
Finding Maximal Repetitions in a Word in Linear Time �

Roman Kolpakov
French-Russian Institute for Informatics and
Applied Mathematics, Moscow University

119899 Moscow, Russia
e-mail: roman@vertex.inria.msu.ru

Gregory Kucherov
LORIA/INRIA-Lorraine

615, rue du Jardin Botanique
B.P. 101, 54602 Villers-lès-Nancy, France

e-mail: kucherov@loria.fr

Abstract

A repetition in a wordw is a subword with the period of
at most half of the subword length. We study maximal repe-
titions occurring inw, that is those for which any extended
subword ofw has a bigger period. The set of such repeti-
tions represents in a compact way all repetitions inw. We
first prove a combinatorial result asserting that the sum of
exponents of all maximal repetitions of a word of lengthn
is bounded by a linear function inn. This implies, in par-
ticular, that there is only a linear number of maximal repe-
titions in a word. This allows us to construct a linear-time
algorithm for finding all maximal repetitions. Some conse-
quences and applications of these results are discussed, as
well as related works.

1. Introduction

Repetitions (periodicities) in words are fundamental ob-
jects, due to their primary importance in word combina-
torics [14] as well as in various applications, such as string
matching algorithms [8, 5], molecular biology [9], or text
compression [20].

Several notions of repetitions have been studied, and to
make it precise, we start with basic definitions. Recall that
the periodof a wordw = a1 : : : an is the smallest positive
integerp such thatai = ai+p for all i, provided1 � i; i +
p � n. The rationaln=p is calledthe exponentof w. If
the exponent is an integer numberk > 1, w can be simply

�Part of this work has been done during the first author’s visit of
LORIA/INRIA-Lorraine supported by a grant from the French Ministry
of Public Education and Research. The first author has been in part sup-
ported by the Russian Foundation of Fundamental Research, under grant
96–01–01068, and by the Russian Federal Program ”Integration”, under
grant 473. The work has been done within a joint project of the French-
Russian A.M.Liapunov Institut of Applied Mathematics and Informatics at
Moscow University

written asuk = uu : : : u| {z }
k

and is called aninteger power

(or k-power ortandem arrays). A word of exponent 2 is
called asquare(or tandem repeat). A word which is not an
integer power is calledprimitive. In general, any wordw
of periodp and exponente can be written asukv, whereu
is a primitive word,juj = p, v is a proper prefix ofu and
e = k + jvj

juj .
We calla repetitiona word of exponent 2 or more (equiv-

alently, with the period of at most half the word length). The
problem addressed in this paper is to construct an efficient
algorithm for identifying all subwords in a word which are
repetitions. Note that in this paper we are interested in char-
acterizing alloccurrencesof repetitions in the word, and not
in all syntactically distinctrepetitions (cf [19, 22]).

Clearly, a word may contain a quadratic number of rep-
etitions (e.g. an). To represent them in a compact way,
we introduce the notion of maximal repetition. Amaximal
repetition1 in a word is a repetition such that its extension
by one letter to the right or to the left yields a word with
a bigger period. For example, the subword 10101 in the
word w = 1011010110110 is a maximal repetition (with
period 2), while the subword 1010 is not. Another max-
imal repetitions ofw are prefix 10110101101 (period 5),
suffix 10110110 (period 3), prefix 101101 (period 3), and
the three occurrences of 11 (period 1). Maximal repetitions
encode, in a most compact way, all repetitions in the word,
hence their importance.

Let us now survey the known algorithmic results on
searching for repetitions in a word, which is a classical
string matching problem (see [4]). In early 80s, Slisenko
[19] proposed a linear (real-time) algorithm for finding all
syntactically distinctmaximal repetitions in a word. In-
dependently, Crochemore [3] described a simple and ele-
gant linear algorithm for finding a square in a word (and
thus checking if a word is repetition-free). The algorithm

1calledrun in [10] andmaximal periodicityin [17]



is based on a special factorization of the word, called s-
factorization (f-factorization in [4], or Lempel-Ziv decom-
position [9]). Another linear algorithm checking whether a
given word contains a square was proposed in [16].

However, it is known that there may be up to
(n logn)
square occurrences in a word, even if only primitively-
rooted squares are considered [2] (an integer poweruk is
primitively-rooted if u is a primitive word). An example
is provided by Fibonacci words, that contain�(n logn)
squares all of which are primitively-rooted (an exact for-
mula is given in [7]). This implies that there is no hope to
construct a linear algorithm to explicitly find all squares in
a word as their number is super-linear.

There are several differentO(n logn) algorithms finding
all occurrences of repetitions in a string. Note however that
each of these algorithms uses its own notion of repetition.
In 1981, Crochemore [2] proposed anO(n log n) algorithm
for finding all occurrences of non-extendable primitively-
rooted integer powers in a word (i.e. those primitively-
rooted integer powersuk which are not followed or pre-
ceded by another occurrence ofu). This is an asymptoti-
cally optimal bound, as the number of such powers can be

(n logn). Using a suffix tree technique, Apostolico and
Preparata [1] described anO(n logn) algorithm for finding
all right-maximalrepetitions, which are repetitions that can-
not be extendedto the rightwithout increasing the period.
Main and Lorentz [15] proposed another algorithm which
actually finds all maximal repetitions inO(n log n) time.
They also point out the optimality of this bound under the
assumption of unbounded alphabet and under the restriction
that the algorithm is based only on symbol comparisons. In
1989, using s-factorization, Main [17] proposed alinear-
timealgorithm which finds allleftmostoccurrences of dis-
tinct maximal repetitions in a word.

