, we use 5 shapelets in the filter, where 7 is the length of a single series
of the data.

4.4 Clustering shapelets

By definition, a shapelet that discriminates well between classes will be similar to a set
of subsequences from other instances of the same class. It is common for the transform
to include multiple shapelets that match one another. In some datasets, including
the matches of a discriminative shapelet can mean that useful shapelets are missed;
additionally, the duplication can reduce the comprehensibility of the transformed data.
To mitigate these problems, we hierarchically cluster shapelets after the transform with
the procedure given in Algorithm 6. A distance map is created representing the shapelet
distance between each pair of shapelets. For k shapelets, this is a k x k matrix with
reflective symmetry around the diagonal (which consists of zeros). The pair with the
smallest shapelet distance between them are clustered, and an updated k — 1 x k — 1
distance map is created with the clustered pair removed and the cluster added. The
process is repeated until a user-specified number of clusters are formed. We compute
the shapelet distance between two clusters, C; and C, as the average of the shapelet
distance between each member of C; and each member of C;. For any cluster of
shapelets, we represent the cluster with the cluster member that is the best by the
appropriate shapelet quality measure. The other members of the cluster are assumed
to be matches of this shapelet.
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Algorithm 6 ClusterShapelets(Shapelets S, noClusters)

1: C < @ //C is a set of sets.
2: for all 5; € S do

3: C <« CU{s}

4: while |C| > noClusters do
5: M <« |C]| x |C| matrix
6: forall C; € C do
7
8

foralle e Cdo
distance < 0

9: comparisons < |C;| x |C}]

10: forall ¢; € C; do

11: forallc; € C; do

12: dist < dist +dg(cy, ci)

13: M; ;< wm;ﬁiﬁ /Istore average linkage distances in distance map.

14:  best < o0
15:  position < {0, 0}
16:  for all M; ; € M do

17: if M; j <best Ai # j then

18: X <«

19: y<«—j

20: best <— M; j //Find smallest distance in distance map.

21: C' < CyUCy

22: C <« C—{Cy} —{Cy}

23:  C < CUC’ /lUpdate set of clusters, merging the closest pair.
24: return C

5 Datasets

We perform experiments on 17 datasets from the UCR time-series repository. We
selected these particular UCR datasets because they have relatively few cases; even
with optimisation, the shapelet algorithm is time consuming.

We also provide a number of new datasets that we have donated to the UCR repos-
itory and make freely available to researchers. We have eight bone-outline problems
(Sect. 5.3), synthetic data designed to be optimal for the shapelet approach (Sect. 5.1),
two new image-processing outline-classification problems derived from the MPEG-7
dataset Bober (2001), and an outline-classification problem involving classifying her-
ring based on their otoliths (see Sects. 5.1.1 and 5.2 respectively). The datasets we use
are summarised in Table 1.

For all but the smallest problems, we partition the data into training and testing
sets and report the accuracy on the test set. Shapelet selection, model selection, and
classifier training are performed exclusively on the training set; the test set is used
only with the final trained classifier.

5.1 Synthetic data

We create a number of synthetic datasets designed to be tractable to the shapelet
approach. The datasets consist of 1,100 time series representing a two-class classi-
fication problem. The series are length 500, normally-distributed (N'(0, 1)) random
noise. For each dataset, two shapes (see Bagnall et al. 2012), A and B, are randomly
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Table 1 Summary of datasets

Assessment Instances Length No. Shapelet
(train/test) classes min/max

Adiac Train/Test 390/391 176 37 3/10
Beef Train/Test 30/30 470 5 8/30
Beetle/Fly LoocCcv 40 512 2 30/101
Bird/Chicken LooCcvV 40 512 2 30/101
ChlorineConcentration Train/Test 467/3,840 166 3 7/20
Coffee Train/Test 28/28 286 2 18/30
DiatomSizeReduction Train/Test 16/306 345 4 7/16
DP_Little Train/Test 400/645 250 3 9/36
DP_Middle Train/Test 400/645 250 3 15/43
DP_Thumb Train/Test 400/645 250 3 11/47
ECGFiveDays Train/Test 23/861 136 2 24/76
FaceFour Train/Test 24/88 350 4 20/120
GunPoint Train/Test 50/150 150 2 24/55
ItalyPowerDemand Train/Test 67/1029 24 2 /14
Lighting7 Train/Test 70/73 319 7 20/80
Medicallmages Train/Test 381/760 99 10 9/35
MoteStrain Train/Test 20/1252 84 2 16/31
MP_Little Train/Test 400/645 250 3 15/41
MP_Middle Train/Test 400/645 250 3 20/53
Otoliths Train/Test 64/64 512 2 30/101
PP_Little Train/Test 400/645 250 3 13/38
PP_Middle Train/Test 400/645 250 3 14/34
PP_Thumb Train/Test 400/645 250 3 14/41
SonyAIBORobotSurface Train/Test 20/601 70 2 15/36
Symbols Train/Test 25/995 398 6 52/155
SyntheticControl Train/Test 300/300 60 6 20/56
SyntheticData Train/Test 100/1,000 500 2 25/35
Trace Train/Test 100/100 275 4 62/232
TwoLeadECG Train/Test 23/1,139 82 2 7/13

