
JOURNAL OF ALGORITHMS l&85-101 (1990)

Sequence Comparison with Mixed Convex and
Concave Costs

DAVID EPPSTEIN

CSL Xerox PARC, 3333 Coyote Hill Rd., Palo Alto, CA 94304

Received October 12,1988; revised February 20,1989

Recently a number of algorithms have been developed for solving the minimum-
weight edit sequence problem with non-linear costs for multiple insertions and
deletions. We extend these algorithms to cost functions that are neither convex nor
concave, but a mixture of both. We also apply this technique to related dynamic
programming algorithms. 0 1990 Academic Press, Inc.

INTRODUCTION

Recently a number of algorithms have been developed for solving the
minimum-weight edit sequence problem with non-linear costs for multiple
insertions and deletions. We define the modified edit distance problem as
follows. Given two strings over alphabet Z, x = x1 . . . x, and y =
Yl ** . y, the edit distance of x and y is the minimal cost of an edit
sequence that changes x into y. This sequence contains operations deleting
characters from x, inserting characters into y, and substituting characters
in x for different characters in y. Each operation has an associated cost,
and the cost of a sequence is the total cost of all its operations. Notice that
a sequence of consecutive deletes corresponds to a substring of x that is
missing from y; we call such a deleted substring a gap in x. Similarly we
call a sequence of consecutive inserts a gap in y. In the most well-known
version of the edit distance problem, the cost of a gap is proportional to the
number of symbols deleted from (or inserted to) it, so we can just as well
consider each gap to be composed of single character deletions or inser-
tions. For this case the minimum cost edit distance can be computed by a
well known dynamic program in time O(mn).

In many applications we would like the cost of such a gap to be
nonlinear. In particular the cost of deleting x,+r * . * xk might be

85
0196-6774/N $3.00

Copyright 0 1990 by Academic Press. Inc.
All rights of reproduction in any form reserved.

86

taken to be

DAVID EPPSTEIN

The cost consists of charges for breaking the sequence at x,+r and xk, plus
an additional cost that depends on the length of the gap. The modified edit
distance is defined to be the minimum cost of an edit sequence which
changes x into y, where the costs of gaps in x are as in Eq. (1) and
similarly the costs of gaps in y are derived from an analogous weight
function w’. This sequence alignment problem arises in the context of
sequence comparison in molecular biology [12], geology [13], and in speech
recognition [ll].

To compute the modified edit distance, we consider a dynamic program-
ming equation of the form

c[i, j] = min{ c[i - I, j - I] + s(xi, .Y,), F[i, jI, G[i, jl} (2)
F[i, j] = p&C[L 11 + 4, .d (3)

G[i, j] = o~;jC[~, jl + ~‘(1, i) (4)

with initial conditions C[i,O] = ~‘(0, i) for 1 I i I m and C[O, j] =
~(0, j) for 1 <j I n. Thus C[i, j] computes the minimum cost of an edit
sequence between initial substrings of the two input strings, with substring
lengths i and j. Such an edit sequence can either end in a substitution or
exact match (the C[i - 1, j - l] term), an insertion (F[i, j]), or a deletion
(G[i, j]). There are two gap cost functions, w and w’, for inserts and
deletes, respectively.

The obvious dynamic program to solve this recurrence takes time
O(mn . max(m, n)). However, note that each row of F, and each column of
G, can be solved as a separate case of the recurrence

The function w(i, j) here may be either the original function w for
recurrence (3), or w’ for recurrence (4). The values of D are here taken from
the appropriate positions of C, and the computed values of E give the
values in F or G; for instance, for row r of recurrence (3) we would have
D[i] = C[T, i] and F[r, j] = E[j]. In general, we may allow D to be any
values easily computed once the corresponding values of E are known.
Also, the initial value of DIO] is known a priori.

SEQUENCE COMPARISON WITH MIXED COSTS 87

In fact, for cost functions satisfying Equation (l), we may simplify
recurrence (5) to

For example, if we are computing row I of recurrence (3), then in this
simplified recurrence D[i] = C[r, i] +fi(xi, xi+r), and F[r, j] = E[j] +
fi(xj, xj+i). In other words, we have abstracted the portions of w(i, j)
depending only on the endpoints i and j into arrays D and E, and out of
the cost function w(i, j) which now is simply a function g(j - i) of the
length of the gap.

The obvious dynamic programming algorithm for recurrence (5) (and
recurrence (6)) takes time O(n2); if we speed up this computation we will
achieve a corresponding speedup in the computation of the modified edit
distance.