As far as other related works are concerned, Kosaraju
[13] describes anO(n) algorithm which, given a word, finds
for each position the shortest square starting at this position.
He also claims a generalization which finds all primitively-
rooted squares in timeO(n + S) whereS is the number
of such squares. In [21], Stoye and Gusfield proposed sev-
eral algorithms that are based on a unified suffix tree frame-
work. Their results are based on an algorithm which finds
in timeO(n logn) all “branching tandem repeats”. In our
terminology, branching tandem repeats are (not necessarily
primitively-rooted) square suffixes of maximal repetitions.
In a recent paper, Stoye and Gusfield [22] proposed a dif-
ferent approach, combining s-factorization and suffix tree
techniques. The goal achieved is to find, in linear time, a
representative of eachsyntactically distinctsquare. The fea-
sibility of this task is supported by the result of [6] asserting
that there is a linear number (actually, no more than2n) dis-
tinct squares in words of lengthn over an arbitrary alphabet.
The approach allows also to solve some other problems, e.g.

to achieve the results claimed in [13].
However, so far it has been an open question whether a

linear algorithm for findingall maximal repetitions exists.
In the concluding section of [17], Main speculates that such
an algorithm might exist. The same question is raised in
[10]. However, there has been no evidence in support of
this conjecture as the number of maximal repetitions has not
been known to be linear. This paper provides this argument.

In the first part of the paper (Section 3) we prove a com-
binatorial result asserting that the sum of exponents of all
maximal repetitions in a word is linearly bounded. Obvi-
ously, this implies that the number of maximal repetitions in
a word is linear, which contrasts to theO(n logn) bounds
for the number of primitively-rootedsquares or integer pow-
ers. This also explains a trade-off between the number of
repetitions in a word and their exponents; Fibonacci words,
for example, have a linear number of maximal repetitions
that are all of small exponent (smaller than 4). Based on the
linearity result, we show in Section 4 that all maximal repe-
titions in a word can be found in linear time. Since maximal
repetitions characterize completely the repetitive structure
of the word, this allows to solve other related problems, e.g.
to output all squares in a word in timeO(n+S), whereS is
the output size [13, 22], or to find in linear time all “branch-
ing tandem repeats” [21], or to determine, in linear time, the
number of repetitions of a given exponent starting at every
position in the word. We believe that other applications of
these results are still to be discovered.

2. Further definitions and basic results

For a wordw = a1 : : : an, w[i::j] denotes its subword
ai : : : aj . A position in a wordw = a1 : : : an is an integer
between 0 andn. Each position� in w defines a factoriza-
tionw = w1w2 wherejw1j = �. The position of letterai in
w is i�1. If v = w[i::j], we denoteinitpos(v) = i�1 and
endpos(v) = j. We say that subwordv = w[i::j] crossesa
position� in w, if i � � < j.

If w is a subword ofun for some naturaln, juj is called a
periodof w, and wordu is aroot of w. Clearly,p is a period
of w = a1 : : : an iff ai = ai+p whenever1 � i; i+ p � n.
Another equivalent definition is (see [14]):p is a period of
w = a1 : : : an iff w[1::n� p] = w[p+ 1::n]. Each wordw
has the minimal period that we will denotep(w) and callthe
period ofw. The ratio jwj

p(w) is called theexponentof w and
denotede(w). Clearly, a rootu of w such thatjuj = p(w),
is primitive, that isu cannot be written asvk for k � 2.

Considerw = a1 : : : an. A repetition in w is any
subword occurrencer = w[i::j] with e(r) � 2. A
maximal repetitionin w is a repetitionr = w[i::j] such
that p(w[i::j]) < p(w[i � 1::j]) wheneveri > 1, and
p(w[i::j]) < p(w[i::j+1])wheneverj < n. In other words,
a maximal repetition is a repetitionr = w[i::j] such that no



subword ofw which containsr as a proper subword has
the same minimal period asr. Note that any repetition in a
word can be extended to a unique maximal repetition.

A basic result about periods is the Fine and Wilf’s theo-
rem (see [14]):

Theorem 1 (Fine and Wilf) If w has periodsp1; p2, and
jwj � p1 + p2 � gcd(p1; p2), thengcd(p1; p2) is also a
period ofw.

The following Lemma states some useful facts about
maximal repetitions that will be used in the sequel.

Lemma 1 (i) Two distinct maximal repetitions with the
same periodp cannot have an overlap of length
greater than or equal top,

(ii) Two maximal repetitions with periodsp1; p2, p1 6= p2,
cannot have an overlap of length greater than or equal
to (p1 + p2 � gcd(p1; p2)) � 2maxfp1; p2g.

A repetitionr is said to have a period in some subword
of w if r overlaps with this subword on at leastp(r) letters.
Also, we say that a repetitionr has a period on the right
(respectively on the left) of a position� with the meaning
thatw[�+1::�+ p(r)] (respectivelyw[�� p(r) + 1::�]) is
a subword ofr.