selected. One instance of A is added to the noise at random locations in 550 of the time
series; an instance of B is added to the remaining 550 series. The series are split into
a size 100 training set and a size 1,000 testing set. Hence, we create a classification
problem where the distinguishing feature of the classes is a representative subsequence
located somewhere in the series. Each dataset gives a random instance of this type of
problem. This allows us to test whether one approach is significantly better for a class
of problem where the shapelet approach should be optimal. All the results presented
for synthetic data are averaged over 200 runs of independently generated train and test
sets.
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Fig. 2 Five beetle images (top left) and five fly images (fop right) from the Beetle/Fly problem. Five
bird images (bottom left) and five chicken images (bottom right) from the Bird/Chicken problem. There is
considerable intra-class variation, as well as inconsistent size and rotation

5.1.1 MPEG-7 shapes

MPEG-7 CE Shape-1 Part B Bober (2001) is a database of binary images developed
for testing MPEG-7 shape descriptors, and is available free online. It is used for testing
contour/image and skeleton-based descriptors Latecki et al. (2000). Classes of images
vary broadly, and include classes that are similar in shape to one another. There are
20 instances of each class, and 60 classes in total. We have extracted the outlines
of these images and mapped them into 1-D series. We have created two time-series
classification problems from the shapes, Beetle/Fly and Bird/Chicken. Figure 2 shows
some of the images from the two problems.

5.2 Otoliths

Otoliths are calcium carbonate structures present in many vertebrates, found within
the sacculus of the pars inferior. There are three types of otoliths: sagittae, lapilli, and
asterisci. In fish, it is primarily the sagittal otoliths that are studied, as they are larger
and easier to prepare and observe. Otoliths vary markedly in shape and size between
species, but are of similar shape to other stocks of the same species (Fig. 3). Otoliths
contain information that can be used by ‘expert readers’ to determine several key
factors important in managing fish stock. Analysis of otolith boundaries may allow
estimation of stock composition, including whether the samples are from one stock
or multiple stocks Campana and Casselman (1993), De Vries et al. (2002), Duarte-
Neto et al. (2008), allowing management decisions to be made Stransky (2005). We
consider the problem of classifying herring stock (either North sea or Thames) based
on the otolith outline (Fig. 4).

5.3 Bone outlines

The bone datasets (DP_Little, DP_Middle, DP_Thumb, MP_Little, MP_Middle,
PP_Little, PP_Middle, and PP_Thumb) consist of image outlines from hand X-rays,
converted into 1-D series. The original images can be found at (Image Processing
and Informatics Lab). Each of the eight datasets represents a different bone of the
hand, and is labelled as belonging to one of three classes, Infant, Junior, or Teen. The
classification problem is to predict the class to which a bone belongs, a process that is
largely performed manually by doctors. For more information, see Davis et al. (2012).
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Fig. 3 Otoliths from North-Sea Herring (a), Thames Herring (b) and two distinct populations of Plaice
(cand d)

Fig.4 A 1D time-series representation of the herring otolith shown in Fig. 3a

5.4 Scalability

At best, finding shapelets of a single length by exhaustive search has complexity
O (n*m>) where n is the size of the dataset and m is the length of the series Rak-
thanmanon and Keogh (2013). This is untenable for very large datasets. Our slowest
experiments were with the Otolith dataset, which has 64 training examples of length
512. We used 71 different shapelet lengths. In the worst case, this requires 3.9 x 10'3
operations. The experiments took several days to perform in our high-performance
computing facility.

6 Results
We present our experimental results in three stages. In Sect. 6.1, we compare IG and

the three alternative quality measures described in Sect. 3. In Sect. 6.2, we compre-
hensively evaluate the effectiveness of the shapelet transform. Finally, In Sect. 6.3, we
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demonstrate the explanatory power of shapelets by mapping them back to the problem
domain.

All algorithms and experiments are implemented in Java within the Weka Hall et
al. (2009) framework; the shapelet transform is implemented as a Weka batch filter to
allow for easy integration with existing classification code. The code to generate our
results is available at Bagnall et al. (2012).

6.1 Shapelet quality measures

To evaluate the quality measures in isolation, we perform these experiments with our
implementation of the shapelet tree described in Ye and Keogh (2011). We compare
IG, KW, F-stat, and MM in terms of accuracy and speed. The alternative statistics
do not explicitly split the data when searching for the best shapelet. To make the
comparison to IG as fair as possible, once the best shapelet has been selected with a
statistic, we use IG on the resulting set of distances to find the best split point. We do
this to focus on the ability of the statistic to assess shapelets, rather than perform data
splits.

6.1.1 Effect of quality measures on classification accuracy

Table 2 shows the accuracies and ranks of shapelet-tree classifiers built using the four
quality measures on 29 datasets. The tree based on the F-stat is the most accurate
classifier on 15 of the 29 data sets, and has the highest average rank. Furthermore, the
F-stat is significantly better than the other three measures tested on 200 repetitions of
the synthetic data. However, we cannot claim that F-Stat is universally better, since
their is no significant difference in ranks between the four measures when we consider
all 29 data sets. Figure 5 shows the a critical difference diagram for ranked accuracies
(see Demsar 2006). The diagram is derived from the overall test of significance of
mean ranks, where classifiers are grouped into cligues represented by solid bars. The
diagram shows that all classifiers are part of a single clique, and therefore that they
are not significantly different from one another.

