Finding Maximal Repetitions in a Word in Linear Time *

Roman Kolpakov Gregory Kucherov
French-Russian Institute for Informatics and LORIA/INRIA-Lorraine
Applied Mathematics, Moscow University 615, rue du Jardin Botanique
119899 Moscow, Russia B.P. 101, 54602 Villersds-Nancy, France
e-mail: roman@vertex.inria.msu.ru e-mail: kucherov@loria.fr
Abstract written asu* = wu...u and is called arninteger power
——r

k
A repetition in a wordw is a subword with the period of ~ (or k-power ortandem arrays A word of exponent 2 is
at most half of the subword length. We study maximal repe-called asquare(or tandem repeat A word which is not an
titions occurring inw, that is those for which any extended integer power is callegrimitive. In general, any wordy
subword ofw has a bigger period. The set of such repeti- Of periodp and exponent can be written as*v, whereu
tions represents in a compact way all repetitionainWe IS & primitive word,|u| = p, v is a proper prefix of, and
first prove a combinatorial result asserting that the sum of e =k + %
exponents of all maximal repetitions of a word of length We calla repetitiona word of exponent 2 or more (equiv-
is bounded by a linear function in. This implies, in par- alently, with the period of at most half the word length). The
ticular, that there is only a linear number of maximal repe- problem addressed in this paper is to construct an efficient
titions in a word. This allows us to construct a linear-time algorithm for identifying all subwords in a word which are
algorithm for finding all maximal repetitions. Some conse- repetitions. Note that in this paper we are interested in char-
quences and applications of these results are discussed, agcterizing allbbccurrencef repetitions in the word, and not
well as related works. in all syntactically distinctepetitions (cf [19, 22]).
Clearly, a word may contain a quadratic number of rep-
etitions (e.g. ™). To represent them in a compact way,
1. Introduction we in_tr_odu_ce the not_ion of maxi_mal repetition_.rAaximaI_
repetitiort in a word is a repetition such that its extension
. o) by one letter to the right or to the left yields a word with
Repetitions (periodicities) in words are fundamental ob- bigger period. For example, the subword 10101 in the
jects, due to their primary importance in word combina- \yorqy, — 1011010110110 is a maximal repetition (with
torics [14] as well as in various applications, such as string period 2), while the subword 1010 is not. Another max-
matching algorithms [8, 5], molecular biology [9], or text jmg| repetitions ofw are prefix 10110101101 (period 5),
compression [20]. N | suffix 10110110 (period 3), prefix 101101 (period 3), and
Several notions of repetitions have been studied, and tothe three occurrences of 11 (period 1). Maximal repetitions
make it precise, we start with basic definitions. Recall that gncode, in a most compact way, all repetitions in the word,
the periodof a wordw = a, ... a, is the smallest positive pence their importance.

integerp such thaiz; = a;, for all ¢, providedl < ¢,7 +
p < n. The rationaln/p is calledthe exponentf w. If
the exponent is an integer numbder- 1, w can be simply

Let us now survey the known algorithmic results on
searching for repetitions in a word, which is a classical
string matching problem (see [4]). In early 80s, Slisenko

“Part of this work has been done during the first authors visit of [19] prqposed a !'near (r_eal-tlme) a_-l_gomhm for finding all
LORIA/INRIA-Lorraine supported by a grant from the French Ministry ~ syntactically distinctmaximal repetitions in a word. In-
of Public Education and Research. The first author has been in part supdependently, Crochemore [3] described a simple and ele-

ported by the Russian Foundation of Fundamental Research, under gran
96-01-01068, and by the Russian Federal Program "Integration”, underbam linear algorithm for finding a square in a word (and

grant 473. The work has been done within a joint project of the French- thus checking if a word is repetition-free). The algorithm
Russian A.M.Liapunov Institut of Applied Mathematics and Informatics at
Moscow University 1calledrunin [10] andmaximal periodicityin [17]

is based on a special factorization of the word, called s- to achieve the results claimed in [13].

factorization (f-factorization in [4], or Lempel-Ziv decom- However, so far it has been an open question whether a

position [9]). Another linear algorithm checking whether a linear algorithm for findingall maximal repetitions exists.

given word contains a square was proposed in [16]. In the concluding section of [17], Main speculates that such
However’ it is known that there may be up(t@n IOg n) an algorithm mlght exist. The same question is raised in

square occurrences in a word, even if only primitively- [10]. However, there has been no evidence in support of
rooted squares are considered [2] (an integer paes this conjecture as the number of maximal repetitions has not
primitively-rooted if u is a primitive word). An example beenknown to be linear. This paper provides this argument.
is provided by Fibonacci words, that contad(n logn) In the first part of the paper (Section 3) we prove a com-
squares all of which are primitive|y_rooted (an exact for- binatorial result asserting that the sum of eXponentS of all
mu'a iS given in [7]) Th|s |mp||es that there iS no hope to maximal repetitions in a word is |ineal’|y bounded. Obvi-
construct a linear algorithm to explicitly find all squares in 0usly, this implies that the number of maximal repetitions in
a word as their number is Super-"near_ a word is linear, which contrasts to tl@(n IOg n) bounds