#S denotes the cardinality of a setS. All logarithms are
binary unless the base is indicated.

3 Estimating the total size of exponents of
maximal repetitions

In this section we prove our main result asserting that
the sum of exponents of all maximal repetitions in a word
over an arbitrary alphabet is bounded by a linear function
on the length of the word. Formally, letR(w) be the set
of all maximal repetitions in a wordw, and letSexp(w) =P

r2R(w) e(r), Sexp(n) = maxjwj=n Sexp(w).
Before proceeding to the general case, let us look at

Fibonacci words which have numerous interesting combi-
natorial properties and often provide a good example to
test conjectures and analyze algorithms on words (cf [10]).
Fibonacci words are binary words defined recursively by
f0 = 0, f1 = 1, fn = fn�1fn�2 for n � 2.

As it was noted in Introduction, Fibonacci wordfn con-
tains�(jfnj log jfnj) squares all of which are primitively-
rooted. In [7], the exact number of squares in Fibonacci
words has been obtained, which is asymptotically2

5 (3 �
�)njfnj + O(jfnj) (� � 1:618 is the golden ratio). Since
general words of lengthn containO(n logn) primitively-
rooted squares [5], Fibonacci words contain asymptoti-
cally maximal number of them. In [11, 12] we computed

the exact number#R(fn) of maximal repetitions in Fi-
bonacci words, which turned out to be2jfn�2j � 3 (curi-
ously enough, this number is one less than the number of
distinct squares, computed in [7]). ForSexp(fn), we ob-
tained the approximate formulaSexp(fn) = C �jfnj+o(1),
where1:922 � C � 1:926. Thus, the total sum of expo-
nents of maximal repetitions in Fibonacci words is linear in
the length, which suggests that this might hold for general
words too.

Let us now turn to the general case and state the main
result.

Theorem 2 Sexp(n) = O(n).

The proof is based on the following Lemma.

Lemma 2 Let w = w1 : : : wk, and letCRi be the set of
repetitions ofR(w) crossing the frontier betweenwi and
wi+1, i = 1; : : : k � 1. Then

Sexp(w) <

kX
i=1

Sexp(wi) + 4 �
k�1X
i=1

#CRi:

Proof: By induction, it is sufficient to prove the Lemma
for k = 2. Letw = w1w2. For every repetitionr 2 CR,
denoter1 its intersection withw1, andr2 its intersection
with w2. It is easy to see that the differenceSexp(w) �
(Sexp(w1) + Sexp(w2)) is

X
r2CR1

jr1j<2p(r)

jr1j
p(r)

+
X
r2CR1

jr2j<2p(r)

jr2j
p(r)

< 4 �#CR1:

�

To prove Theorem 2, we prove the following stronger
statement.

Theorem 3 There exist absolute positive constantsC1; C2

such that

Sexp(n) � C1n� C2

p
n logn: (1)

The full-detailed proof of Theorem 2 is rather techni-
cal, and is presented in [12]. Here we give a high-level
description of the proof omitting tedious details and pre-
senting some typical arguments.

We assume, without loss of generality, thatC1 is suf-
ficiently larger thanC2, say C1 � 2C2, so that func-
tion C1x � C2

p
x logx is monotonically increasing for all

x � 1. We use induction overn.
Take a wordw = a1 : : : an of lengthn. We split the

proof into two major cases depending on whether or notw
contains a maximal repetition of exponent� p

n.



Case 1: Assume all maximal repetitions inw are of ex-
ponent smaller than

p
n. Write w = w1w2, wherejw1j =

jw2j = n
2 (n even for simplicity). Then by Lemma 2,

Sexp(w) < Sexp(w1) + Sexp(w2) + 4 �#CR(w); (2)

whereCR(w) is the set of repetitions ofR(w) crossing the
frontier betweenw1 andw2. By induction,

Sexp(w1) + Sexp(w2) � 2 � Sexp(n
2
) �

C1n� C2

p
2n log

n

2
: (3)

We now prove that#CR(w) = O(
p
n logn). Let us

concentrate on those repetitionsr of CR(w) which overlap
with w1 by at leastp(r) letters, and withw2 by at least
p(r)=2 letters. By Lemma 1(i), no two such repetitions have
the same period.

Assume r1; r2 are two such repetitions with peri-
ods p(r1), p(r2) respectively. Assume thatp(r1) >
p(r2), and let � = p(r1) � p(r2). Consider the
(non-empty) wordv = w[�b + 1::�e], where �b =
maxfinitpos(r1) + p(r1); initpos(r2) + p(r2)g and�e =
minfendpos(r1); endpos(r2)g. Observe thatv is a sub-
word of bothr1 andr2 which occurs, in each of them, at
least one period away from the beginning. Thenv has two
other occurrences at positions�b � p(r1) and�b � p(r2).
Consider wordv0 = w[�b � p(r1) + 1::�b � p(r2) + jvj].
Observe thatjv0j = jvj + �, andv0 has a period�, asv
occurs both as a prefix and a suffix ofv0. Sincew does
not have maximal repetitions of exponent

p
n or more, we

can boundjv
0j
� = jvj

� + 1 � dpne. Sincev contains
the subwordw[dn2 e + 1::�e] of length at leastp(r2)=2,

we havejvj � p(r2)=2. We then havep(r2)2� � p
n

which impliesp(r2)
p(r1)