6.1.2 Timing results

Table 3 shows the time required to find the best shapelet using IG, KW, F-stat, and
MM. We adopt this approach to ensure fair comparisons are made between measures,
as comparing the build times of whole decision trees is biased if the classifiers are
of different depths. Extracting a single shapelet ensures that the same number of
candidates are processed for each quality measure.

Table 3 shows that there are no datasets where IG is fastest. F-stat is the fastest
measure on average, and has the fastest time on the most datasets. Figure 6 shows that,
based on ranked timings, the F-stat is significantly faster than both IG and KW (using
the Friedman rank order test). However, the speed up is not of an order of magnitude,
and it is possible the difference could diminish with code and hardware optimisation.
Nevertheless, we argue that the F-stat should be the default choice for shapelet quality.
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Table 2 Classification accuracies for shapelet-tree classifiers

Dataset Information gain Kruskal-Wallis F-stat Mood’s median
Adiac 29.92 % (1) 26.60% (3) 15.60 % (4) 27.11% (2)
Beef 50.00% (2) 33.33% (3) 56.67 % (1) 30.00% (4)
Beetle/Fly 77.50% (3) 70.00 % (4) 90.00 % (1) 80.00% (2)
Bird/Chicken 85.00% (4) 87.50% (2.5) 90.00 % (1) 87.50% (2.5)
ChlorineConcentration 58.80 % (1) 51.95% (4) 53.52% (2) 52.11% (3)
Coffee 96.43% (2) 85.71% (3.5) 100 % (1) 85.71% (3.5)
DiatomSizeReduction 72.22% (2) 62.11% (3) 76.47 % (1) 4477 % (4)
DP_ Little 65.44% (3) 68.00% (2) 60.31% (4) 71.00 % (1)
DP_ Middle 70.53% (2) 69.33% (3) 61.86% (4) 73.67 % (1)
DP_ Thumb 58.11% (3) 72.00 % (1) 55.97% (4) 70.33% (2)
ECGFiveDays 77.47 % (4) 87.22% (3) 99.00 % (1) 92.80% (2)
FaceFour 84.09 % (1) 44.32% (3) 75.00% (2) 40.91% (4)
GunPoint 89.33% (4) 94.00% (2) 95.33 % (1) 92.00% (3)
ItalyPowerDemand 89.21% (4) 90.96 % (3) 93.10 % (1) 91.06% (2)
Lighting7 49.32 % (1) 47.95% (2) 41.10% (3) 27.40% (4)
Medicallmages 48.82% (3) 47.11% (4) 50.79 % (1) 48.95% (2)
MoteStrain 82.51% (4) 83.95 % (2) 83.95 % (2) 83.95 % (2)
MP_ Little 66.39% (3) 69.67 % (2) 57.83% (4) 70.33 % (1)
MP_ Middle 71.01% (3) 75.00 % (1) 60.93 % (4) 72.00% (2)
Otoliths 67.19 % (1) 60.93% (2) 57.81% (3) 54.69 % (4)
PP_ Little 59.64% (3) 72.00 % (1) 58.60 % (4) 67.33% (2)
PP_ Middle 61.42% (3) 68.33% (2) 58.14% (4) 69.67 % (1)
PP_ Thumb 60.83% (3) 71.33% (2) 59.07% (4) 73.00 % (1)
Sony AIBORobotSurface 84.53% (2) 7271 % (4) 95.34 % (1) 74.87% (3)
Symbols 77.99 % (2) 55.68% (4) 80.10 % (1) 57.39% (3)
SyntheticControl 94.33% (2) 90.00% (3) 95.67 % (1) 85.67% (4)
SyntheticData 93.30% (2) 80.56% (3.5) 100 % (1) 80.56% (3.5)
Trace 98.00% (2.5) 94.00 % (4) 98.00% (2.5) 100 % (1)
TwoLeadECG 85.07% (3) 76.38% (4) 97.01 % (1) 85.34% (2)
Average rank 2.53 2.78 2.22 2.47
This experiment can be reproduced with method DMKD_2013, Bagnall et al. (2012)
The best result for each dataset is shown in bold
Fig. 5 Critical difference CcD
diagram of the ranked accuracies
for the four shapelet-tree
classifiers 4 3 2 1
[ ! | ! | ]
KW 2.7759 2.2241 F
IG 2.5345 2.4655 MM