Two dual cases of recurrence (5) have previously been studied. In the
concuue case, the gap length cost function w satisfies the quadrangle
inequality,

w(i, j) + w(i’, j’) I w(i’, j) + w(i, j’),

whenever i s i’ I j I j’. In the conuex case, the weight function satisfies
the inverse quadrangle inequality, found by replacing I by 2 in Eq. (7).
In recurrence (6), cost function g is concave or convex in the usual sense
exactly when w(i, j) = g(j - i) is concave or convex with the above
definition.

For both the convex and the concave cases, good algorithms have
recently been developed. Hirschberg and Larmore [6] assumed a restricted
quadrangle inequality with i I i’ < j I j’ in inequality (7) that does not
imply the inverse triangle inequality. They solved the “least weight subse-
quence” problem, with D[j] = E[j], in time O(n log n) and in some
special cases in linear time. They used this result to derive improved
algorithms’ for several problems. Their main application is an O(n log n)
algorithm for breaking a paragraph into lines with a concave penalty
function. This problem had been considered by Knuth and Plass [8] with
general penalty functions. Galil and Giancarlo [5] discovered algorithms for
both the convex and concave cases which take time O(n log n), or linear
time for some special cases. Miller and Myers [lo] independently discovered
a similar algorithm for the convex case. Aggarwal et al. [l] had previously
given an algorithm which solves an offline version of the concave case, in
which D does not depend on E, in time O(n); Wilber [15] extended this
work to an ingenious O(n) algorithm for the online concave case; however
as we shall see in the next section Wilber’s algorithm has shortcomings that

88 DAVID EPPSTEIN

make it inapplicable to the sequence alignment problem. Klawe and Kleit-
man [7] extended the algorithm of Aggarwal et al. to solve the convex case
in time O(na(n)). where a(n) is the inverse Ackermann function.

It is not possible, without further assumption, to solve recurrence (5)
more efficiently than the obvious 0(n2) algorithm, because we must look at
each of the possible values of w(i, j). However, this argument does not
apply to recurrence (6) because g(j - i) only has linearly many values to
be examined. Therefore we would like to speed up the computation of
recurrence (6), without assuming anything about the convexity or concavity
of g. It is not known whether such a solution is possible. In this paper we
provide a partial solution, by broadening the class of cost functions g for
which an efficient solution is possible. In particular we allow g to be
piecewise concave and convex, with s alternations. More precisely, we
assume that we can find indices ci, c2,. . . , c,-i such that g is concave in
the range [l, c,], convex in the range [ct, c2], and so on. For such functions
we solve recurrence (5) in time 0(~zsoL(~/s)), and therefore we also solve
the modified edit sequence problem in time 0(n2scw(n/s)). Note that these
times are never worse than the times of O(n2) and O(n3) for the naive
dynamic programming solutions; when s is small our times will be much
better than the naive times. Our algorithms use as subroutines the previous
solutions to the concave and convex cases of recurrence (5); if these
solutions are improved it is likely that our algorithms would also be
sped up.

INTERLEAVING CONCAVE COMPUTATIONS

For the algorithms in this paper, as for the reduction given in the
introduction from sequence alignment to recurrence (5), we interleave the
solutions of a number of separate convex or concave copies of recurrence
(5). Because of this, we require an additional property of any solutions we
use: each value E[j] must be known before the computation of E[j + l]
begins. Instead, Wilber’s O(n) time algorithm for the concave case of
recurrence (5) guesses a block of values of E[j] at once, then computes the
corresponding values of D[j], and verifies from them that the guessed
values were correct. If they were incorrect, they and the values of D[j] need
to be recomputed, and the work done computing and verifying the incorrect
values can be amortized against progress made. But if Wilber’s algorithm is
interleaved with out computations, and an incorrect guess is made, those
other computations based on the incorrect guess will also need to be
redone, and this extra work can no longer be amortized away. Therefore, we
now present a modification to Wilber’s algorithm that allows us to use it in
interleaved computations.

SEQUENCE COMPARISON WITH MIXED COSTS 89

First let us sketch Wilber’s algorithm as he originally presented it. The
algorithm depends on the following three facts. First, let ii < i, < j, <j2,
and let P[j] = min. r,sisi,D[i] + w(i, j) for j, <j <j, and for some
concave function w. Then the values of P[j] can be computed in time
O((i, - il) + (j, - j,)), using the algorithm of Aggarwal et al. [l]. Second,
in recurrence (5), let i(j) be the value of i such that D[i] + w(i, j)
supplies the minimum value for E[j] and again let w be concave. Then for
j’ > j, i(j’) 2 i(j). And third, if we extend w to be equal to + co for (i, j)
with i 2 j, it remains concave.