for the number of primitively-rooted squares or integer pow-
ers. This also explains a trade-off between the number of
repetitions in a word and their exponents; Fibonacci words,
for example, have a linear number of maximal repetitions
that are all of small exponent (smaller than 4). Based on the
linearity result, we show in Section 4 that all maximal repe-
titions in a word can be found in linear time. Since maximal
repetitions characterize completely the repetitive structure
of the word, this allows to solve other related problems, e.qg.
to output all squares in a word in ting&n + .5), whereS'is

the output size [13, 22], or to find in linear time all “branch-
ing tandem repeats” [21], or to determine, in linear time, the
number of repetitions of a given exponent starting at every
h position in the word. We believe that other applications of

these results are still to be discovered.

There are several differet(n log n) algorithms finding
all occurrences of repetitions in a string. Note however that
each of these algorithms uses its own notion of repetition.
In 1981, Crochemore [2] proposed &n log) algorithm
for finding all occurrences of non-extendable primitively-
rooted integer powers in a word (i.e. those primitively-
rooted integer powera* which are not followed or pre-
ceded by another occurrencewf This is an asymptoti-
cally optimal bound, as the number of such powers can be
Q(nlogn). Using a suffix tree technique, Apostolico and
Preparata [1] described &h(n logn) algorithm for finding
all right-maximalrepetitions, which are repetitions that can-
not be extendetb the rightwithout increasing the period.
Main and Lorentz [15] proposed another algorithm whic
actually finds all maximal repetitions i@(nlogn) time.
They also point out the optimality of this bound under the o)
assumption of unbounded alphabet and under the restrictio2- Further definitions and basic results
that the algorithm is based only on symbol comparisons. In

1989, using s-factorization, Main [17] proposedirzear- For a wordw = a; ...an, wli..j] denotes its subword
time algorithm which finds alleftmostoccurrences of dis- a;...a;. A position in a wordw = a; ...a, IS an integer
tinct maximal repetitions in a word. between 0 and. Each positionr in w defines a factoriza-

As far as other related works are concerned, Kosarajultionw = wiw, wherelw; | = . The position of lettea; in
[13] describes af(n) algorithm which, given aword, finds ~ @ iS¢ — 1. If v = wfi..j], we denoténitpos(v) = i —1and
for each position the shortest square starting at this position €7dpos(v) = j. We say that subword = wli..j] crossesa
He also claims a generalization which finds all primitively- POSition7 inw, if i < < j. _
rooted squares in tim@(n + S) whereS is the number If w is a subword of," for some naturat, [u| is called a
of such squares. In [21], Stoye and Gusfield proposed sevPeriodof w, and wordu is arootof w. Clearly,p is a period
eral algorithms that are based on a unified suffix tree frame-0f @ = a1 ... a, iff a; = a;;p, wheneved <i,i+p < n.
work. Their results are based on an algorithm which finds Another equivalent definition is (see [14}:s a period of
in time O(n logn) all “branching tandem repeats”. In our @ = @1 ---ayn iff w[l.n —p] = wp + 1..n]. Each wordw
terminology, branching tandem repeats are (not necessarily'as the minimal period that we will dengt@w) and caltthe
primitively-rooted) square suffixes of maximal repetitions. period ofw. The ratio% is called theexponenbf w and
In a recent paper, Stoye and Gusfield [22] proposed a dif-denotect(w). Clearly, a root: of w such thaju| = p(w),
ferent approach, combining s-factorization and suffix tree is primitive, that isu cannot be written as® for & > 2.
techniques. The goal achieved is to find, in linear time, a Considerw = a;...a,. A repetitionin w is any

representative of eadyntactically distincsquare. The fea- subword occurrence = wli..j] with e(r) > 2. A
sibility of this task is supported by the result of [6] asserting maximal repetitionin w is a repetitionr = wli..j] such
that there is a linear number (actually, no more thajpdis- that p(w[i..j]) < p(w[i — 1..5]) wheneveri > 1, and

tinct squares in words of lengthover an arbitrary alphabet. p(wli..j]) < p(w[i..j+1]) whenevey < n. In other words,
The approach allows also to solve some other problems, e.ga maximal repetition is a repetition= w]i..j] such that no

subword ofw which contains- as a proper subword has the exact numbe#tR(f,) of maximal repetitions in Fi-
the same minimal period as Note that any repetitionina bonacci words, which turned out to B¢f,,_»| — 3 (curi-

word can be extended to a unique maximal repetition. ously enough, this number is one less than the number of
A basic result about periods is the Fine and Wilf's theo- distinctsquares, computed in [7]). Fétezp(f,), we ob-
rem (see [14]): tained the approximate formuezp(f,) = C-|fn|+0(1),

wherel.922 < C' < 1.926. Thus, the total sum of expo-
Theorem 1 (Fine and Wilf) If w has periodsp,, p2, and nents of maximal repetitions in Fibonacci words is linear in
|lw| > p1 + p2 — ged(p1,p2), thenged(py,p2) is also a the length, which suggests that this might hold for general
period ofw. words too.