� 1 � 1
2
p
n+1

. Turning to logarithms,

log p(r2) � log p(r1) � log(1 � 1
2
p
n+1

) � � 1
2
p
n+1

,

as log(1 � x) � �x for 0 � x < 1. Therefore,
log p(r1) � log p(r2) � 1

2
p
n+1

. Recall that each repeti-

tion r under consideration has a distinct periodp(r) and
hence a distinct valuelog p(r). On the other hand,log p(r)
can vary from 0 to(logn� 1). Therefore, there are at most
(logn � 1)(2

p
n + 1) + 1 = O(

p
n logn) distinct values

log p(r), and therefore that many repetitions considered.
For those repetitions which overlap withw1 by at least

p(r) letters, and withw2 by less thanp(r)=2 letters, the
proof is similar except that herev contains the subword
w[maxfendpos(r1)�p(r1); endpos(r2)�p(r2)g+1::dn2 e]
of length at leastp(r2)=2 which implies thatjvj � p(r2)=2.
Thus, there are at mostO(

p
n logn) such repetitions too.

The case of the repetitions which overlap withw1

by more thanp(r) letters, is symmetrical. We con-
clude that there areO(

p
n logn) maximal repetitions in

CR(w). By (2),(3), it remains to show thatC2

p
2n log n

2 �

O(
p
n logn) � C2

p
n logn. This can be always achieved

by picking a sufficiently large constantC2. The proof of
Case 1 is completed.

Case 2: Let us now turn to the case wherew does con-
tain a maximal repetitionr of exponent� p

n. Writew =
w1rw2, and denotepr = p(r) ander = e(r). Note that
pr = jrj

er
� p

n aser �
p
n. Denote�init = initpos(r),

�end = endpos(r). We now splitr into three approxi-
mately equal parts. (We assume thatn is big enough so
that each of these parts is at least3pr long.) Formally, we
find positions�left = �init + b jrj3 c, �right = �end �b jrj3 c.
Denote bywl = w[1::�left], wr = w[�right + 1::n], and
r0 = w[�left + 1::�right]. By Lemma 2,

Sexp(w) < Sexp(wl) + Sexp(wr) + Sexp(r0) +

4 �#LR(w) + 4 �#RR(w); (4)

where

LR(w) are the repetitions ofR(w), crossing position�left,

RR(w) are the repetitions ofR(w), crossing position
�right.

Part 2.1 We first estimate the number of repetitions in
LR(w), RR(w) being analyzed similarly. Our goal is to
prove that#LR(w) = O(er).

The general idea of this part is to splitLR(w) down to
subclasses such that all repetitions in a subclass have dis-
tinct periods (typically according to Lemma 1(i)). Then, an
upper bound on the number of possible periods implies an
upper bound on the number of repetitions in the subclass.
Below we illustrate this idea.

Split LR(w) into subsetSLR(w) of repetitions with a
period smaller or equal topr, and subsetBLR(w) of repe-
titions with a period larger thanpr.

If two repetitions fromSLR(w) have a period on the
right (on the left) of�left, then by Lemma 1(i), they can-
not have the same period length. Therefore, each of these
two subsets cannot have more thanpr distinct elements
and there are no more than2pr overall maximal repetitions
crossing�left. So#SLR(w) � 2pr � 2er = O(er).

Let us turn toBLR(w). The first observation is that
repetitions ofBLR(w) cannot lie entirely insider as this
would contradict Lemma 1(ii). Thus, any repetition of
BLR(w) contains at least one of the lettersa�init ; a�end+1.
We further splitBLR(w) according to different possibili-
ties:

BLR0(w)= fu 2 BLR(w)jinitpos(u) < �init and
endpos(w) > �endg,

BLR1(w)= fu 2 BCR(w)jinitpos(u) � �init and
endpos(w) > �endg,



mid
ππ                                                                endπinit

r a

vv
a

a
v∆

r2

r1

Figure 1. Illustration to Part 2.1

BLR2(w)= fu 2 BLR(w)jinitpos(u) < �init and
endpos(w) � �endg.

Then #BLR(w) = #BLR0(w) + #BLR1(w) +
#BLR2(w). Below we prove that#BLR0(w) = O(er).
The proofs forBLR1(w),BLR2(w) are somewhat similar,
and we refer the reader to [12].

Let us pick the position�mid = �init + bjrj=2c in the
middle ofr. Consider those repetitions ofBLR0(w) which
have at leastpr letters on the left of�mid (the other case
is symmetrical). Consider two such repetitionsr1; r2. By
Lemma 1(i),p(r1) 6= p(r2). Assumep(r1) > p(r2). Con-
sider the wordv = w[�mid+1::�end+1]. Note thata�end+1
is the letter right after the end of repetitionr, which im-
plies thata�end+1 6= a�end+1�pr . Note also that any proper
prefix of v is a part ofr and then has a periodpr. Word
v belongs to bothr1 and r2 and starts, in each of them,
at least one period away from the beginning. Thenv has
two other occurrences starting at positions�mid�p(r1) and
�mid�p(r2) (see Figure 1). The shift between these occur-
rences is� = p(r1)�p(r2) and we claim that� � jvj�pr .
Otherwise, if� < jvj � pr, then the two occurrences ofv
have an overlap of length at leastpr + 1. Since this overlap
is a prefix of the occurrence ofv starting at�mid � p(r2),
it has a periodpr. Since the overlap is also a suffix of the
occurrence ofv starting at�mid � p(r1) (see Figure 1), we
have thata�end+1 = a�end+1�pr which is a contradiction.