@ Springer



J. Hills et al.

Table 3 Time to find first shapelet for each dataset

Dataset Information gain Kruskal-Wallis F-stat Mood’s median
Adiac 17758.48 (4) 4974.50 (1) 4509.91 (2) 4752.63 (3)
Beef 1284.46 (4) 1253.17 (3) 1251.21 (2) 1228.51 (1)
Beetle-fly 21707.02 (4) 21400.71 (2) 21496.51 (3) 21133.98 (1)
Bird-chicken 20258.90 (2) 20349.63 (3) 20465.63 (4) 19996.78 (1)
ChlorineConcentration 26233.51 (4) 16699.23 (3) 15681.39 (1) 16572.67 (2)
Coffee 261.27 (2) 264.75 (4) 258.15 (1) 263.82 (3)
DiatomSizeReduction 55.35(4) 54.61 (3) 5391 (1) 54.36 (2)
DP_Little 97508.12 (4) 80556.13 (2) 78005.70 (1) 82052.11 (3)
DP_Middle 106382.47 (4) 94081.04 (3) 91208.52 (1) 91664.80 (2)
DP_Thumb 149567.07 (4) 125334.92 (3) 123766.49 (1) 124508.41 (2)
ECGFiveDays 151.64 (3) 150.90 (2) 149.10 (1) 155.43 (4)
FaceFour 4695.97 (4) 4621.97 (2) 4556.41 (1) 4648.45 (3)
GunPoint 592.00 (4) 569.51 (2) 569.42 (1) 580.76 (3)
ItalyPowerDemand 3.18(4) 1.56 (2) 1.75 (3) 1.46 (1)
Lighting7 15497.07 (4) 15157.93 (3) 14912.74 (1) 14940.20 (2)
Medicallmages 15703.95 (4) 8148.76 (3) 7742.97 (1) 8111.36 (2)
MoteStrain 11.55 (4) 11.02 (3) 10.76 (1) 11.00 (2)
MP_Little 108518.67 (4) 89849.25 (3) 88071.50 (1) 89634.65 (2)
MP_Middle 156750.20 (4) 135852.37 (3) 134731.54 (1) 134756.02 (2)
Otoliths 55090.54 (2) 56141.82 (4) 55874.19 (3) 54986.19 (1)
PP_Little 97987.27 (4) 79285.08 (1) 79993.31 (2) 80514.60 (3)
PP_Middle 68730.32 (4) 59579.27 (3) 57815.02 (1) 58389.16 (2)
PP_Thumb 110204.43 (4) 91183.51 (1) 91401.49 (3) 91202.87 (2)
Sony AIBORobotSurface 7.80 (4) 6.79 (2.5) 6.73 (1) 6.79 (2.5)
Symbols 8992.15 (4) 8941.21 (3) 8901.28 (1) 8922.01 (2)
SyntheticControl 2280.82 (4) 1029.95 (3) 984.36 (2) 974.27 (1)
SyntheticData 403.50 (4) 401.28 (2) 401.74 (3) 399.99 (1)
Trace 54829.06 (3) 55155.36 (4) 54128.53 (1) 54205.65 (2)
TwoLeadECG 3.61(4) 3.15(3) 3.12(2) 311(Q1)
Average rank 3.72 2.64 1.62 2.02
This experiment can be reproduced with method DMKD_2013, Bagnall et al. (2012)
The best result for each dataset is shown in bold
Fig. 6 Critical difference CD
diagram of the ranked timings of
the four shapelet-tree classifiers
4 2 1
I 1 1 l I
IG 3.7241 1.5862 E
KW 2.7069 1.9828 MM
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Using the F-stat measure is marginally, but significantly, faster, and the accuracy is
highly competitive on the 29 data sets as a whole. The F-stat is also significantly more
accurate on the synthetic data.

6.2 Shapelet transformation

Despite our conclusion from the previous set of experiments, we use IG as the shapelet
quality measure in all consequent experiments. Fixing the shapelet quality measure
removes a source of variation in performance and allows us to focus on our key
hypothesis that it is better to transform then use a more complex classifier than it is to
embed the shapelet discovery in a decision tree.

Our first objective is to establish that dissociating shapelet discovery from classifi-
cation does not reduce classification accuracy. We implement a shapelet decision-tree
classifier as described in Ye and Keogh (2011), and compare the performance to a C4.5
decision tree trained and tested on shapelet-transformed data. The shapelet tree has
greater accuracy on 15 datasets and the C4.5 tree has greater accuracy on 14 datasets.
No significant difference is detected between the classifiers using a paired t-test or a
Wilcoxon signed rank test. We conclude that performing the shapelet extraction prior
to constructing the decision tree does not reduce the accuracy of the classifier. Figure 7
presents the findings graphically.

Using classifiers other than decision trees can improve the accuracy of classification
with shapelets. Tables 4 and 5 shows the classification test accuracy of the C4.5, 1-NN,
naive Bayes, Bayesian network, Random Forest, Rotation Forest, and support vector
machine classifiers, all built using the default Weka settings on shapelet-transformed
data. A Bayesian network is an acyclic directed graph with associated probability
distributions Friedman et al. (1997). It predicts class labels without assuming inde-
pendence between variables. The Random Forest algorithm classifies examples by

Fig. 7 Comparison of C4.5 tree 100% s
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Table 4 Testing accuracies and ranks of INN-DTW on raw data, and simple classifiers (C4.5, INN, and
Naive Bayes) constructed on the shapelet-transformed data with % shapelets