) Let us now turn to the general case and state the main
The following Lemma states some useful facts about yggyt.

maximal repetitions that will be used in the sequel.
Theorem 2 Sexp(n) = O(n).
Lemmal (i) Two distinct maximal repetitions with the
same periodp cannot have an overlap of length The proof is based on the following Lemma.
greater than or equal t@,
Lemma?2 Letw = w; ...wy, and letCR; be the set of
(i) Two maximal repetitions with periods , p2, p1 # p2, repetitions of R(w) crossing the frontier betweemn; and
cannot have an overlap of length greater than or equal w;,,,7 = 1,...k — 1. Then

to (p1 + p2 — ged(p1, p2)) < 2max{p;,p2}.

k k—1
A repetitionr is said to have a period in some subword Sexp(w) < Y _ Sewp(w;) +4- Y #CR;.
of w if r overlaps with this subword on at leasgt-) letters. i=1 i=1

Also, we say that a repetition has a period on the right
(respectively on the left) of a position with the meaning
thatw[r + 1..m + p(r)] (respectivelyw[r — p(r) + 1..7]) is
a subword of-.

#S denotes the cardinality of a s€t All logarithms are
binary unless the base is indicated.

Proof: By induction, it is sufficient to prove the Lemma
for k = 2. Letw = wiwy. For every repetitiom € CR,
denoter; its intersection withw;, andry its intersection
with wo. It is easy to see that the differenSexzp(w) —
(Sexp(wy) + Sexp(wy)) is

Il Iral _ .
3 Estimating the total size of exponents of r;c;ql p(r) TEXC;I O -3 Ch,.
maximal repetitions r11<2p(r) Ir2l<2p(r)

O
In this section we prove our main result asserting that
the sum of exponents of all maximal repetitions in a word To prove Theorem 2, we prove the f0||owing stronger
over an arbitrary alphabet is bounded by a linear function statement.
on the length of the word. Formally, lét(w) be the set

of all maximal repetitions in a word, and letSexp(w) = Theorem 3 There exist absolute positive constafts C.,
> reR(w) €(1), Sexp(n) = max|y =, Sexp(w). such that

Before proceeding to the general case, let us look at
Fibonacci words which have numerous interesting combi- Sexp(n) < Cin — Cov/nlogn. (1)

natorial properties and often provide a good example to
test conjectures and analyze algorithms on words (cf [10]). The full-detailed proof of Theorem 2 is rather techni-
Fibonacci words are hinary words defined recursively by cal, and is presented in [12]. Here we give a high-level

fo=0,fi=1, fn = fac1fn_oforn>2. description of the proof omitting tedious details and pre-
As it was noted in Introduction, Fibonacci wofg con- senting some typical arguments.

tainsO(| f»| log|fr|) squares all of which are primitively- We assume, without loss of generality, tigat is suf-

rooted. In [7], the exact number of squares in Fibonacci ficiently larger thanC,, say Ci > 2C,, so that func-

words has been obtained, which is asymptoticdl$ — tion C1 2z — Cy/x log x is monotonically increasing for all

d)n|fnl + O(|fn]) (¢ =~ 1.618 is the golden ratio). Since « > 1. We use induction ovet.

general words of length containO(n logn) primitively- Take a wordw = a ...a, Of lengthn. We split the

rooted squares [5], Fibonacci words contain asymptoti- proof into two major cases depending on whether orunot
cally maximal number of them. In [11, 12] we computed contains a maximal repetition of exponent,/n.

Case 1. Assume all maximal repetitions im are of ex-
ponent smaller thag/n. Write w = wyw,, where|w,| =
|wz| = & (n even for simplicity). Then by Lemma 2,

Sexp(w) < Sexp(w;) + Sexp(ws) + 4 - #CR(w), (2)

whereC'R(w) is the set of repetitions d®(w) crossing the
frontier betweenv; andw-. By induction,

Sexp(w;) + Sexp(wy) < 2- Sexp(g) <

Cin — C3v2nlog g 3)
We now prove thattCR(w) = O(y/nlogn). Let us

concentrate on those repetitionsf C' R(w) which overlap
with w; by at leastp(r) letters, and withw, by at least

p(r)/2 letters. By Lemma 1(i), no two such repetitions have

the same period.

Assume ry,7, are two such repetitions with peri-
ods p(r1), p(r2) respectively. Assume that(r;) >
p(r2), and let A = p(r;) — p(r2). Consider the
(non-empty) wordv = wlm, + l..w], wherem, =
max{initpos(r1) + p(r1), initpos(rs) + p(r=)} andr, =
min{endpos(r1), endpos(r2)}. Observe thav is a sub-
word of bothr; andr, which occurs, in each of them, at
least one period away from the beginning. Themas two
other occurrences at positions — p(r1) andw, — p(rz).
Consider wordy' = w{m, — p(r1) + l..mp — p(r2) + |v]].
Observe thafv'| = |v| + A, andv’ has a period\, asv
occurs both as a prefix and a suffix @f Sincew does
not have maximal repetitions of exponeytt, or more, we
can bound% = ‘“ + 1 < [y/n]. Sincewv contains
the subwordw[[] + 1..m.] of length at leastp(rz)/2,
we havel|v| > p(r2)/2. We then haveM < /n

