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If the input symbols to a communication channel represent the outcomes
of a chance event on which bets are available at odds consistent with their
probabilities (i.e., "fair" odds), a gambler can use the knowledge given
him by the received symbols to cmlse his money to grow exponentially. The
maximum exponential rate of growth of the gambler's capital is equal to
the rate of transmission of information over the channel. This result is
generalizedto include the caseof arbitrary odds.

Thu» we find a situation in which the transmission rate is significant
even though no coding is contemplated. Previously this quantity was given
significance only by a theorem of Shannon's which asserted that, with suit
able encoding, binary digits could be transmitted over the channel at this
rate with an arbitrarily small probability of error.

INTRODUCTION

Shannon defines the rate of transmission over a noisy communication
channel in terms of various probabilities.' This definition is given sig
nificance by a theorem which asserts that binary digits may be encoded
and transmitted over the channel at this rate with arbitrarily small
probability of error. Many workers in the field of communication theory
have felt a desire to attach significance to the rate of transmission in
cases where no coding was contemplated. Some have even proceeded
on the assumption that such a significance did, in fact, exist. For ex
ample, in systems where no coding was desirable or even possible (such
as radar), detectors have beendesigned by the criterion of maximum
transmission rate or, what is the same thing, minimum equivocation.
Without further analysis such a procedure is unjustified.

The problem then remains of attaching a value measure to a communi-

1 C. E. Shannon, A Mathematical Theory of Communication, B.S.T.J., 27,
pp. 379-423, 623-656, Oct., 1948.
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cation system in which errors are being made at a non-negligible rate,
i.e., where optimum coding is not being used. In its most general formu
lation this problem seems to have but one solution. A cost function must
be defined on pairs of symbols which tell how bad it is to receive a cer
tain symbol when a specified signal is transmitted. Furthermore, this
cost function must be such that its expected value has significance, i.e.,
a system must be preferable to another if its average cost is less. The
utility theory of Von Neumann2 shows us one way to obtain such a cost
function. Generally this cost function would depend on things external
to the system and not on the probabilities which describe the system, so
that its average value could not be identified with the rate as defined
by Shannon.

The cost function approach is, of course, not limited to studies of com
munication systems, but can actually be used to analyze nearly any
branch of human endeavor. The author believes that it is too general to
shed any light on the specific problems of communication theory. The
distinguishing feature of a communication system is that the ultimate
receiver (thought of here as a person) is in a position to profit from any
knowledge of the input symbols or even from a better estimate of their
probabilities. A cost function, if it is supposed to apply to a communica
tion system, must somehow reflect this feature. The point here is that
an arbitrary combination of a statistical transducer (i.e., a channel) and
a cost function does not necessarily constitute a communication system.
In fact (not knowing the exact definition of a communication system
on which the above statements are tacitly based) the author would not
know how to test such an arbitrary combination to see if it were a com
munication system.

What can be done, however, is to take some real-life situation which
seems to possess the essential features of a communication problem, and
to analyze it without the introduction of an arbitrary cost function.
The situation which will be chosen here is one in which a gambler uses
knowledge of the received symbols of a communication channel in order
to make profitable bets on the transmitted symbols.

THE GAMBLER WITH A PRIVATE WIRE

Let us consider a communication channel which is used to transmit the
results of a chance situation before those results become common
knowledge, so that a gambler may still place bets at the original odds.
Consider first the case of a noiseless binary channel, which might be

2 Von Neumann and Morgenstein, Theory of Games and Economic Behavior,
Princeton Univ. Press, 2nd Edition, 1947.
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used, for example, to transmit the results of a series of baseball games
between two equally matched teams. The gambler could obtain even
money bets even though he already knew the result of each game. The
amount of muncy he could make would depend only on how mueh he
chose to bet. How much would he het? Probably all he had since he
would win with certainty. In this ease his capital would grow expo
nentially and after N bets he would have 2N times his original bankroll.
This exponential growth of capital is not uncommon in economics. In
fact, if the binary digits in the above channel were arriving at the rate
of one per week, the sequence of bets would have the value of an invest
ment paying 100 per cent interest per week compounded weekly. We
will make use of a quantity G called the exponential rate of growth of
the gamhler's capital, where

G L ' 1 I V N= Im-- og-
N~oo N Vo

where Y N is the gambler's capital after N bets, Yo is his starting capital,
and the logarithm is to the base two. In the above example G = 1.

Consider the case now of a noisy binary channel, where each trans
mitted symbol has probability, p, or error and q of correct transmission.
Now the gambler could still bet his entire capital each time, and, in
fuct, this would maximize the expected value of his capital, (VN),
which in this case would be given by

(V N) = (2q)Nyo

This would be little comfort, however, since when N was large he would
probably be broke and, in fact, would be broke with probability one if
he continued indefinitely. Let us, instead, assume that he bets a frac
tion, l, of his r-apital each time. Then

V N = (1 + l)w(1 - t)Lyo

where IV and L arc the number of wins and losses in the N bets. Then

[w L ]G = ~~~ N log (l + f) + N log (1 - f)

= q log (1 + f) + p log (1 - l) with probability one

Let us maximize G with respect to t. The maximum value with respect
to the Y i of a quantity of the form Z = L:Xi log Y i, subject to the
constraint L: Y i = Y, is obtained by putting

Yo' = ~ X·X "
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where X = L: Xi. This may be shown directly from the convexity of
the logarithm.