Data 1% NN-DTW raw  C4.5 INN-Euclidean  Naive Bayes
Adiac 49.10 % (1) 24.30% (7) 2532% (5) 28.13% (4)
Beef 43.33% (8) 60.00 % (6.5) 83.33% (3) 73.33% (4)
Beetle/Fly 65.00% (8) 75.00% (7) 100.00 % (1)  92.50% (5)
Bird/Chicken 72.50% (8) 90.00 % (6) 97.50% (1)  87.50% (7)
ChlorineConcentration 63.36 % (2) 56.48 % (6) 56.93% (5) 45.96% (8)
Coffee 46.43 % (8) 85.71% (7) 100.00 % (2)  92.86% (5)
DiatomSizeReduction 92.48% (2) 75.16 % (8) 93.46 % (1)  78.76 % (7)
DP_Little 49.30% (8) 65.92% (7) 72.78% (6)  73.49% (3)
DP_Middle 54.57% (8) 71.24% (7) 73.73% (6)  73.96% (5)
DP_Thumb 53.02% (7) 57.99% (8) 60.71% (6)  62.96% (5)
ECGFiveDays 82.81% (8) 96.17 % (6) 98.37% (4)  96.40% (5)
FaceFour 82.95% (7) 76.14% (8) 100.00 % (1.5)  97.73% (4.5)
GunPoint 91.33% (7) 90.67 % (8) 98.00% (4)  92.00% (6)
ItalyPowerDemand 96.11 % (1) 90.96 % (8) 92.13% (5.5)  92.52% (3)
Lighting7 72.60 % (1) 53.42% (7) 49.32% (8)  57.53% (6)
Medicallmages 68.95 % (1) 44.87 % (6) 45.66% (5)  17.37% (8)
MoteStrain 81.55% (8) 84.42% (7) 90.34% (1)  88.82% (3)
MP_Little 55.81% (8) 63.43% (7) 68.52% (6)  68.76% (5)
MP_Middle 46.98 % (8) 73.25% (4) 70.89% (7)  71.95% (5)
Otoliths 59.38% (1.5) 65.63 % (3.5) 71.88% (1)  68.75% (2)
PP_Little 49.46 % (8) 57.40% (7) 67.22% (5)  69.23% (4)
PP_Middle 49.92% (8) 62.49% (7) 68.52% (6)  69.82% (5)
PP_Thumb 52.56% (8) 59.53% (7) 67.69% (6)  69.35% (4)
Data INN-DTW Raw C4.5 INN-Euclidean  Naive Bayes
SonyAIBORobotSurface  69.88 % (8) 84.53% (5) 84.03% (6)  79.03% (7)
Symbols 93.37 % (1) 47.14% (8) 85.63% (3)  77.99% (7)
SyntheticControl 97.33% (1) 90.33 % (4) 93.00% (2)  78.00% (7)
SyntheticData 70.03 % (8) 93.24% (7) 97.66% (5) 98.13% (2)
Trace 99.00% (2) 98.00% (5.5) 98.00% (5.5)  98.00% (5.5)
woLeadECG 79.46 % (8) 85.25% (7) 99.47% (1)  99.12% (3)
Average rank 5.81 6.60 4.09  5.00

The ranks include the results in Table 5. This experiment can be reproduced with method DMKD_2013

Bagnall et al. (2012)

The best result for each dataset is shown in bold

generating a large number of decision trees with controlled variation and using the
modal classification decision Breiman (2001). The Rotation Forest algorithm trains
a number of decision trees by applying principal components analysis on a random
subset of attributes Rodriguez et al. (2006). A support vector machine finds the best
separating hyperplane for a set of data by selecting the margin that maximises the
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Table 5 Testing accuracies and ranks of complex classifiers (Bayesian Network, random Forest, Rotation
Forest, and linear SVM) constructed on the shapelet-transformed data with % shapelets