Wilber’s algorithm proceeds as follows. Assume that we know the values
of D[j], E[j], and i(j) for j I k. Let D[j] = d(E[j]) be the function
taking values of E[j] computed in the recurrence to the corresponding
values of D[j] used for later values of the recurrence. Let p =
min(2k - i(k) + 1, n). Define a stage to be the following sequence of
steps, which Wilber repeats until all values are computed:

(1) Compute P[j] = min. r(k)liskD[i] + w(i, j) for k <j <p using
the algorithm of Aggarwal et al. P[j] may be thought of as a guess at the
eventual value of E[j].

(2) Compute Q[j] = d(P[j]) for k < j I p. I.e., we perform the com-
putation that would be used to compute the values of D[j], if E[j] were in
fact equal to P[j].

(3) For each j with k <j sp, compute R[j] = mink,i,iQ[i] +
w(i, j) using the algorithm of Aggarwal et al. R[j] substitutes the values of
Q[j] into the recurrence to verify that the guessed values of P[j] were
correct.

(4) Let h be the least j such that R[j] < P[j], or p if no such index
exists. Then E[j] = P[j] for k < j I h. If h = p, we know that all guesses
were correct. Otherwise, we know that they were correct only through h;
then E[h + l] = R[h + l] and i(h + 1) > k. In either case, start a new
stage with k updated to reflect the newly verified values of E[j] and D[j].

A proof that the above algorithm in fact correctly computes recurrence
(5) is given in Wilber’s paper. We now give the time analysis for this
algorithm; a similar analysis will be needed for our modification to
the algorithm. The total time for each stage is 0((p - k) + (k - i(k)) =
0(k - i(k)). If h = n we are done, and this final stage will have taken time
O(n). If h = p # n then we will have computed p - k = 2k - i(k) + 1 -
k = k - i(k) + 1 new values, so the time taken is matched by the increase
in k. And if h + p, then i(h + 1) > k and i(h + 1) - i(k) > k - i(k), so
the time taken is matched by the increase in i(k). Neither k nor i(k)
decrease, and both are at most n, so the algorithm takes linear time.

90 DAVID EPPSTEIN

However, as we have seen, this may not hold when we interleave its
execution with other computation. In particular, the analysis above depends
on step (2) of each stage, the computation of Q[j] = d(P[j]), taking only
constant time for each value computed; but if we interleave several compu-
tations this step may take much longer. The problem is that d(x) may not
be a simple function depending only on x, but instead it may use the value
of x as part of one of the other interleaved dynamic programs; and if we
supply P[j] as the value of x instead of the correct value of E[j], this may
cause incorrect work to be done in the interleaved programs. This incorrect
computation will need to be undone, if the value of P[j] turns out not to
equal E[j], and therefore the time taken to perform it can not be amortized
against the total correct work performed. Instead we now describe a way of
performing each stage in such a way that we only need to compute d(E[j]),
for actual values of E[j].

We introduce a new variable, c, corresponding to the role of i(k) in
Wilber’s algorithm, and an array A[j] which stores the already computed
“influence” of D[i], for i < c, on future values of E [j]. That is, for all j
from 1 to n,

A[j] = min D[i] + w(i, j). (8)
O<iCc

Actually, Eq. (8) will not hold as written above; instead we guarantee the
slightly weaker condition that, if index i supplies the minimum of D[i] +
w(i, j) in the computation of E[j], then either i 2 c or E[j] = A[j].

Initially c = 0 and all values of A are + cc; clearly Eq. (8) holds for these
initial conditions. As in Wilber’s algorithm, let k be the greatest index such
that D[k] is known; initially k = 0. Finally let p = 2k - c + 1; c is
always at most k so p > k. We proceed as follows:

(1) Compute P[j] = min(A[j],min~5iS,D[i] + w(i, j)) for k <j I
p using the algorithm of Aggarwal et ai. As in Wilber’s algorithm, we
compute here our guess at the values of E [j]. Wilber’s analysis applies here
to show that the algorithm of Aggarwal et al. can be used, taking time
O((k - c) + (P - k)).

(2) For each i with k < i < p, compute

using the algorithm of Aggarwal et al. Here we differ from Wilber’s
algorithm; instead of plugging our guesses into the function d(x), we
compute the bounds B[i] directly from the guesses.

(3) While k < p, increase k by 1, let E[k] = P[k], and compute
D[k] = d(E[k]). If k = p, start the next stage at step (1). If not and

SEQUENCE COMPARISON WITH MIXED COSTS 91

FIGURE 1

D[k] < B[k], stop and go to step (4). Otherwise, continue the loop in this
step.

