
ERK'2014, Portorož, B:15-18 15

Suffix Tree Clustering - Data mining algorithm

Milos Ilic
1
, Petar Spalevic

2,
Mladen Veinovic

3

1,2
 Faculty of Technical Science Kosovska Mitrovica, University of Pristina - temporally seated in Kosovska Mitrovica

3
Faculty of Informatics and Computing, Singidunum University, Belgrade

E-mail: milos.ilic.pk@gmail.com, petar.spalevic@pr.ac.rs, mveinovic@singidunum.ac.rs

Abstract

Data Mining as a process of finding new, useful

knowledge from data using different techniques. Using

these techniques we getting faster and better search of

large amounts of data that we facing every day.

Clustering of data is one of the techniques that are used

in data mining. Authors explore clustering algorithms

and take suffix tree clustering algorithm for the best of

them. Authors create an application that use this

algorithm in the process of clustering, and search of

clustered documents.

1 Introduction

The need to understand large, complex, information-rich

data sets is common to virtually all fields of business,

science, and engineering. The ability to extract useful

knowledge hidden in these data and to act on that

knowledge is becoming increasingly important in every

day peoples life and work. The entire process of

applying a computer - based methodology, including

new techniques, for discovering knowledge from data is

called data mining Data mining is an iterative process

within which progress is defined by discovery, through

either automatic or manual methods.

Data mining is most useful in an exploratory analysis

scenario in which there are no predetermined notions

about what will constitute an “interesting” outcome.

Data mining is the search for new, valuable, and

nontrivial information in large volumes of data. It is a

cooperative effort of humans and computers. Best

results are achieved by balancing the knowledge of

human experts in describing problems and goals with

the search capabilities of computers [1]. Data mining

consist of two primary goal prediction and description.

In that form prediction involves using some variables or

fields in the data set to predict unknown or future values

of other variables of interest. In other hand description

focuses on finding patterns describing the data that can

be interpreted by humans. One of data mining greatest

strengths is reflected in its wide range of methodologies

and techniques that can be applied to a host of problem

sets. One of technics that is in use in data mining is

clustering. Clustering is based on grouping data

according to the character, or to any property that they

have in common.

The paper is organized as follows. The second part

describes suffix tree clustering algorithm witch is in use

of data mining. The third section is explanation of

created application. The fourth section presents the

conclusion, and the fifth contains a list of references.

2 Suffix Tree Clustering

Suffix tree document model and Suffix Tree Clustering

(STC) algorithm first were proposed and use in [2]. STC

is a linear time clustering algorithm (linear in the size of

the document set), which is based on identifying phrases

that are common to groups of documents. A phrase is an

ordered sequence of one or more words [3]. STC

algorithm is different from the other kind of clustering

algorithms. It is a data structure which contains all the

suffixes of a given string, so as to run many important

string operations more efficiently. This algorithm not

treats documents as a collection of words but as a string

of words. On that way thus operates using the proximity

information between words. STC use suffix tree

structure to efficiently identify sets of documents that

share common phrases and terms, and uses this

information to create clusters and to concisely present

their contents to the users. STC meanly includes four

logical steps: first, document “cleaning”; secondly,

constructing a generalized suffix tree; thirdly,

identifying base clusters; the last step is to combine

these base clusters into clusters.

2.1 Cleaning

Document pretreatment intend to slim each document.

In this step, the string of text representing the content of

each document is transformed by using a light stemming

algorithm. It is stripping the HTML tags, separator and

common stop words, as well as extracting word stems

(deleting word prefixes and suffixes and reducing plural

to singular). The original string that represents the

document is saved, as well as pointers to the beginning

of each word in the transformed string to the position

taken in the original string [4]. First phase in this

process is HTML tag cleaning. In this phase algorithm

removing all HTML tags form the document like that is

represented on figure (Figure1).

Figure 1: Process of cleaning HTML tags from document

In the next step words stemmers are using. A stemming

algorithm is a process of linguistic normalization, in

which the variant forms of a word are reduced to a

mailto:milos.ilic.pk@gmail.com
mailto:petar.spalevic@pr.ac.rs
mailto:mveinovic@singidunum.ac.rs

16

common form. Stemming algorithms can be classified

in three groups: truncating methods, statistical methods,

and mixed methods. Each of these groups has a typical

way of finding the stems of the word variants. Some of

stemming algorithm are presented on the figure (Figure 2).

Figure 2: Classification of stemming algorithms

Here we will describe just Paice/Husk algorithm

because we use this algorithm in our application. This is

an iterative algorithm using the same rules and suffixes

in every loop [5]. This algorithm consist of one table

that containing about 120 rules indexed by the last letter

of a suffix. On each iteration, it tries to find an

applicable rule by the last character of the word. Each

rule specifies either a deletion or replacement of an

ending. If there is no such rule, it terminates. It also

terminates if a word starts with a vowel and there are

only two letters left or if a word starts with a consonant

and there are only three characters left [6]. Otherwise,

the rule is applied and the process repeats. The

advantage is its simple form and every iteration taking

care of both deletion and replacement as per the rule

applied. The disadvantage is it is a very heavy algorithm

and over stemming may occur.

2.2 Constructing generalized suffix tree

In the process of constructing generalized suffix tree the

first step is construction of suffix tree. The suffix tree is

a data structure which contains all the suffixes of a

given string, so as to run many important string

operations more efficiently. The string may be a string

of characters or string of words [7]. The suffix tree for

the string S is defined as a tree such that: the paths from

the root to the leaves have a one-to-one relationship

with the suffixes of S, all edges are labeled with non-

empty strings, all internal nodes (except perhaps the

root) have at least two children [7]. In figure (Figure 3)

we can see suffix tree for string “information”. Here

string information is represented as string of characters.