Data Bayesian network Random forest Rotation forest SVM (linear)
Adiac 25.06 % (6) 30.43% (3) 30.69 % (2) 23.79% (8)
Beef 90.00 % (1) 60.00 % (6.5) 70.00% (5) 86.67% (2)
Beetle/Fly 97.50% (2.5) 90.00 % (6) 95.00 % (4) 97.50% (2.5)
Bird/Chicken 95.00% (3) 95.00% (3) 92.50% (5) 95.0% (3)
ChlorineConcentration 57.08 % (4) 57.58% (3) 63.52 % (1) 56.15% (7)
Coffee 96.43 % (4) 100.00 % (2) 89.29 % (6) 100.00 % (2)
DiatomSizeReduction 90.20% (4) 80.39 % (6) 83.01% (5) 92.16% (3)
DP_Little 72.90% (5) 73.02% (4) 74.67% (2) 75.15 % (1)
DP_Middle 74.67 % (4) 75.50% (3) 76.80% (2) 79.64 % (1)
DP_Thumb 63.91% (4) 64.14 % (3) 67.10% (2) 69.82 % (1)
ECGFiveDays 99.54 % (1) 93.26 % (7) 98.61 % (3) 98.95% (2)
FaceFour 100.00 % (1.5) 87.50 % (6) 98.86 % (3) 97.73 % (4.5)
GunPoint 99.33% (2) 96.00% (5) 98.67% (3) 100.00 % (1)
ItalyPowerDemand 92.42% (4) 93.00% (2) 92.03% (7) 92.13% (5.5)
Lighting7 65.75% (3.5) 64.38% (5) 65.75% (3.5) 69.86 % (2)
Medicallmages 28.16% (7) 50.79 % (4) 51.45% (3) 52.50% (2)
MoteStrain 89.06% (2) 84.58 % (6) 86.98 % (5) 88.66 % (4)
MP_Little 69.47 % (4) 71.36% (3) 75.15 % (1) 75.03% (2)
MP_Middle 71.12% (6) 75.15% (2) 74.67% (3) 76.92 % (1)
Otoliths 64.06% (5.5) 65.63 % (3.5) 59.38% (7.5) 64.06% (5.5)
PP_Little 70.06 % (2) 66.63 % (6) 69.82% (3) 72.07 % (1)
PP_Middle 71.36% (3) 70.53% (4) 75.38% (2) 75.86 % (1)
PP_Thumb 69.47% (3) 67.81% (5) 72.78% (2) 75.50 % (1)
SonyAIBORobotSurface 89.68 % (1) 85.19% (4) 89.02% (2) 86.69 % (3)
Symbols 92.26% (2) 84.62 % (4.5) 84.42 % (6) 84.62% (4.5)
SyntheticControl 76.67 % (8) 89.00% (5) 92.00% (3) 87.33 % (6)
SyntheticData 98.00% (3) 96.94 % (6) 97.72% (4) 98.40 % (1)
Trace 100.00 % (1) 98.00% (5.5) 98.00% (5.5) 98.00% (5.5)
TwoLeadECG 98.77 % (4) 96.14 % (6) 97.98 % (5) 99.30% (2)
Average rank 3.48 445 3.64 2.93

The ranks include the results in Table 4. This experiment can be reproduced with method DMKD_2013,
Bagnall et al. (2012)
The best result for each dataset is shown in bold

distance between the nearest examples of each class Cortes and Vapnik (1995). It can
also transform the data into a higher dimension to make it linearly separable; we use
only the linear support vector machine.

For comparison purposes, Table 4 includes the accuracy for a 1-NN-DTW classifier
built on the raw data. The support vector machine is the best classifier, with an average
rank of 2.93, and best performance in 10 out of 29 problems. The decision tree is the
worst classifier on average; in fact, it has a worse average rank than the I-NN-DTW
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Fig. 9 Change in classification accuracy between raw data and shapelet-transformed data. Each point is
the median difference; the bar shows the minimum and maximum change in classifier accuracy for that
dataset. The results are available from Bagnall et al. (2012)

classifier based on raw data. The critical difference diagram in Fig. 8 shows that C4.5
and 1-NN-DTW are significantly worse than SVM, Bayesian network, and Rotation
Forest. There may be a trade off between interpretability and accuracy (a tree is easier
to understand than a support vector machine), but by separating shapelet discovery
and classification, there is greater potential to explore possible solutions.

Next, we compare the accuracy of seven classifiers trained on raw data with the
same classifiers trained on shapelet-transformed data. Figure 9 presents the difference
in classification accuracy for each classifier on each dataset. A positive value indicates
that the classifier is more accurate on the transformed data, a negative value the con-
verse. As can be seen, the change in accuracy is strongly indexed to the dataset, as
well as to the classifier. There are broad similarities between classifiers, but there are
cases, such as Rotation Forest on the FaceFour dataset, where the change in accuracy
is very different to that of the other classifiers.
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FHiitl

Fig. 10 An illustration of the Gun/NoGun problem taken from Ye and Keogh (2009). The shapelet that
they extract is highlighted at the end of the series

There are a number of datasets where the shapelet-transform has been detrimental
to the accuracy of the classifier, for example Adiac, where the classifiers each lose
between 20 and 40 % accuracy. The image datasets and spectrograph datasets (Beef,
Coffee, Beetle/Fly, Bird/Chicken) show good improvement from the shapelet trans-
form. The synthetic data that was designed to work well with the shapelet transform
shows the best and most consistent improvement, as would be expected.

The shapelet transform offers improvements in classification accuracy over several
different datasets that represent a number of different types of data. This supports the
shapelet approach, and suggests that it fills a classification niche that has not been
covered in the literature.

6.3 Exploratory data analysis

We have shown that using shapelets to transform data can improve classification accu-
racy. One of the strengths of using shapelets as a classification tool is that they provide
a level of interpretability that other classification approaches cannot. One of the goals
of our work with shapelets is to produce accurate classification decisions that are inter-
pretable. We demonstrate in this section that our filter retains the interpretability of
the original shapelet implementation.

The GunPoint dataset consists of time series representing an actor appearing to draw
a gun; the classification problem is to determine whether or not the actor is holding
a prop (the Gun/NoGun problem). In Ye and Keogh (2009), the authors identify that
the most important shapelet for classification occurs when the actor’s arm is lowered,;
if there is no gun, a phenomenon called ‘overshoot’ occurs, and causes a dip in the
time-series data. This is summarised in Fig. 10, taken from Ye and Keogh (2009).