(4) We have found k to be the least index with D[k] < B[k]. For
k < j < p, let A[j] = P[j]. Set c = k, and start a new stage at step (1).

The algorithm can be visualized as in Fig. 1. The figure depicts a matrix,
with columns numbered by j and rows numbered by i. The value at
position (i, j) of the matrix is D[i] + w(i, j). Positions below the diagonal
are not used by the algorithm, and no value is defined there. Then the goal
of the computation is to compute the minimum value in each column. As in
Wilber’s algorithm, rows are indexed starting from 0 but column numbers
can start from 1, since D[O] is defined and used in the minimization but
E [0] is not defined. The values in any row of a matrix are not known until
the minimum in the corresponding column has been computed.

At each stage, the minima in all columns up to and including column k
have been computed, and so the values in all rows up to k are computable.
The contribution of the values in rows above (but not including) row c to
the minimization for each column j has been computed into A[j]. Step (1)
extends this computation to the contribution to include area (1) of the
figure, i.e., rows c through k and columns k + 1 through p. The remaining
steps test the values so computed, to see whether they are the actual minima
in their columns. If so, k can be advanced to p. Otherwise, one of the
columns in the range from k + 1 through p has a minimum in a row from
k to p. Otherwise, one of the columns in the range from k + 1 through p
has a minimum in a row from k to p, and by concavity none of the values
in area (2) of the figure will be the minimum in their columns. So in this

92 DAVID EPPSTEIN

case, we have computed the influence between rows c and k, and we can
advance c.

More formally, we have the following lemmas.

LEMMA 1. If, in the computation of a stage, for some i it is the case that
B[i] I D[i], and assuming the values of D computed in all previous stages
were correct, then for all j, i < j I p, D[i] + w(i, j) 2 P[j].

Proof P[j] - w(i, j) I B[i] by the computation of B. So if B[i] I
D[i], then clearly the desired inequality holds. q

LEMMA 2. If, in the computation of a stage, we encounter a row i with
B[i] > D[i], and assuming the values of D computed in all previous stages
were correct, then there exists a column j with i < j I p, such that D[i] +
w(i, j> < WI.

Proof Let j be the column supplying the maximum value of B[i], i.e.,
B[i] = P[j] - w(i, j). Then P[j] > D[i] + w(i, j). q

LEMMA 3. For any j, A[j] 2 min,,Si< jD[i] + w(i, j).

Proof A[j] is always taken to be a minimum over some such terms, so
it can never be smaller than the minimum over all such terms. 0

Next we show that A[j] encodes the minimization over rows above row
c, so the total minimum is the better of A[j] and the minimum over later
rows.

LEMMA 4. Each stage computes the correct values of D and E. Further,
after the computation of a given stage, for each index j,

,y$D[i] + w(i, j) = hn(A[jl,c~~jD[i] + w(i, j)), (9)

Proof. We prove the lemma by an induction on the number of stages;
thus we can assume that it held prior to the start of the stage. By k and c
here we mean the values held at the end of the stage; let k’ denote the value
held by k at the start of the stage, and similarly let c’ denote the value of c
at the start of the stage.

We first prove the assertion that E and D are computed correctly. In a
given stage, we compute these values for indices j with k’ <j 5 k. In
particular, E[j] = P[j] and D[j] = d(E[j]) for those indices. Recall that
P[j] was computed as

P[jl = fin(~[jl~cqti~k,~[il + w(i, i)).

Further, for i < k, D[i] 2 B[i], or else we would have stopped the loop in

SEQUENCE COMPARISON WITH MIXED COSTS 93

step (3) earlier. Therefore, by Lemma 1, for each row i with k’ < i < j,
P[j] I D[i] + w(i, j), so these additional rows cannot affect the mini-
mization for E[j], and by the induction hypothesis of Eq. (9) E[j] is in
fact computed correctly.

Now we show that Eq. (9) also holds. Clearly if the stage terminates with
k = p, it remains true, because c and A remain unchanged. Otherwise,
c = k is the least row such that B[c] > D[c]. By Lemma 2, there exists a
column j with c < j I p, such that

D[c] + w(c, j) < P[j] I min D[i] + w(i, j).
Olilc’

By Lemma 1, for c’ < i < c, P[j] I D[i] + w(i, j), so

D[c] + w(c, j) < o%ycD[il + w(i, j).