Thus, p(r1) and p(r2) differ by at leastjvj � pr �
jrj
2 � pr. As the periods of considered repetitions are all

distinct, and belong to the interval(pr; n2 ), there are at most
n=2�pr
jrj=2�pr

+1 of them and therefore as many considered rep-

etitions. Finally, n=2�pr
jrj=2�pr

+1 � n
pr(er�2)+1 � e2r

er�2+1 =

O(er), and we conclude that there areO(er) repetitions in
BLR0(w).

After proving that bothLR(w) and RR(w) contain
O(er) maximal repetitions, (4) is rewritten into

Sexp(w) < Sexp(wl) + Sexp(wr) + Sexp(r0) +

O(er): (5)

Part 2.2 The next step is to estimateSexp(r0) which has
to be done by induction. A direct induction argument does
not work however, which leads to a more subtle analysis.

We split r0 into jr0j=� consecutive blocks of length�
that will be defined later. (For simplicity, we assume that
� dividesjr0j evenly; a possible remainder block does not
affect the analysis [12].) Then by Lemma 2,

Sexp(r0) <
jr0j
�

Sexp(�) + 4 �
X

i=1;:::;
jr0j
�

#CRi; (6)

whereCRi is the set of all repetitions inr0 which cross
the boundary between blocksi and i + 1, i = 1; : : : jr0j� .
Sincer0 is a repetition with periodpr, by Lemma 1(ii),
there is no maximal repetition insider0 with a period larger
than pr. Therefore, for any fixed position� in r0, there
are at most2pr repetitions inr0 crossing this position (by
the same argument as that forSLR(w) in Part 2.1). Thus,
#CRi � 2pr for anyi = 1; : : : ; jr0j� , and

Sexp(r0) <
jr0j
�

Sexp(�) + 8
jr0j
�

pr �

C1jr0j � C2
jr0j log�p

�
+ 8

jr0j
�

pr: (7)

The second inequality has been obtained by the induction
hypothesisSexp(�) � C1�� C2

p
� log�.

Denoteemid = jr0j=pr (the exponent ofr0). For tech-
nical reasons we now assume thatpr � 8 (the casepr < 8

is considered separately [12]), and we choose� = bpr24 c.
With this choice of�, inequation (7) can be transformed

as follows. First, for the chosen�, log �p
�

� log p2

4q
p2

4

=

4 log pr�4
pr

. The term8 jr0j� pr in (7) is O(emid), using the

fact that jr0j� = O( emidpr
). We then rewrite (7) as

Sexp(r0) � C1jr0j�4C2emid(log pr�1)+O(emid): (8)

Part 2.3 We now count togetherSexp(wl), Sexp(wr),
Sexp(r0). Recall that according to (5), our goal is to prove

Sexp(wl) + Sexp(wr) + Sexp(r0) +O(er) �



C1n� C2

p
n log n: (9)

which would conclude the induction argument.
EstimatingSexp(wl), Sexp(wr) by induction, we have

Sexp(wl) � C1jwlj � C2

p
jwlj log jwlj; (10)

Sexp(wr) � C1jwrj � C2

p
jwrj log jwr j: (11)

Substituting (8), (10), (11) into (9), we are left with the in-
equation

C2(
p
n logn�

p
jwlj log jwlj �

p
jwrj log jwrj) +

O(emid) � 4C2emid(log pr � 1) (12)

(O(er) in (9) has been replaced byO(emid) aser � 3emid).
The next step is to estimate the expression in parenthe-

ses. Using elementary calculus considerations, the follow-
ing estimation can be proved [12].

p
n logn�

p
jwlj log jwlj �

p
jwrj log jwrj �

emid(2 log pr + 1): (13)

To prove (12), it then suffices to prove

C2emid(2 log pr + 1) +O(emid) �
4C2emid(log pr � 1): (14)

Recalling thatlog pr � 3 andemid � 3, inequation (14)
can be satisfied by choosing a sufficiently large constantC2.
This completes the proof of Theorem 3. Theorem 2 follows.

An important corollary of Theorem 2 is that the maxi-
mal number of maximal repetitions in words of lengthn is
linearly-bounded onn. We state this in the following Theo-
rem.

Theorem 4 maxjwj=n#R(w) = O(n)

4. Finding all maximal repetitions in a word

In this section we show how Theorems 2,4 allow to ob-
tain linear-time algorithms for several string matching prob-
lems. First, we present a linear-time algorithm for finding
all maximal repetitions in a word together with their peri-
ods. The algorithm is a modification of Main’s algorithm
[17] for finding all leftmostoccurrences of distinct maxi-
mal repetitions, which is in turn based on the idea of s-
factorization [2], or Lempel-Ziv decomposition [9]. We first
describe Main’s algorithm.