The shapelet decision tree trained in Ye and Keogh (2009) contains a single shapelet
at the end of the series corresponding to the arm being lowered. To demonstrate that
our filter agrees with this and extracts the important information from the data, we
filter the GunPoint dataset using the length parameters specified in the original paper.
The top five shapelets that we extract are shown in Fig. 11, along with the shapelet
reported in Ye and Keogh (2009).
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Fig. 11 An illustration of the five best shapelets extracted by our filter and the shapelet found by Ye and
Keogh. The graph to the right shows how closely they match
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Fig. 12 The 10 best shapelets for the Gun/NoGun problem. The shapelets form two distinct clusters. The
graph on the left shows shapelets 1-6. They represent the ‘overshoot’ motion identified in Ye and Keogh
(2009). The graph on the right shows shapelets 7—-10. They represent the extra movement necessary to lift
the prop gun when the arm is raised

Figure 11 shows that each of the top five shapelets from our filter is closely matched
with the shapelet from Ye and Keogh (2009). Figure 12 shows that the best ten shapelets
form two distinct clusters. Interestingly, the shapelets to the right of the figure corre-
spond to the moments where the arm is lifted, and are instances where there is a gun.
These shapelets could correspond to the subtle extra movements required to lift the
prop, aiding classification by providing more information.

To explore our findings further, we hierarchically cluster the shapelets extracted
from the GunPoint dataset. Our intuition is that reducing the number of shapelets will
increase interpretability. The top shapelets extracted by the filter overlap to a large
degree; we expect that, in cases like this, reducing k will result in a larger loss of accu-
racy than clustering the shapelets. In addition, multiple instances representing the same
shapelet give the user less information than instances representing different shapelets.

Table 6 presents the accuracies of seven classifiers on the different transforms of
the data. The transforms consist of three shapelet filters with k = 75, k = 10, and
k =5, and two clustered shapelet filters based on k = 75 shapelets clustered to 10 and
5 clusters. For the C4.5 tree, all of the transformed datasets give the same accuracy.
However, for the other classifiers, the general trend is that reducing the number of
shapelets results in a slight loss of accuracy (in 5 of 6 cases, the classifiers trained on
the k = 75 shapelet-transformed data have the best, or joint best accuracy). In most

@ Springer



Classification of time series

Table 6 Accuracies of seven classifiers on the GunPoint dataset

Classifier Raw data (%) k =75(%) k =10(%) 10 Clusters (%) k =5 (%) 5 Clusters (%)
C4.5 77.33 89.33 89.33 89.33 89.33 89.33
INN 91.33 98.00 98.00 97.33 90.00 96.00
Naive Bayes 78.67 92.67 90.00 90.67 87.33 89.33
Bayesian network 85.33 99.33 94.67 99.33 91.33 98.67
Random forest 91.33 98.67 90.00 98.00 94.00 95.33
Rotation forest 87.33 96.00 95.33 98.67 92.00 90.67
SVM (linear) 79.33 100.00 89.33 98.67 84.67 91.33

The accuracies are presented for the raw data, data transformed by filters with 75, 10, and 5 shapelets, and
data transformed by a 75-shapelet filter clustered to 10 and 5 clusters
The best result for each classifier is shown in bold

Fig. 13 The five best clustered shapelets from the Beetle/Fly dataset. The shapelets are highlighted on the
outline in blue

cases (10 of 12), clustering the shapelets gives better accuracy than setting k to that
value. This is likely to be the case because many of the top shapelets from GunPoint are
very similar, which results in fewer differences between the classes in the transformed
space than with the full set of shapelets. When the shapelets are clustered, the set of
shapelets is likely to be more diverse, resulting in greater classification accuracy.

The main benefit of clustering the shapelets is improved interpretability. The top
shapelets in the GunPoint dataset form two distinct clusters (Fig. 12). When we cluster
the shapelets into 10 or 5 clusters, we find that the top two shapelets represent the two
clusters found by the filter.

Other datasets show similar results when transformed using clustered shapelets.
Figure 13 shows the top five clustered shapelets from the Beetle/Fly dataset. Table 7
presents the classification accuracies for the different transforms.

Clustering the shapelets for the Beetle/Fly dataset provides superior classification
accuracy compared to lowering k to the same value for all but three of the fourteen
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Table 7 Accuracies of seven classifiers on the Beetle/Fly dataset

Classifier Raw data (%) k =256 (%) k =10 (%) 10 Clusters (%) k =5 (%) 5 Clusters (%)
C4.5 70.00 75.00 80.00 82.50 82.50 77.50
INN 65.00 100.00 87.50 95.00 90.00 95.00
Naive Bayes 72.50 92.50 90.00 95.00 85.00 95.00
Bayesian network 72.50 97.50 87.50 92.50 80.00 87.50
Random forest 72.50 90.00 77.50 82.50 77.50 70.00
Rotation forest 77.50 95.00 87.50 92.50 87.50 80.00
SVM (linear) 77.50 97.50 87.50 97.50 85.00 95.00

The accuracies are presented for the raw data, data transformed by filters with 256, 10, and 5 shapelets, and
data transformed by a 256-shapelet filter clustered to 10 and 5 clusters
The best result for each classifier is shown in bold

cases. There are two cases where the full shapelet transform is inferior to transforms
using fewer shapelets; for the C4.5 tree, the difference is large, suggesting that the tree
overfits the data when using a full set of shapelets.