which implles”(”) < 1-— s———. Turning to Ioganthms,

p(r1) =
logp(ra) — logp(r1) < - 2\/ﬁ+1) < 2\/ﬁ+1'
aslog(l —z) < —zfor0 < z < 1. Therefore,
logp(r1) — logp(rs) > 2f++1 Recall that each repeti-
tion r under consideration has a distinct perie@) and

hence a distinct valuleg p(r). On the other handog p(r)

can vary from 0 tqlogn — 1). Therefore, there are at most

(logn — 1)(2y/n + 1) + 1 = O(y/nlogn) distinct values
log p(r), and therefore that many repetitions considered.
For those repetitions which overlap withy by at least
p(r) letters, and withw, by less tharp(r)/2 letters, the
proof is similar except that here contains the subword
w[max{endpos(r1)—p(ry),endpos(rs) —p(r2) } +1..[5]]
of length at leasp(r>) /2 which implies thatv| > p(r2)/2.
Thus, there are at mo&t(y/n log n) such repetitions too.
The case of the repetitions which overlap witly
by more thanp(r) letters, is symmetrical. We con-
clude that there ar€(,/nlogn) maximal repetitions in
CR(w). By (2),(3), it remains to show th&t,/2n log 2 —

O(y/nlogn) > Csy/nlogn. This can be always achieved
by picking a sufficiently large constadt,. The proof of
Case 1 is completed.

Case 2: Let us now turn to the case wheredoes con-
tain a maximal repetition of exponent> /n. Write w =
wirws, and denote, = p(r) ande, = e(r). Note that
I ? < /n ase, > /n. Denoter;,;; = initpos(r),
Tend = endpos(r). We now splitr into three approxi-
mately equal parts. (We assume thats big enough so
that each of these parts is at le@gt long.) Formally, we
find pOSitionsn'left = Tinit + L%Jv Tright = Tend — L%J
Denote byw; = w[l..mest], wp = w[mpignt + 1..n], and
ro = wmeyst + 1..mrigne]. By Lemma 2,

Sexp(w) < Sexp(w;) + Sexp(w,) + Sexp(ro) +

4-#LR(w)+4-#RR(w), (4)

where
LR(w) arethe repetitions d&(w), crossing positiom;. ¢+,

RR(w) are the repetitions ofR(w), crossing position
Tright-

Part 2.1 We first estimate the number of repetitions in
LR(w), RR(w) being analyzed similarly. Our goal is to
prove that#LR(w) = O(e,).

The general idea of this part is to splitR(w) down to
subclasses such that all repetitions in a subclass have dis-
tinct periods (typically according to Lemma 1(i)). Then, an
upper bound on the number of possible periods implies an
upper bound on the number of repetitions in the subclass.
Below we illustrate this idea.

Split LR(w) into subsetSLR(w) of repetitions with a
period smaller or equal tp,, and subseBLR(w) of repe-
titions with a period larger thap..

If two repetitions fromSLR(w) have a period on the
right (on the left) ofm;. ¢, then by Lemma 1(i), they can-
not have the same period length. Therefore, each of these
two subsets cannot have more than distinct elements
and there are no more thap,. overall maximal repetitions
crossingme ;. SO#SLR(w) < 2p, < 2e, = O(ey).

Let us turn toBLR(w). The first observation is that
repetitions of BLR(w) cannot lie entirely inside as this
would contradict Lemma 1(ii). Thus, any repetition of
BLR(w) contains at least one of the letters ., ., ,+1-

We further splitBLR(w) according to different possibili-
ties:

BLRO(w)= {u € BLR(w)|initpos(u) < iy and
endpos(w) > Tend}s
BLR1(w)= {u € BCR(w)|initpos(u) > mins and

endpos(w) > Tend}s

Tni Tend
panit Tmid ,end

Figure 1. lllustration to Part 2.1

BLR2(w)= {u € BLR(w)|initpos(u) < mins and Part 2.2 The next step is to estimaf&xp(ry) which has

endpos(w) < Tend }- to be done by induction. A direct induction argument does
not work however, which leads to a more subtle analysis.
Then #BLR(w) = #BLRO(w) + #BLR1(w) + We splitr, into |ro|/A consecutive blocks of length
#BLR2(w). Below we prove thag BLRO(w) = O(e;). that will be defined later. (For simplicity, we assume that
The proofs folBLR1(w), BLR2(w) are somewhatsimilar, A divides|ro| evenly; a possible remainder block does not
and we refer the reader to [12]. _ affect the analysis [12].) Then by Lemma 2,
Let us pick the positionr,,;q = it + ||r]/2] in the

middle ofr. Consider those repetitions 8L R0(w) which Sexp(ry) < mSeaﬁp(A) +4. > #CR;, (6)
have at leasp, letters on the left ofr,,;; (the other case A