Thus we put

(I + t) = 2q

(I - t) = 2p

and

Gmns = 1 + p log p + q log q

=R
which is the rate of transmission as defined by Shannon.

One might still argue that the gambler should bet all his money
(make t = 1) in order to maximize his expected win after N times. It
is surely true that if the game were to be stopped after N bets the answer
to this question would depend on the relative values (to the gambler)
of being broke or possessing a fortune. If we compare the fates of two
gamblers, however, playing a nonterminating game, the one which uses
the value t found above will, with probability one, eventually get ahead
and stay ahead of one using any other t. At any rate, we will assume
that the gambler will always bet so as to maximize G.

THE GENERAL CASE

Let us now consider the case in which the channel has several input
symbols, not necessarily equally likely, which represent the outcome of
chance events. We will use the following notation:

p{s) the probability that the transmitted symbol is the s'th one.
p{r/8) the conditional probability that the received symbol is the

r'th on the hypothesis that the transmitted symbol is the s'th
one.

p{8, r) the joint probability of the s'th transmitted and r'th received
symbol.

q{r) received symbol probability.
q{8/r) conditional probability of transmitted symbol on hypothesis

of received symbol.
a. the odds paid on the occurrence of the s'th transmitted symbol,

i.e., a. is the number of dollars returned for a one-dollar bet
(including that one dollar).

a{s/r) the fraction of the gambler's capital that he decides to bet on
the occurrence of the s'th transmitted symbol after observing
the r'th received symbol
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Only the case of independent transmitted symbols and noise will be
considered. We will consider first the case of "fair" odds, i.e.,

1
a. = pes)

In any sort of parimutual betting there is a tendency for the odds to be
fair (ignoring the "track take"). To see this first note that if there is no
"track take"

1:E- = 1. a.

since all the money collected is paid out to the winner. Next note that if

1
a. > pes)

for some s a bettor could insure a profit by making repeated bets on the
sth outcome. The extra betting which would result would lower a•.
The same feedback mechanism probably takes place in more compli
cated betting situations, such as stock market speculation.

There is no loss in generality in assuming that

:E a(s/r) = 1.
i.e., the gambler bets his total capital regardless of the received symbol.
Since

1:E- = 1
a.

he can effectively hold back money by placing canceling bets. Now

VN = II [a(s/r)a.]W"yo
r ••

where W.. is the number of times that the transmitted symbol is s and
the received symbol is r,

Log VN = :E w.. log a.a(s/r)
Vo ..

G = Lim N1 log V1/ = :E pes, r) log a.a(s/r)
N_«> 0 r s

with probability one. Since
1

a. = pes)
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here

G = L: pes, r) log a(s/r)
r. p(S)

= L: peS, r) log a(s/r) + H(X)

where H(X) is the source rate as defined by Shalmon. The first term is
maximized by putting

a(s/r) = pes, r) = p(s, r) = q(s/r)
'I.kp(k,r)q(r)

Then Gmax = H(X) - H(X/Y), which is the rate of transmission de
fined by Shannon.

WHEN THE ODDS ARE NOT l<'AIR

Consider the case where there is no track take, i.e.,

1L:- = 1
a.

but where a. is not necessarily

1
pes)

It is still permissible to set L:. a(s/r) = 1 since the gambler can effec
tively hold back any amount of money by betting it in proportion to
the l/a• . Equation (1) now can be written

G = L: pes, r) log a(s/r) + L: p(s) log a•... .
G is still maximized by placing a(s/r) = q(s/r) and

Gm ax = -H(X/Y) + L: p(s) log a•
•

= H(a) - H(X/y)

where

H(a) = L: pes) log a,,

Several interesting facts emerge here
(a) In this case G is maximized as before by putting a(s/r) = q(s/r).

That is, the gambler ignores the posted odds in placing his bets!
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(b) Since the minimum value of H(OI) subject to

~! = 1
s as

obtains when

1
a, = pes)

and H(X) = H(a), any deviation from fair odds helps the gambler.
(c) Since the gambler's exponential gain would be H(a) - H(X) if

he had no inside information, we can interpret R = H(X) - H(XjY)
as the increase of Gm ax due to the communication channel. When there
is no channel, i.e., H(XjY) = H(X), Gmu is minimized (at zero) by set
ting

1
a, = -p,

This gives further meaning to the concept "fair odds."