In Fig. 13, the first two shapelets distinguish members of the beetle class, and
the remaining three distinguish members of the fly class. By clustering down to five
shapelets, we gain insight into the problem that would be less obvious from the original
256 shapelets. The beetle class is distinguished by arelatively simple angle between the
legs and body; the only feature is a knee joint on the leg. The fly class is distinguished
by a more complex shapelet, related to the more intricate features of the fly images.

Using only these five shapelets, three of the classifiers were able to achieve 95 %
accuracy. In contrast, because of the high intraclass variation, classifiers trained on the
whole outline achieved at best 77.5 % accuracy. In this case, using shapelets provides
a considerable increase in classifier accuracy, and clustering down to five shapelets
gives great interpretability.

For the Bird/Chicken data, the clustered shapelets (Fig. 14) are outperformed by the
k best shapelets where the number of clusters is equal to k (Table 8). This shows that
it is not necessarily the case that clustering improves accuracy. For different datasets,
it may be worth using a validation set, or cross-validation if the dataset is small, to
determine which method provides better accuracy.

The accuracies on the transformed data are all superior to the accuracies on the
raw data. In many cases, using a smaller value of k results in better classification than
using the full set of shapelets, perhaps because the full set overfits the data. If this
is the case, it may also explain why clustering the full set is inferior to using fewer
shapelets.

7 Conclusions

We investigate quality measures for shapelets, and propose a shapelet-transform algo-
rithm.

We demonstrate the effectiveness of the Kruskal-Wallis, F-statistic, and MM statis-
tics as quality measures for shapelet discovery by training shapelet decision-tree clas-
sifiers in the style of Ye and Keogh (2011), with these statistics in place of Information
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Fig. 14 The five best clustered shapelets from the Bird/Chicken dataset. The shapelets are highlighted on
the outline in blue

Table 8 Accuracies of seven classifiers on the Bird/Chicken dataset

Classifier Raw data (%) k = 256 (%) k = 10 (%) 10 Clusters (%) k =5 (%) 5 Clusters (%)
C4.5 75.00 90.00 90.00 87.50 87.50 87.50
INN 85.00 97.50 92.50 90.00 92.50 90.00
Naive Bayes 60.00 87.50 95.00 92.50 92.50 90.00
Bayesian Network 60.00 95.00 97.50 97.50 95.00 82.50
Random Forest 80.00 95.00 87.50 90.0 87.50 85.00
Rotation Forest 87.50 92.50 95.00 90.00 90.00 90.00
SVM (linear) 77.50 95.00 95.00 85.00 85.00 82.50

The accuracies are presented for the raw data, data transformed by filters with 256, 10, and 5 shapelets, and
data transformed by a 256-shapelet filter clustered to 10 and 5 clusters
The best result for each classifier is shown in bold

Gain. Our results show that Information Gain is the slowest measure to compute, and
is no better in terms of accuracy than the other measures. The F-statistic is significantly
more accurate on the synthetic data designed to be optimal for shapelets, and is the
highest ranked measure overall. We believe that it should be the default measure of
choice for future work with shapelet-transformed data.

We propose a shapelet-transform algorithm for time-series classification that
extracts the k-best shapelets from a dataset in a single pass using a caching algo-
rithm, and allows the shapelets to be clustered to enhance interpretability. We trans-
form 29 datasets with our filter, and demonstrate that a C4.5 decision-tree classifier
trained with transformed data is competitive with the original shapelet tree of Ye and
Keogh (2009). Our transformed data can be used with other classifiers, which achieve
improved accuracy while maintaining the interpretability of the shapelet approach.
We provide exploratory data analysis of the shapelets extracted by our filter on the
Gun/NoGun, Beetle/Fly, and Bird/Chicken problems, and show that shapelets can give
insight into the problem domain.

@ Springer



J. Hills et al.

There are limitations to the approach. First, the shapelet transform will not be opti-
mal for all problems. Figure 9 shows that there are some datasets where the transform
improves all classifiers, but others where the classifiers in the shapelet domain are
less accurate than those in the time domain. Our results suggest that shapelets may
be a good approach for image-outline classification, spectrograms, and ECG mea-
surements, but these are qualitative observations. An obvious area of future work is to
investigate whether there are problem domains where the shapelet approach is the best
on average. Second, though the transform is faster on average than the shapelet deci-
sion tree, finding the best shapelets is slow. Exact techniques for shapelet discovery are
unsuitable for large problems. Approximate techniques, such as the SAX compression
described in Rakthanmanon and Keogh (2013), can mitigate this problem. Finally, the
post clustering we perform improves intelligibility, but it also introduces the risk of
removing important discriminatory features, and introduces a further parameter into
the transform.

Despite these limitations, we believe shapelets are an important new approach for
solving time-series classification problems where localised similarity in shape defines
class membership. We have demonstrated that the most flexible and accurate way of
using shapelets for time-series classification is as a transformation performed prior to
classifier construction.
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