is symmetrical). Consider two such repetitionsr.. By

Lemma 1(i),p(r1) # p(r2). Assumep(ry) > p(r2). Con- whereCR; is the set of all repetitions imy which cross
siderthe word = w[mpiq+1..mena+1]. Notethata, 41 the boundary between blocksandi + 1,7 = 1,... %.
is the letter right after the end of repetition which im- Sincery is a repetition with periogh,, by Lemma 1(ii),

plies thatar,, ,+1 # axr,,.+1-p.- NOte also that any proper there is no maximal repetition insiatg with a period larger
prefix of v is a part ofr and then has a perigg.. Word thanp,. Therefore, for any fixed position in ry, there
v belongs to both; andr, and starts, in each of them, are at mos®p, repetitions inr, crossing this position (by
at least one period away from the beginning. Thelmas the same argument as that f8F.R(w) in Part 2.1). Thus,
two other occurrences starting at positiats, —p(r1) and #CR; < 2p,foranyi=1,..., %, and
mmid — p(r2) (See Figure 1). The shift between these occur- N ol " |
rencesis\ = p(ry)—p(r2) and we claim that\ > |v|—p;.. To| o
Otherwise, ifA < |v] — p,, then the two occurrences of Sewp(ro) < A Seap(8) + 871 APrs
have an overlap of length at least+ 1. Since this overlap n SMp
is a prefix of the occurrence ofstarting atr,,,;a — p(r2), VA N
ithas a penof(};b,,. S!nce the overlap is aIsoF::} suffni of the The second inequality has been obtained by the induction
occurrence o sta_rtlng AT miq — p(rl)_(see igure) we hypothesisSezp(A) < C1 A — Cyv/A log A.
have thate_ ,+1 = Artereg+1=pr which is a contradiction. Denotee,ia = |ro|/p» (the exponent ofo). For tech-
Thus, p(r1) and p(r») differ by at least|v| — p, > nical reasons we now assume tpat> 8 (the case, < 8

5 — pr. As the periods of considered repetitions are all is considered separately [12]), and we chodse- LpZZJ

d'S;'nCt’ and belong to the intervid,,), there arg atmost With this choice ofA, inequation (7) can be transformed
n/2-p- 4 1 of them and therefore as many con5|dered rep-

|ro|log A
, OIS =

Cl|7“0| -C (7)

Irl/2=pr s as follows. First, for the chosen, %2 > Log % ;1 =
etitions. Fmally,‘"l/2 pl;“ H1< ot +1< 5+l = L
O(e,), and we conclude that there abée,) repetltlons in ezt The term8lielp, in (7) is O(emia), using the
BLRO(w). fact thatZel = O(=i¢). We then rewrite (7) as

After proving that bothLR(w) and RR(w) contain Sexp(ro) < Cilro| —4Czemia(logpr —1)+0(emia)- (8)

O(e,.) maximal repetitions, (4) is rewritten into
Part 2.3 We now count togethefexp(w;), Sexp(w,),

Sexp(w) < Sexp(w;) + Sexp(w,) + Sexp(ry) + Sexp(rg). Recall that according to (5), our goal is to prove
O(er). (5) Sexp(w;) + Sexp(w,) + Sexp(ro) + O(e,) <

Cin — Cyv/nlogn. 9)

which would conclude the induction argument.
EstimatingSexp(w;), Sexp(w,) by induction, we have

Sexp(w;) < Cilwy| — Can/|wi|log|w|, (10)
Sexp(w,) < Cilwy| —Cav/|wy|log|w,|. (11)

Substituting (8), (10), (11) into (9), we are left with the in-
equation

Ca(v/nlogn — /|wi|log |wi| — \/|w,|log |w,]) +
O(emia) < 4Csemia(logp, — 1) (12)

(O(e,) in(9) has been replaced B e,,i4) ase, < 3emid)-

The next step is to estimate the expression in parenthethat initpos(r)
ses. Using elementary calculus considerations, the follow-endpos(r)

ing estimation can be proved [12].

Vinlogn — /Twi]log Juwi] — /T, [log Jw, | <

emia(2logp, +1). (13)
To prove (12), it then suffices to prove
C2€mid(2 log p, + 1) + O(emid) <
4Cyenmia(log p, — 1). (24)

Recalling thatlog p, > 3 ande,,;y > 3, inequation (14)
can be satisfied by choosing a sufficiently large congtant
This completes the proof of Theorem 3. Theorem 2 follows.

An important corollary of Theorem 2 is that the maxi-
mal number of maximal repetitions in words of lengilis
linearly-bounded om. We state this in the following Theo-
rem.

Theorem 4 max|,|—, #R(w) = O(n)
4. Finding all maximal repetitions in a word

In this section we show how Theorems 2,4 allow to ob-
tain linear-time algorithms for several string matching prob-
lems. First, we present a linear-time algorithm for finding
all maximal repetitions in a word together with their peri-
ods. The algorithm is a modification of Main’s algorithm
[17] for finding all leftmostoccurrences of distinct maxi-
mal repetitions, which is in turn based on the idea of s-
factorization [2], or Lempel-Ziv decomposition [9]. We first
describe Main’s algorithm.