But then by concavity, for every j’ > j 2 p,

D[c] + w(c, j’) < m&D[i] + w(i, j’).

so

$$W + w(i, j’) = c$zj,Nil + w(i, j’)

= hn(A[j’],c$;j,D[i] + w(i, j’)),

where the last part of the above equation holds because of Lemma 3. For
k < j’ I p, the values of D[i] + w(i, j’) for c’ I i I k’ have already been
computed in step (1) and incorporated into A[j’] in step (4). And since for
each i < c, D[i] 2 B[i], we know by Lemma 1 that D[i] + w(i, j’) 2
P[j’] = A[j’] so these rows cannot affect the minimum. Therefore the
equation is true for all columns. 0

It remains to show that the bounds B computed in step (2) can be
computed using the algorithm of Aggarwal et al. Recall that B is defined
by the recurrence B[i] = maxicjSp P[j] - w(i, j). To hide the depen-
dence of j on i, define f(i, j) to be P[j] - w(i, j) if i cj, or - cc,
otherwise. Then B[i] = maxk+i < js,f(i, j). The problem is to find the
maxima on the rows of the matrix implicitly determined by the function
f(i, j). The algorithm of Aggarwal et al. [l] can do this in time 0(p - k).
It uses an assumption that, for any four positions i < i’ and j < j’, if
f(i, j’) 2 f(i, j), then f(i’, j’) 2 f(i’, j); i.e., in any submatrix, as we
progress down the rows of the submatrices, the row maxima move mono-
tonically to the right. Define a matrix of values having this property to be

94 DAVID EPPSTEIN

totally monotonic. It is the assumption of monotonicity that we must prove,
in order to justify the use of the algorithm of Aggarwal et al.

LEMMA 5. Let f(i, j) be defined as above. Then the matrix of values of
f (i, j) for k < i < p and k + 1 < j 2 p is totally monotone.

Proof First, if (i’ 2 j), then f(i’, j’) 2 f(i’, j) = - 00 and the conch-
sion holds. So we may assume that i < i’ < j < j’. But then

f(i, j) + f(i’, j’) = P[j] + P[j’] - w(i, j) - w(i’, j’)

2 P[j] + P[j’] - w(i’, j) - w(i, j’)

=f(i’, j) +f(i, j’>

by the quadrangle inequality. So if we assume f (i, j’) 2 f (i, j), then for
the above inequality to hold f(i’, j’) 2 f(i’, j) and the matrix is monotone.

El

A similar proof of the monotonicity of D[i] + w(i, j) (with a definition
of monotonicity for column minima instead of row maxima) holds for the
use of the algorithm of Aggarwal et al. in computing the values of F in step
(1). However, that proof was given by Wilber for the analogous step in his
algorithm, so we omit it here.

Now that we have determined the correctness of the algorithm, let us
determine the amount of time it takes to compute each stage. Let k and c
denote the values of the variables at the end of the stage, with k’
and c’ holding the values before the stage. The time for the stage is then
O((p - k’) + (k’ - c’)) = O(k’ - c’). If, after the stage, k = n, we are
done and the stage took time O(n). If the stage finished without finding
any D[i] < B[i], then k = p so k - k’ = 2k’ - c’ + 1 - k’ = k’ - c’ + 1
and the time spent is balanced by the increase in k. Otherwise, c - c’ =
k - c’ > k’ - c’ and the time spent is balanced by the increase in c. Both k
and c are monotonically increasing and both are bounded by n. Thus, as
before, the new algorithm takes linear time. But note that now we only
calculate the values of D[j] corresponding to the actual computed values of
E[j]; thus the algorithm can be safely interleaved with other computations,
without loss of time.

Thus we have seen that recurrence (5), for concave cost functions, can be
computed in linear time, even when the computation must be interleaved
with other similar computations. We will use this improvement to Wilber’s
algorithm as a subroutine in the next section. As another application, we
can use it to solve the modified edit distance problem with concave costs in
time 0(n2).

SEQUENCE COMPARISON WITH MIXED COSTS 95

PIECEWISE CONVEX AND CONCAVE FUNCTIONS

Let us consider again recurrence (6):

We assume that there exist indices cr, c2,. . . , c,-i such that g is concave in
the range [0, ci], convex in the range [ci, cZ], and so on. By examining
adjacent triples of the values of g, we can easily divide the numbers from 0
to n into such ranges in linear time; therefore from now on we assume that
Cl,C2,.‘.,C,-l are given. Also define q, = 0 and c, = n.

We now form s functions g,, g,, . . . , gS+l as follows. Let g,(x) = g(x)
if cP- i I x I cP; for other values of x let g,(x) = + cc. Then

where

E&d = o$njn[il + g,(j - i)- 01)

Our algorithm proceeds by solving recurrence (11) independently for each
g,, and then using Eq. (10) to find E[j] as the minimum of the s results
obtained. We use as subroutines the algorithms mentioned in the introduc-
tion for solving recurrence (5) and g is convex or concave.