Definition 1 ([2, 17]) Let w be an arbitrary word. Thes-
factorizationof w is the factorizationw = u1u2 : : : uk,
whereui’s are defined inductively as follows:

� If letter a occurring in w immediately after
u1u2 : : : ui�1 does not occur inu1u2 : : : ui�1, then
ui = a.

� Otherwise, ui is the longest word such that
u1u2 : : : ui�1ui is a prefix of w and ui has at
least two (possibly overlapping) occurrences in
u1u2 : : : ui�1ui.

As an example, the s-factorization of the word
1011010110110 is 1j0j1j101j01101j10. If w = u1u2 : : : uk
is the s-factorization, we callui’s s-factors.

The usefulness of s-factorization is explained by the fol-
lowing theorem, which is a slight reformulation of Theorem
3.4 from [17].

Theorem 5 Let w = u1u2 : : : uk be the s-factorization
of w, and let r be a maximal repetition inw such
that initpos(r) � initpos(ui) and initpos(ui) �
endpos(r) < endpos(ui). Then initpos(ui) �
initpos(r) � juij+ 2jui�1j.

Theorem 5 suggests a partition of all maximal repetitions
of w into two classes:

1. repetitionsr such thatinitpos(r) � initpos(ui) and
initpos(ui) � endpos(r) < endpos(ui) for some s-
factorui,

2. repetitionsr such thatinitpos(ui) < initpos(r) <
endpos(r) < endpos(ui) for some s-factorui.

The above classification does not cover repetitionsr
which are suffixes ofw, but we make this set empty by ap-
pending a new symbol $ at the end ofw. This also ensures
that the last s-factoruk consists of one letter. Maximal repe-
titions verifying conditions 1 and 2 will be called repetitions
of type 1 and 2 respectively.

As follows from the definition of s-factorization, ev-
ery repetition of type 2 has another occurrence on the left.
Therefore, finding all repetitions of type 1 guarantees find-
ing all distinctmaximal repetitions, and in particular allleft-
mostoccurrences of distinct maximal repetitions.

Let us describe now how repetitions of type 1 are
found by Main’s algorithm. Assume we are given the s-
factorizationw = u1 : : : uk. By Theorem 5, we have to
find, for each2 � i � k, the maximal repetitions in the
word tiui, which start inti and end inui, where ti is
the suffix ofu1 : : : uk�1 of length jui�1j + 2juij (t is the
whole wordu1 : : : ui�1 in case its length is smaller than
2jui�1j + juij). Let us show how to find, in general, all
maximal repetition in a wordtu that start int and end inu.

Assume thatt = t[1::m], u = u[1::n], and we want
to find all maximal repetitionsr in the wordv = tu =
v[1::m+n] such thatinitpos(r) � m andendpos(r) � m.
Every such repetition belongs (non-exclusively) to one of
the two classes: the repetitions which have a period inu and
those which have a period int. Note that by Lemma 1(i), for
every1 � j � n, there is at most one maximal repetition



of periodj starting int, ending inu, and having a period
in u. This shows, in particular, that the number of such
repetitions is linear injuj. Similarly, the number of such
repetitions having a period int is linear injtj, and thus, the
number of maximal repetitions inv = tu which start injtj
and end inu is linear injvj.

Let us focus on maximal repetitionsr which have a pe-
riod inu. The repetitions which have a period int are found
symmetrically. We need two auxiliary functions:

� LP (i); 2 � i � n + 1 defined byLP (i) =
maxfjju[1::j] = u[i::i + j � 1]g for 2 � i � n,
andLP (n+ 1) = 0,

� LS(i); 1 � i � n defined byLS(i) = maxfjjt[m�
j + 1::m] = v[m+ i� j + 1::m+ i]g.

Informally, LP (i) is the length of the longest prefix ofu
which is also a prefix ofu[i::n], andLS(i) is the length of
the longest suffix oft which is also a suffix oftu[1::i]. The
following theorem holds.

Theorem 6 ([17]) For 1 � j � n, there exists a maximal
repetition of periodj in v = tu which starts int, ends inu
and has a period inu iff LS(j) + LP (j + 1) � j. If the
inequality holds, this repetition isv[m � LS(j) + 1::m +
j + LP (j + 1)].

FunctionLP can be computed in time linear injuj and
LS in time linear injvj using the Knuth-Morris-Pratt algo-
rithm (see [17, 4]). Therefore, all maximal repetitions in
v = tu which start int and end inu can be computed in
O(jvj) time.

To find all repetitions of type 1 in a wordw, the
Main’s algorithm proceeds as follows. First compute the
s-factorizationw = u1u2 : : : uk. This computation can be
done in timeO(jwj) using suffix tree construction [18, 23].
Then for eachi from 2 to k compute, using the above
method, the maximal repetitions in wordtu, whereu is ui
andt is the suffix ofu1 : : : ui�1 of length2jui�1j + juij.
Each such computation takes timeO(jui�1j + juij), and
therefore finding all maximal repetitions of type 1 takes
O(jwj) time.