WHEN THERE IS A "TRACK TAKE"

In the case there is a "track take" the situation is more complicated.
It can no longer be assumed that ~s a(sjr) = I. The gambler cannot
make canceling bets since he loses a percentage to the track. Let b, =

1 - ~,a(sjr), i.e., the fraction not bet when the received symbol is
the r t h one. Then the quantity to be maximized is

G = ~ pes, r) log [bT + asa(sjr)],

subject to the constraints

br + ~ a(sjr) = 1.,

(2)

In maximizing (2) it is sufficient to maximize the terms involving a
particular value of r and to do this separately for each value of r since
both in (2) and in the associated constraints, terms involving different
1"8 are independent. That is, we must maximize terms of the type

GT = q(r)~ q(sjr) log [bT + asa(sjr)].
subject to the constraint

br + ~ a(sjr) 1
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Actually, each of these terms is the same form as that of the gambler's
exponential gain where there is no channel

G = :E pes) log [b + a.a(s)].
•

(3)

for SEX

We will maximize (3) and interpret the results either as a typical
term in the general problem or as the total exponential gain in the case
of no communication channel. Let us designate by X the set of indices,
s, for which a(s) > 0, and by X' the set for which a(s) = O. Now at the
desired maximum

aG p(s)a.
aa(s) = b + a(s)aa log e = k

aG _ ~ p(~ _ .
ab - 7' b + a(s)a. log e - k

aG _ p(s)as l :::; k for SE>"
aa(s) - -b- og e -

where k is a constant. The equations yield

k = log e,

b
a(s) = p(s) - -

as

I-p
b=-I-a

for SE>'

where p = :E~ p(s), a = L:~ (1/as), and the inequalities yield

I-pp(s)a. ~ b = -
I-a

We will see that the conditions

a < 1

I - p
p(s)as > 1 _ a SE>'

1 - p
p(s)a. ~ 1 _ a

completely determine X.
If we permute indices so that

for SE>"

for BE>"

p(s)as ;;; p(s + I)as+l
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then ~ must consist of all s ~ t where t is a positive integer or zero.
Consider how the fraction

1 - P,F, ==-
I - 111

varies with t, where
1

P, == :E p(s),
1

I 1
11, == :E -;

1 a.
F o = 1

Now if p(I)ar < 1, F, increases with t until 111 ~ 1. In this case t = 0
satisfies the desired conditions and ~ is empty. If p(l)al > 1 F, de
creases with t until pet + I)a,+l < F,oI' 111 ~ 1. If the former occurs,
i.e., pet+ l)al+1 < F, , then F ,+1 > F, and the fraction increases until
111 ~ 1. In any case the desired value of t is the one which gives F, its
minimum positive value, or if there is more than one such value of t,
the smallest. The maximizing process may be summed up as follows:

(a) Permute indices so that p(s)a. ~ p(s + l)a.+l
(b) Set b equal to the minimum positive value of

1 - p, I I 1
-- where p, == L p (s), 111 == :E-
1 - 111 1 1 a,

(c) Set a(s) = pes) - bla. or zero, whichever is larger. (The a(s)
will sum to 1 - b.)

The desired maximum G will then be

f.. 1 - p,Gm ax = L.J pes) log p(s)a. + (1 - p,) log -1--
I - 111

where t is the smallest index which gives

1 - P,
1 - 11,

its minimum positive value.
It should be noted that if p(s)a. < 1 for all s no bets are placed, but

if the largest p(s)a. > 1 some bets might be made for which p(s)a. < 1,
i.e., the expected gain is negative. This violates the criterion of the
classical gambler who never bets on such an event.

CONCLUSION

The gambler introduced here follows an essentially different criterion
from the classical gambler. At every bet he maximizes the expected
value of the logarithm of his capital. The reason has nothing to do with
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the value function which he attached to his money, but merely with the
fact that it is the logarithm which is additive in repeated bets and to
which the law of large numbers applies. Suppose the situation were
different; for example, suppose the gambler's wife allowed him to bet
one dollar each week but not to reinvest his winnings. He should then
maximize his expectation (expected value of capital) on each bet. He
would bet all his available capital (one dollar) on the event yielding the
highest expectation. With probability one he would get ahead of any
one dividing his money differently.

It should be noted that we have only shown that our gambler's capital
will surpass, with probability one, that of any gambler apportioning his
money differently from ours but still in a fixed way for each received
symbol, independent of time or past events. Theorems remain to be
proved showing in what sense, if any, our strategy is superior to others
involving a(s/r) which are not constant.

Although the model adopted here is drawn from the real-life situation
of gambling it is possible that it could apply to certain other economic
situations. The essential requirements for the validity of the theory are
the possibility of reinvestment of profits and the ability to control 01'

vary the amount of money invested or bet in different categories. The
"channel" of the theory might correspond to a real communication
channel or simply to the totality of inside information available to
the investor.

Let us summarize briefly the results of this paper. If a gambler places
bets on the input symbol to a communication channel and bets his money
in the same proportion each time a particular symbol is received his,
capital will grow (or shrink) exponentially. If the odds are consistent
with the probabilities of occurrence of the transmitted symbols (i.e.,
equal to their reciprocals), the maximum value of this exponential rate
of growth will be equal to the rate of transmission of information. If the
odds are not fail', i.e., not consistent with the transmitted symbol proba
bilities but consistent with some other set of probabilities, the maximum
exponential rate of growth will be larger than it would have been with no
channel by an amount equal to the rate of transmission of information.
In case there is a "track take" similar results are obtained, but the
formulae involved are more complex and have less direct information
theoretic interpretations.
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