Definition 1 ([2, 17]) Let w be an arbitrary word. Thes-
factorizationof w is the factorizationw = wujus...uy,
whereu;'s are defined inductively as follows:

e If letter a occurring in w immediately after
ujuy ... u;—1 does not occur inujus...u;—1, then
U; = a.

e Otherwise, u; is the longest word such that
uius ... u;_1u; 1S a prefix ofw and u; has at
least two (possibly overlapping) occurrences in
ULU - . - Uj—1U;-

As an example, the s-factorization of the word
1011010110110is 1/0[1[101|01101[10. If w = wyus . .. ug
is the s-factorization, we cail;'s s-factors

The usefulness of s-factorization is explained by the fol-
lowing theorem, which is a slight reformulation of Theorem
3.4 from [17].

Theorem5 Let w = wujus...u; be the s-factorization
of w, and let r be a maximal repetition imw such
< initpos(u;) and initpos(u;) <

< endpos(u;). Then initpos(u;) —

initpos(r) < |u;| + 2|ui—1].

Theorem 5 suggests a partition of all maximal repetitions
of w into two classes:

1. repetitions- such thatinitpos(r) < initpos(u;) and
initpos(u;) < endpos(r) < endpos(u;) for some s-
factoru;,

2. repetitionsr such thatinitpos(u;) < initpos(r) <
endpos(r) < endpos(u;) for some s-factou;.

The above classification does not cover repetitions
which are suffixes ofv, but we make this set empty by ap-
pending a new symbol $ at the endwof This also ensures
that the last s-factar;, consists of one letter. Maximal repe-
titions verifying conditions 1 and 2 will be called repetitions
of type 1 and 2 respectively.

As follows from the definition of s-factorization, ev-
ery repetition of type 2 has another occurrence on the left.
Therefore, finding all repetitions of type 1 guarantees find-
ing all distinctmaximal repetitions, and in particular &ft-
mostoccurrences of distinct maximal repetitions.

Let us describe now how repetitions of type 1 are
found by Main’s algorithm. Assume we are given the s-
factorizationw = wu;...u,. By Theorem 5, we have to
find, for each2 < i < k, the maximal repetitions in the
word t;u;, which start int; and end inu;, wheret; is
the suffix ofu; ...uy_1 of length|u; 1| + 2|u;| (¢ is the
whole wordu; ...u;—1 in case its length is smaller than
2|ui—1| + |us]). Let us show how to find, in general, all
maximal repetition in a wordu that start int and end iru.

Assume that = ¢[1..m], v = wu[l..n], and we want
to find all maximal repetitions in the wordv = tu
v[l..m+n] such thatnitpos(r) < m andendpos(r) > m.
Every such repetition belongs (non-exclusively) to one of
the two classes: the repetitions which have a periaddnd
those which have a periodinNote that by Lemma 1(i), for
everyl < j < n, there is at most one maximal repetition

of periodj starting int, ending inu, and having a period
in u. This shows, in particular, that the number of such
repetitions is linear irju|. Similarly, the number of such
repetitions having a period ihis linear in|t|, and thus, the
number of maximal repetitions in = ¢tu which start in|¢|
and end inu is linear in|v|.

Let us focus on maximal repetitiomswhich have a pe-
riod inu. The repetitions which have a periodtiare found
symmetrically. We need two auxiliary functions:

e LP(i), 2 < i < n + 1 defined by LP(
max{jlu[l.j] = wfi.i+j— 1]} for2 < i
andLP(n+1) =0,

i)
= <

n,

e LS(i), 1 <i < ndefined byLS(i) = max{j|t[m —
j+l.m]=vm+i—j+1l.m+il}.

Informally, LP(7) is the length of the longest prefix af
which is also a prefix ofi[i..n], and LS (i) is the length of
the longest suffix of which is also a suffix ofu[1..7]. The
following theorem holds.

Theorem 6 ([17]) For 1 < j < n, there exists a maximal
repetition of periodj in v = tu which starts in¢, ends inu
and has a period in iff LS(j) + LP(j + 1) > j. If the
inequality holds, this repetition is[m — LS(j) + 1..m +
j+ LP(j+1)].

FunctionLP can be computed in time linear |n| and
LS in time linear injv| using the Knuth-Morris-Pratt algo-
rithm (see [17, 4]). Therefore, all maximal repetitions in
v = tu which start int and end inu can be computed in
O(Jv]) time.

To find all repetitions of type 1 in a wordv, the
Main’s algorithm proceeds as follows. First compute the
s-factorizationw = wujus .. .u,. This computation can be
done in timeO(|w|) using suffix tree construction [18, 23].
Then for eachi from 2 to £ compute, using the above
method, the maximal repetitions in wotd, whereu is u;
andt is the suffix ofu; ...u; 1 of length2|u; 1| + |u|.
Each such computation takes tini¥|u;_1| + |u;|), and
therefore finding all maximal repetitions of type 1 takes
O(Jwl) time.