Note that according to the definition of type 1, at each
step we need only those repetitions which end strictly be-
fore the end ofui. The reason for this requirement is that
if a repetition is a suffix ofu1 : : : ui, it may not be a maxi-
mal repetition, as it may extend inw to the right to a longer
repetition. On the other hand, if it is a maximal repetition,
it will be found at the next step of the algorithm, and thus
will not be missed. Note also that the algorithm may still
output the same maximal repetition many times (even un-
boundedly many times). However, the essential feature is
that the algorithm is linear-time and finds all repetitions of
type 1.

To findall maximal repetitions, we have to find, in addi-
tion, all repetitions of type 2. We now show how it can be
done. The task is greatly simplified by the fact that every
repetition of type 2 occurs entirely inside some s-factorui,
and eachui has an earlier occurrence inw.

During the computation of s-factorization we store, for
each s-factorui, a pointer to an earlier occurrence ofui
in w. This can be easily done using the suffix tree con-
struction, so that the computation of s-factorization remains
linear-time. Letvi be this earlier occurrence ofui, and let
�i = initpos(ui) � initpos(vi). Obviously, each repeti-
tion of type 2 occurring insideui is a copy of a maximal
repetition occurring insidevi shifted by�i to the right.

We now proceed as follows. First, we compute all max-
imal repetitions of type 1 with the Main’s algorithm. Then
we sort them, using basket sort, inton lists, such that list
j contains the repetitions with end positionj. (Note that
during the sort we can eliminate the duplicates.) Then we
process all the lists in the increasing order and sort the rep-
etitions again, using basket sort, inton lists according to
their initial position. After this double sort, the repetitions
with the same initial positionj are sorted inside the listj
in the increasing order of their end positions. As there is a
linear number of repetitions of type 1, both sort procedures
take a linear time.

Now we find the repetitions of type 2. We will store
them in the same data structure. For eachui, i = 1::k, and
for each internal positionj insideui, we have to find the
maximal repetitions ofw starting at this position and end-
ing insideui. We then have to find the maximal repetitions
starting at positionj��i in vi which end insidevi, and then
shift them by�i to the right. Note that these repetitions
may be either of type 1, or previously found repetitions of
type 2. We look through the listj ��i and retrieve its pre-
fix consisting of those repetitions which end insidevi. Then
we shift each of these repetitions by�i and append a modi-
fied copy of this prefix to the head of the listj. Note that the
data structure is preserved, as all appended repetitions have
their end position insideui, and those which have been pre-
viously stored in the listj are of type 1 and then have their
end position outsideui. Since we processui’s from left to
right, no repetition can be missed. Thus, we recover all rep-
etitions of type 2 and after allui’s have been processed, the
data structure contains all repetitions of both types.

Note that when we retrieve a prefix of the list corre-
sponding to some position invi, each repetition in this pre-
fix results in a new repetition of type 2 inui. This shows
that the time spent to processing the lists is proportional to
the number of newly found repetitions. Theorem 4 from the
previous section states that the number of all maximal rep-
etitions is linear in the length of the word. This proves that
the whole algorithm takes linear time.



The set of all maximal repetitions, found by the above
algorithm in linear time, provides exhaustive information
about the repetitive structure of the word. It allows easily to
extract all repetitions of other types, such as (primitively- or
non-primitively-rooted) squares, cubes, or integer powers.
Thus, all these tasks can be done in timeO(n+T ) whereT
is the output size (these bounds have been also obtained in
[13, 22] with more sophisticated algorithms). Another ex-
ample is the set ofbranching tandem repeats, notion stud-
ied in [21]. In our terminology, branching tandem repeats
are (not necessarily primitively-rooted) square suffixes of
maximal repetitions. In [21], the authors conjecture that the
maximal number of branching tandem repeats in a word is
linearly-bounded in the length. Our Theorem 2 confirms
that conjecture, since each maximal repetitionr contains
be(r)=2c branching tandem repeats, and therefore their to-
tal number isO(n). Clearly, the set of maximal repetitions
found by the above algorithm, allows to extract all branch-
ing tandem repeats. Since their number is linear, finding all
branching tandem takes linear time.

As another application, the set of maximal repeti-
tions allows to determine, in linear time, the number of
(primitively-rooted) integer powers of a given exponentk,
starting at each position of the word. Here is how this can
be done. For each positioni 2 1::jwj, we create two coun-
terscb(i) andce(i), initially set to 0. For each repetition
r = w[m::l], we incrementcb(m) andce(l� kp(r) + 1) by
1 ([m::l�kp(r)+1] is the interval, where primitively-rooted
k-powers induced by repetitionr start). By Theorem 4, the
number of updates is linear. To compute the numbersdk(i)
of k-powers starting at each characteri, we scan all charac-
ters from left to right applying the following iterative proce-
dure:dk(1) = cb(1), dk(i+1) = dk(i)+ cb(i)� ce(i� 1),
i = 2::jwj. Note that the algorithm can be extended to all
(not necessarily primitively-rooted)k-powers. In this case,
we incrementcb(m) by be(r)=kc, and we increment by 1
eachce(j), for j = l � kp(r) + 1; l � 2kp(r) + 1; : : : ; l �
be(r)=kckp(r) + 1. Here, Theorem 2 guarantees that the
number of updates is linear. Finally, note that the proce-
dure can be easily modified in order to count arbitrary (non-
integer) repetitions of given exponent, as well as repetitions
ending (or centered) at each position.