It turns out that concave segments (i.e., g, for odd p) remain concave on
the entire range [l, n], and therefore we could apply the algorithm of the
previous section directly to them. The solution for convex segments is more
complicated, because in this case the added infinities do interfere with
convexity. Further, even if convexity held and we applied Klawe and
Kleitman’s algorithm in the straightforward way, we would only achieve a
time of O(ncu(n)) for each segment; the bound we wish to achieve is
0(ncw(n/s)). By a more complicated process we may solve both the concave
and convex segments in such a way that the amortized time per segment is
bounded by the formula above; however any individual segment p may
have a solution time that is higher or lower than that bound, depending on
its width ap = cp - cpel.

Now fix some segment p, either convex or concave. Then E,[j] depends
on those values D[i] such that cP-r I j - i I cP. Thus if we consider a
matrix of pairs (i, i), the pairs such that E,,(j) depends on D[i] form a
diagonal strip of width aP. We solve the recurrence for g, by dividing this
strip into right triangles, of width and height ap, pointing alternately to the
upper right and lower left, and having as their hypotenuses alternately the
diagonal boarders of the strip determined by cPPl and cP (Fig. 2). We solve

96 DAVID EPPSTEIN

FIGURE 2

the recurrence independently on each triangle, and piece together the
solutions to obtain the solution of gP for the entire strip.

In particular, let the upper triangle V, be the pairs (i, j) for which
j < cp + (t - l)a,, i 2 (t - l)a,, and cP-i I j - i. Similarly let the lower
triangIe L, be the pairs (i, j) for which j 2 cP + (t - l)a,, i < tu,, and
j - i I cP. Then for any fixed j, all pairs (i, j) such that E&j] depends on
D[i] may be found in the union of the upper and lower triangles containing
j. More formally,

and

E,[jl =
=

where

x,M =
=

,,yinjD[il + g,(i - i)

min.
‘b-,I/-“Cp

D[i] + g,(j - i)

tin{ XpM, y.M),

min - i)
j-Cp-lLi~l(j-Lb+l)/up]up

ml + gp(j ,

min
(i,j)EU

D[il + g,(j - i)
(12)

I(J-~p-l+l)/upl

Y,[.il = min
~(j-c,+l)/oplrr,>i~j-cp

D[il + g,(i - i)

03) = min
(1. j)~q(,-q+l,/“,l

D[i] + g,(j - i).

SEQUENCE COMPARISON WITH MIXED COSTS 97

Thus we can compute the values of Ep by solving the values of x, and YP
within each upper and lower triangle. The computation withm upper
triangle U,, corresponding to Eq. (12), can be expressed as

04)

which is exactly the same form as recurrence (5), except on a problem of
size up instead of n. Further, all values of gP(j - i) in the recurrence are in
the range [cP- i I j - i s cP], so g, is consistently either convex or concave
in this range. Therefore, we can solve recurrence (14) in time O(a,cu(a,))
by using the Klawe and Kleitman’s algorithm or our modified version of
Wilber’s algorithm.

The computation of YP in lower triangle L,, which may be written

Y,Lil = min
j-c,.si<rcr,

D[i] + g,(j - i), (15)

is, however, not of the appropriate form. In particular, for the least value of
j in the triangle, Y,[j] depends on all of the values of D[i] for i in the
triangle; succeeding values of j use successively fewer values of D[i].
However, observe that this pattern of usage implies that all values of D[i]
will be known before any value of Y,[j] from the triangle need be
computed. Therefore, this is an offline problem. Because of this offline
nature of the problem, we need not compute the values of YP in order by j;
in fact we will compute them in reverse order, to transform the correspond-
ing search matrix to upper triangular form. Actually this step is not
necessary, as the relevant algorithms can be applied directly to the lower
triangles, but it simplifies the presentation.

Let j’ = cP + tu, - j, and let i’ = to, - i. Then Eq. (15) can be rewrit-
ten

yp[cp + tua, - j'] = l$ij,D[tu, - i'] + gp(Cp + i' -j% (16)

which is now the same form as that of recurrence (6). Finally note that if
g,(j - i) is a convex function of j - i, then gP(c,, + i’ - j’) is also a
convex function of j’ - i’; and similarly if gP is concave it remains so
under the change of variables. Thus by reversing the order of evaluation we
have transformed Eq. (15) into a form that can be solved by KIawe and
Kleitman’s or Wilber’s algorithms. Again the time taken for the solution is
o(ap(q.