Note that according to the definition of type 1, at each
step we need only those repetitions which end strictly be-
fore the end ofy;. The reason for this requirement is that
if a repetition is a suffix ofy; ... u;, it may not be a maxi-
mal repetition, as it may extend into the right to a longer
repetition. On the other hand, if it is a maximal repetition,
it will be found at the next step of the algorithm, and thus

To find all maximal repetitions, we have to find, in addi-
tion, all repetitions of type 2. We now show how it can be
done. The task is greatly simplified by the fact that every
repetition of type 2 occurs entirely inside some s-faetgr
and eachy; has an earlier occurrencein

During the computation of s-factorization we store, for
each s-factom;, a pointer to an earlier occurrence of
in w. This can be easily done using the suffix tree con-
struction, so that the computation of s-factorization remains
linear-time. Lety; be this earlier occurrence af, and let
A; = initpos(u;) — initpos(v;). Obviously, each repeti-
tion of type 2 occurring inside; is a copy of a maximal
repetition occurring inside; shifted byA; to the right.

We now proceed as follows. First, we compute all max-
imal repetitions of type 1 with the Main’s algorithm. Then
we sort them, using basket sort, intdists, such that list
j contains the repetitions with end positign (Note that
during the sort we can eliminate the duplicates.) Then we
process all the lists in the increasing order and sort the rep-
etitions again, using basket sort, intolists according to
their initial position. After this double sort, the repetitions
with the same initial positio are sorted inside the ligt
in the increasing order of their end positions. As there is a
linear number of repetitions of type 1, both sort procedures
take a linear time.

Now we find the repetitions of type 2. We will store
them in the same data structure. For eagh = 1..k, and
for each internal position insidew;, we have to find the
maximal repetitions ofv starting at this position and end-
ing insideu;. We then have to find the maximal repetitions
starting at positiori—A; in v; which end inside;, and then
shift them byA; to the right. Note that these repetitions
may be either of type 1, or previously found repetitions of
type 2. We look through the ligt— A; and retrieve its pre-
fix consisting of those repetitions which end insigeThen
we shift each of these repetitions By and append a modi-
fied copy of this prefix to the head of the ljstNote that the
data structure is preserved, as all appended repetitions have
their end position inside;, and those which have been pre-
viously stored in the lisj are of type 1 and then have their
end position outsidae;. Since we process;’s from left to
right, no repetition can be missed. Thus, we recover all rep-
etitions of type 2 and after all;'s have been processed, the
data structure contains all repetitions of both types.

Note that when we retrieve a prefix of the list corre-
sponding to some position i, each repetition in this pre-
fix results in a new repetition of type 2 ;. This shows

will not be missed. Note also that the algorithm may still that the time spent to processing the lists is proportional to
output the same maximal repetition many times (even un-the number of newly found repetitions. Theorem 4 from the
boundedly many times). However, the essential feature isprevious section states that the number of all maximal rep-
that the algorithm is linear-time and finds all repetitions of etitions is linear in the length of the word. This proves that
type 1. the whole algorithm takes linear time.

The set of all maximal repetitions, found by the above constantin the linear bound.

algorithm in linear time, provides exhaustive information

An experimental implementation of the algorithm de-

about the repetitive structure of the word. It allows easily to scribed in Section 4 has been recently made by Mathieu
extract all repetitions of other types, such as (primitively- or Giraud at LORIA/INRIA-Lorraine. The program has been
non-primitively-rooted) squares, cubes, or integer powers.tested on biological sequences, and some interesting long

Thus, all these tasks can be done in titheg: + T') whereT

repetitions have been discovered. As expected, the algo-

is the output size (these bounds have been also obtained inithm turned out to be very fast. The “bottleneck” seems to
[13, 22] with more sophisticated algorithms). Another ex- be the memory occupied by a suffix tree-like construction

ample is the set dfranching tandem repeataotion stud-

needed for computing the s-factorization. However, strings

ied in [21]. In our terminology, branching tandem repeats of 20000 characters could be easily processed.

are (not necessarily primitively-rooted) square suffixes of
maximal repetitions. In [21], the authors conjecture that the
maximal number of branching tandem repeats in a word is
linearly-bounded in the length. Our Theorem 2 confirms
that conjecture, since each maximal repetitionontains
le(r)/2] branching tandem repeats, and therefore their to-
tal number isO(n). Clearly, the set of maximal repetitions
found by the above algorithm, allows to extract all branch-
ing tandem repeats. Since their number is linear, finding all
branching tandem takes linear time.

As another application, the set of maximal repeti-
tions allows to determine, in linear time, the number of
(primitively-rooted) integer powers of a given exponént
starting at each position of the word. Here is how this can
be done. For each positiare 1..|w|, we create two coun-
tersc’(i) andc? (i), initially set to 0. For each repetition
r = w[m..l], we increment’ (m) andc® (I — kp(r) + 1) by
1 (m..I—kp(r)+1] is the interval, where primitively-rooted
k-powers induced by repetitionstart). By Theorem 4, the
number of updates is linear. To compute the numbé(s)
of k-powers starting at each charactewe scan all charac-
ters from left to right applying the following iterative proce-
dure:d®(1) = (1), d*(i + 1) = d*(i) + c(i) — c?(i — 1),

i = 2..Jw|. Note that the algorithm can be extended to all
(not necessarily primitively-rooted}powers. In this case,
we increment®(m) by |e(r)/k], and we increment by 1
eachcé(j), forj =1 —kp(r) + 1,1 — 2kp(r) + 1,...,1 —

le(r)/k]kp(r) + 1. Here, Theorem 2 guarantees that the [10]

number of updates is linear. Finally, note that the proce-
dure can be easily modified in order to count arbitrary (non-
integer) repetitions of given exponent, as well as repetitions
ending (or centered) at each position.