5. Concluding remarks

The main drawback of our proof of Theorem 2 is that it
does not allow to extract a “reasonable” constant factor in
the linear bound. It seems however that this constant fac-
tor is quite small. Computer experiments suggest that the
number of maximal repetitions is actually smaller thann
and the sum of their exponents smaller than2n, at least for
the binary alphabet. It would be interesting to find a sim-
pler proof of Theorems 2,4 implying a small multiplicative

constant in the linear bound.
An experimental implementation of the algorithm de-

scribed in Section 4 has been recently made by Mathieu
Giraud at LORIA/INRIA-Lorraine. The program has been
tested on biological sequences, and some interesting long
repetitions have been discovered. As expected, the algo-
rithm turned out to be very fast. The “bottleneck” seems to
be the memory occupied by a suffix tree-like construction
needed for computing the s-factorization. However, strings
of 20000 characters could be easily processed.

References

[1] A. Apostolico and F. Preparata. Optimal off-line detection
of repetitions in a string. Theoretical Computer Science,
22(3):297–315, 1983.

[2] M. Crochemore. An optimal algorithm for computing
the repetitions in a word.Information Processing Letters,
12:244–250, 1981.

[3] M. Crochemore. Recherche lin´eaire d’un carr´e dans un mot.
Comptes Rendus Acad. Sci. Paris S´er. I Math., 296:781–784,
1983.

[4] M. Crochemore and W. Rytter.Text algorithms. Oxford
University Press, 1994.

[5] M. Crochemore and W. Rytter. Squares, cubes, and time-
space efficient string searching.Algorithmica, 13:405–425,
1995.

[6] A. Fraenkel and J. Simpson. How many squares can a string
contain? J. Combinatorial Theory (Ser. A), 82:112–120,
1998.

[7] A. Fraenkel and J. Simpson. The exact number of
squares in Fibonacci words.Theoretical Computer Science,
218(1):83–94, 1999.

[8] Z. Galil and J. Seiferas. Time-space optimal string matching.
Journal of Computer and System Sciences, 26(3):280–294,
1983.

[9] D. Gusfield. Algorithms on Strings, Trees, and Sequences.
Cambridge University Press, 1997.

[10] C. Iliopoulos, D. Moore, and W. Smyth. A characterization
of the squares in a Fibonacci string.Theoretical Computer
Science, 172:281–291, 1997.

[11] R. Kolpakov and G. Kucherov. Maximal repetitions in
words or how to find all squares in linear time. Rap-
port Interne 98-R-227, Laboratoire Lorrain de Recherche
en Informatique et ses Applications, 1998. available from
http://www.loria.fr/˜kucherov/resactiv.html.

[12] R. Kolpakov and G. Kucherov. On the sum of expo-
nents of maximal repetitions in a word. Rapport In-
terne 99-R-034, Laboratoire Lorrain de Recherche en In-
formatique et ses Applications, 1999. available from
http://www.loria.fr/˜kucherov/resactiv.html.

[13] S. R. Kosaraju. Computation of squares in string. In
M. Crochemore and D. Gusfield, editors,Proceedings of the
5th Annual Symposium on Combinatorial Pattern Matching,
number 807 in Lecture Notes in Computer Science, pages
146–150. Springer Verlag, 1994.



[14] M. Lothaire. Combinatorics on Words, volume 17 ofEn-
cyclopedia of Mathematics and Its Applications. Addison
Wesley, 1983.

[15] M. Main and R. Lorentz. AnO(n log n) algorithm for
finding all repetitions in a string.Journal of Algorithms,
5(3):422–432, 1984.

[16] M. Main and R. Lorentz. Linear time recognition of square
free strings. In A. Apostolico and Z. Galil, editors,Com-
binatorial Algorithms on Words, volume 12 ofNATO Ad-
vanced Science Institutes, Series F, pages 272–278. Springer
Verlag, 1985.

[17] M. G. Main. Detecting leftmost maximal periodicities.Dis-
crete Applied Mathematics, 25:145–153, 1989.

[18] E. M. McCreight. A space-economical suffix tree construc-
tion algorithm.Journal of the ACM, 23(2):262–272, 1976.

[19] A. Slisenko. Detection of periodicities and string matching
in real time.Journal of Soviet Mathematics, 22:1316–1386,
1983.

[20] J. Storer.Data compression: methods and theory. Computer
Science Press, Rockville, MD, 1988.

[21] J. Stoye and D. Gusfield. Simple and flexible detection of
contiguous repeats using a suffix tree. In M. Farach-Colton,
editor,Proceedings of the 9th Annual Symposium on Combi-
natorial Pattern Matching, number 1448 in Lecture Notes in
Computer Science, pages 140–152. Springer Verlag, 1998.

[22] J. Stoye and D. Gusfield. Linear time algorithms for finding
and representing all the tandem repeats in a string. Techni-
cal Report CSE-98-4, Computer Science Department, Uni-
versity of California, Davis, 1998.

[23] E. Ukkonen. On-line construction of suffix trees.Algorith-
mica, 14(3):249–260, 1995.