Each segment is composed of at most O(n/u,) upper and lower trian-
gles; since the time for solving each triangle is 0(u& a,)), the total time to
compute Ep for segment p is O(ncu(u,)). The time for computing all

98 DAVID EPPSTEIN

segments is C~=iO(ncw(ai)), which, because Ca, = n and by the convexity
of the inverse Ackermann function, we can simplify to O(nscu(n/s)). The
time for combining the values from all segments is O(ns). Therefore the
total time for the algorithm is O(nscu(n/s)).

COMPUTATION OF RNA STRUCTURE

A dynamic program similar to that used above for sequence comparison
has also been used for predicting the secondary structure of RNA [ll, 41.
The recurrence is

E[i, j] = o$,njD[i’, j’] + w(i’ +j’, i +j). 07)
Osj'<j

As before, D[i, j] may be easily computed from E[i, j]. Also as before, we
assume that w is a function only of the difference between the two
diagonals: w(i’ + j’, i + j) = g((i + j) - (i’ + j’)).

The naive dynamic programming solution takes time 0(n4), and a simple
observation of Waterman and Smith reduces this to O(n3) [14]. Eppstein,
Galil, Giancarlo f4] showed that, if w is either convex or concave, this time
can be further reduced to O(n2 log2 n). Aggarwal and Park [2] used
different methods to reduce this time to O(n2 log n). We now show that
these results can be extended to piecewise convex and concave functions. If
the number of segments in w is s, recurrence (17) can be solved in time
O(n2s log n(v(n/s)). For small s, this bound is much better than Waterman
and Smith’s time of O(n3). Our algorithm follows in outline that of
Aggarwal and Park.

We solve recurrence (17) using divide-and-conquer techniques. Along
with E[i, j] we maintain another array W[i, j], initially + cc at all cells.
At all times W[i, j] will be the minimum over some points (i’, j’) with
i’ < i and j’ < j of D[i’, j’] + w(i’ + j’, i + j). At each recursive level we
will divide the pairs of indices (i, j) into two sets; if (i’, j’) is in the first set
and (i, j) is in the second, with i’ < i and j’ < j, then after that level the
minimization for W[i, j] will include the value for (i’, j’). The divide and
conquer will ensure that all pairs (i’, j’) with i’ < i and j’ < j will
eventually be included in W[i, j], at which time we can simply take
E[i, j] = W[i, j].

Each level of the recursion proceeds in three phases. First, we compute
recursively E[i, j] for 0 I j I n/2. Second, we compute W[i, j] for n/2 <
j I n, using the formula

W[i, j] = o~,;i D[i’, j’] + w(i’ + j’, i + j). 08)
O<j'<n/2

SEQUENCE COMPARISON WITH MIXED COSTS 99

In the lower levels of the recursion, we take W[i, j] as the minimum of its
previous value and the above quantity. Finally, we compute recursively
E[i, j] for n/2 < j 5 n and combine the recursive computation with the
values of W[i, j] computed above. In each recursive call, we switch the
roles of i and j so that each index will be halved at alternate levels of
the recursion; thus the dynamic progr amming matrix seen at each level of
the recursion remains square.

LEMMA 6. The &we algorithm sketch correctly computes E[i, j] for each
(i, j).

Proof. By induction on the number of levels in the recursion. E[i, j] is
computed correctly in the first recursive call by induction. In the second
half of the matrix, half of the possible values which we are minGzing over
are supplied by W[i, j], and the other half are supplied by the recursion, so
E[i, j] is again computed correctly. El

Thus all that remains is to show how to solve recurrence (18). Fix i, and
let WJ j] = W[i, j]. Then the recurrence can be rewritten

Wj[j] = ,r$ni D[i’, j’] + w(i’ + j’, i + j)

0 22 j' 5 n/2

= r+n o$~i D[i’, j’] + w(i’ + j’, i + j)

i’+j’=d
O<j’sn/Z

= n$nZ[i, d] + w(d, i + j). (19)

where

Z[i, d] = orq;ip,i D[i’, j’].
i’+j’-d

Osj’5n/2

(20)

For a fixed diagonal d, IQ. (20) can be solved in time O(n) using a pre-
fix computation [9]. In particular, Z[i, d] = min{Z[i - 1, d], D[i - 1,
d - i + l]}, so successive values of Z can be computed in constant time per
value. Therefore all values of Z for the top level of the recursion can be
computed in total time O(n2).