5. Concluding remarks

The main drawback of our proof of Theorem 2 is that it
does not allow to extract a “reasonable” constant factor in
the linear bound. It seems however that this constant fac-

tor is quite small. Computer experiments suggest that the [13]

number of maximal repetitions is actually smaller than
and the sum of their exponents smaller tRan at least for
the binary alphabet. It would be interesting to find a sim-
pler proof of Theorems 2,4 implying a small multiplicative

[11] R. Kolpakov and G. Kucherov.

[12]

References

[1] A. Apostolico and F. Preparata. Optimal off-line detection
of repetitions in a string. Theoretical Computer Science
22(3):297-315, 1983.

M. Crochemore. An optimal algorithm for computing

the repetitions in a word.Information Processing Letters

12:244-250, 1981.

M. Crochemore. Recherche é&aire d'un cam’dans un mot.

Comptes Rendus Acad. Sci. Pars.$Math, 296:781-784,

1983.

M. Crochemore and W. RytterText algorithms Oxford

University Press, 1994,

M. Crochemore and W. Rytter. Squares, cubes, and time-

space efficient string searchinglgorithmicg 13:405-425,

1995.

[6] A.Fraenkel and J. Simpson. How many squares can a string
contain? J. Combinatorial Theory (Ser. AB2:112-120,
1998.

[7] A. Fraenkel and J. Simpson. The exact number of
squares in Fibonacci word3heoretical Computer Science
218(1):83-94, 1999.

[8] Z.Galiland J. Seiferas. Time-space optimal string matching.

Journal of Computer and System Scien@g(3):280—294,

1983.

D. Gusfield. Algorithms on Strings, Trees, and Sequences

Cambridge University Press, 1997.

C. lliopoulos, D. Moore, and W. Smyth. A characterization

of the squares in a Fibonacci stringheoretical Computer

Sciencel72:281-291, 1997.

(2]

(3]

(4]
(5]

(9]

Maximal repetitions in
words or how to find all squares in linear time. Rap-
port Interne 98-R-227, Laboratoire Lorrain de Recherche
en Informatique et ses Applications, 1998. available from
http://www.loria.fr/"kucherov/resictiv.html.

R. Kolpakov and G. Kucherov. On the sum of expo-
nents of maximal repetitions in a word. Rapport In-
terne 99-R-034, Laboratoire Lorrain de Recherche en In-
formatique et ses Applications, 1999. available from
http://www.loria.fr/"kucherov/resictiv.html.

S. R. Kosaraju. Computation of squares in string. In
M. Crochemore and D. Gusfield, editoRypceedings of the
5th Annual Symposium on Combinatorial Pattern Matching
number 807 in Lecture Notes in Computer Science, pages
146-150. Springer Verlag, 1994.

[14] M. Lothaire. Combinatorics on Wordsvolume 17 ofEn-
cyclopedia of Mathematics and Its Applicationdddison
Wesley, 1983.

[15] M. Main and R. Lorentz. AnO(nlogn) algorithm for
finding all repetitions in a string.Journal of Algorithms
5(3):422-432, 1984.

[16] M. Main and R. Lorentz. Linear time recognition of square
free strings. In A. Apostolico and Z. Galil, editor€om-
binatorial Algorithms on Wordsvolume 12 ofNATO Ad-
vanced Science Institutes, Seriepages 272—-278. Springer
Verlag, 1985.

[17] M. G. Main. Detecting leftmost maximal periodicitieBis-
crete Applied Mathemati¢c®5:145-153, 1989.

[18] E. M. McCreight. A space-economical suffix tree construc-
tion algorithm.Journal of the ACM23(2):262-272, 1976.

[19] A. Slisenko. Detection of periodicities and string matching
in real time.Journal of Soviet Mathematic22:1316-1386,
1983.

[20] J. StorerData compression: methods and theocBomputer
Science Press, Rockville, MD, 1988.

[21] J. Stoye and D. Gusfield. Simple and flexible detection of
contiguous repeats using a suffix tree. In M. Farach-Colton,
editor,Proceedings of the 9th Annual Symposium on Combi-
natorial Pattern Matchingnumber 1448 in Lecture Notes in
Computer Science, pages 140-152. Springer Verlag, 1998.

[22] J. Stoye and D. Gusfield. Linear time algorithms for finding

and representing all the tandem repeats in a string. Techni-

cal Report CSE-98-4, Computer Science Department, Uni-
versity of California, Davis, 1998.

[23] E. Ukkonen. On-line construction of suffix treealgorith-
mica, 14(3):249-260, 1995.