The remaining computation is recurrence (19). This follows a similar
form to that of recurrence (5) and can be solved by the same methods. In
fact the problem is offline (the values of Z on the right side of the equation
do not depend on the values of Wi on the left) and so for convex and
concave w, the recurrence can be solved in linear time by the algorithm of
Aggarwal et al. [l]. This observation is the heart of the O(n2 log n)
algorithm of Aggarwal and Park [2] for the convex and concave cases of the

100 DAVID EPPSTEIN

RNA structure computation. For our case, w is neither convex nor concave,
but mixed. As in the previous section, recurrence (19) can be solved by
dividing the matrix of pairs (d, j) into diagonal strips and the strips into
triangles. This leads to a time of 0(RS(Y(n/s)) for solving each instance of
recurrence (19) and a total time for all such recurrences of O(n2sa(n/s)).

Thus we have seen that the time spent performing the computations at
the outer level of our recursive algorithm is O(n2s~(./.s)). We may com-
pute the total time for the algorithm by expanding two recursive levels at
once, one halving j and the next halving i, so that we return to the same
square shape of the dynamic programming matrix at lower levels of the
recursion. Let T(n) be the complexity of solving the problem for an n x n
dynamic programming matrix. This gives the equation

T(n) = 4T(n/2) + O(n*m(n/s)) = O(n*slogna(n/s)).

CONCLUSIONS

Previous solutions to the dynamic programming equation E[j] =
mm 01i < $I[i] + w(i, j) assume that the cost function w is either convex
or concave; that is, it satisfies either the quadrangle inequality or its inverse.
We have shown how to modify the linear-time algorithm for the concave
case so that it can be interleaved with other computations, giving a time of
0(n*) for the concave edit distance problem. We then showed how to adapt
solutions to the convex and concave cases, to provide an efficient solution
to the recurrence when w is neither convex nor concave, but can be divided
into segments in each of which w is convex or concave. The resulting
algorithm has applications both to approximate sequence comparison and
to the computation of RNA structure.

ACKNOWLEDGMENTS

I thank my advisor, Zvi Gal& and my co-authors Pino Italian0 and Raffaele Giancarlo for
encouraging me to publish these results, and for many helpful comments. I also thank an

anonymous referee for his careful reading of the paper. This work was supported in part by
NSF Grants DCR-8511713,CCR-86-05353,md CCR-88-14977.

REFERENCES

1. A. AGGARWAL, M. M. KLAWE, S. MORAN, P. SHOR, AND R. WILBER, Geometric applica-
tions of a matrix-searching algorithm, Algorithmica 2 (1987), 209-233.

2. A. AGGARWAL AND J. PARK, Searching in multidimensional monotone matrices, in “29th

ACM Symp. Foundations of Computer Science, 1988,” pp. 497-512.

SEQUENCE COMPARISON WITH MIXED COSTS 101

3. A. V. AHO, J. E. HOPCROFT, AND J. D. ULLMAN, “The Design and Analysis of Computer
Algorithms.” Addison-Wesley, Reading, MA, 1974.

4. D. EPPSTEIN. Z. GALIL, AND R. GIANCARLO, Speeding up dynamic programming, in “29th
ACM Symp. Foundations of Computer Science, 1988,” pp. 488-496.

5. Z. GALIL AND R. GIANCARLO, Speeding up dynamic programming with application to
molecular biology. Theoret. Comput. Sci. 64 (1989). 107-118.

6. D. S. HIRSCHBERG AND L. L. LARMORE, The least weight subsequence problem, SIAM J.
Comput. 16 (1987). 628-638.

7. M. M. KLAWE AND D. KLEITMAN, An almost linear algorithm for generalized matrix
searching, preprint, 1987.

8. D. E KNUTH AND M. F. PLASS, Breaking paragraphs into lines, Softwnre Pructice

Experience 11 (1981). 1119-1184.
9. R. E. LADNER AND M. J. FISCHER, Parallel prefix computation, J. ACM 27, No. 4 (1980),

831-838.
10. W. MILLER AND E. W. MYERS, Sequence comparison with concave weighting functions,

Bull. Murh. Biol. SO, No. 2 (1988), 97-120.
11. D. SANKOFF AND J. B. KRUSKAL, (Errs.), “Time Warps, String Edits, and Macromolecules:

The Theory and Practice of Sequence Comparison,” Addison-Wesley, Reading, MA, 1983.
12. M. S. WATERMAN, General methods of sequence comparison, Bull. Math. Biol. 46 (1984).

473-501.
13. M. S. WATERMAN AND T. F. SMITH, New stratigraphic correlation techniques, J. Geol. 88

(1980). 451-457.
14. M. S. WATERMAN AND T. F. SMITH, Rapid dynamic programming algorithms for RNA

secondary structure, Ado. in Appt. Murh. 7 (1986), 455-464.
15. R. WILBER, The concave least weight subsequence problem revisited, J. Algorithms 9, No.

3 (1988), 418-425.