Documents treats as strings of words, not characters,

thus suffixes contain one or more whole words.

Construction of generalized (compact) suffix tree going

in that way.

Figure 3: Suffix tree for string “information”

A suffix tree is a rooted, directed tree in which every

internal node has at least two children nodes. Every

edge in the tree is labeled with a non-empty sub-string

of S (hence it is a tree). The label of a node is defined to

be the concatenation of the edge-labels on the path from

the root to that node [8]. There are no two edges out of

the same node can have edge-labels that begin with the

same word. This feature makes the tree compact or

generalized. Every suffix-node is marked to designate

from which string (or strings) it originated from. Maybe

the best algorithm for compact suffix tree clustering is

Ukkonen’s algorithm. His method also builds the tree

by the most compact and technical representation, as

described previously. Ukkonen's algorithm uses suffix

links during the process of building the tree. Each node

may have only one suffix link pointing to a node which

is nearer to the root node and which has the same

subtree, i.e. the same branches, and in general it usually

has more branches. More about Ukkonen’s algorithm

readers can find in [9,10,11]. The example of

generalizes suffix tree for strings “cat ate cheese”,

“mouse ate cheese too” and “cat ate mouse too” is given

on figure (Figure 4).

Figure 4: Example of generalized suffix tree for the given

strings

In this figure, the circle represents node, the numbers in

the square represent document group. Each node of the

suffix tree represents a group of documents and a phrase

that is common to all of them.

17

2.3 Identifying Base Clusters

In the generalized suffix tree each node represents a

base cluster. To each base cluster is assigned a score

s(B) that is a function of the number of documents it

contains, and the words that make up its phrase. The

function is given in (1):

)()(PfBBs (1)

Here |B| indicates the number of document in a base

cluster and |P| is the number of word in a phrase. In the

table (Table 1) we can see six nodes from the example

shown in figure (Figure 5) and their corresponding base

clusters.

Table 1: Representation of nodes and corresponding clusters

Node Phrase Documents

a cat ate 1,3

b ate 1,2,3

c cheese 1,2

d mouse 2,3

e too 2,3

f ate cheese 1,2

2.4 Combining base clusters into clusters

In this step, documents may be sharing more than one

phrase. To avoid the document overlapping and a nearly

identical cluster, this step is assigned to merge base

cluster with high overlap in the document set. They

defined a binary similarity measure to calculate whether

base clusters should be merged or not. The binary

similarity will be 1 if the conditions in formulas (2) and

(3) are fulfilled.

5.0/ BBB mnm
 (2)

5.0/ BBB nnm
 (3)

Otherwise their similarity will be defined as 0. This step

is presented on the figure (Figure 5). Each cluster

consists of the union of the document of all its base

clusters. This figure explains the base cluster graph of

the six base clusters.

Figure 5: Result of combining based clusters

Basically the clustering of basic clusters is performed by

single-link algorithm, more accurate its equivalent

where the minimum similarity between the based cluster

is used as a criterion for the end of the algorithm. The

final clusters are sorted according to the number of hits

their basic clusters as well as to the mutual overlap of

basic clusters. STC clustering algorithm does not

require from user to specify the number of clusters. In

the next section we will describe created application.

3 Explanation of application for STC

When we planning implementation of suffix tree

clustering algorithm we decide to test this algorithm on

web page documents and text documents. The reason is

simple, we want to test execution time for documents

that have HTML tags and for documents that do not

have html tags. Theoretical execution time for web

document should be higher because application first

must remove all html tags from document, then stem the

plain text in the document, and at in the end create

suffix tree and clusters. Text documents don’t have

HTML tags so we expected that the execution time

should be shorter.

Application is design in C# environment. Console

application is used for interaction with user, and to

present the results. We implement two projects in it.

First represent <suffixtree> with the classes <Edge>,

<Node>, <Suffix> and <Suffixtree>. Objective of the

project is to create suffix tree, generalized suffix tree

and clusters. The second project use created suffix tree

to test time execution. In this project we first open

document that need to be clustered then application

clean document content and stem the plain text.

For stemming algorithm we implementing Paice/Husk

algorithm like we said earlier. After that all text in

document is concatenating in one string of words. For

given string of words application first create suffix tree,

and then generalizes suffix tree. Generalized suffix tree

for word “information” created and printed in

application is presented on figure (Figure6). If you look

better the generalized tree created by application have

the same structure like theoretical tree on figure (Figure

3).

Figure 6: Application generalized tree result for string

information

18

We measured the execution time for both group of

documents. First, we measured creation time of suffix

tree and clusters. In the second round we measure

search time for some string in the documents. In both

cases, the execution is repeated ten times for same

example, and for same search string. Average execution

time for those ten execution rounds is calculated and

presented in the diagram (Diagram 1). Both web and

text documents are taken in the way that they have

approximately the same size.

0
50

100
150
200
250
300
350
400
450
500

Web document Text document

Diagram 1: Average time execution

Both web and text document was approximately about

seventy five kilo bytes. In same time web and text

document have approximately the same number of

words. These documents have five thousand words.

Words in web documents was numbered with HTML

tags.

Our results are not similar to our expectations. We

expect that suffix tree clustering algorithm will give

better results for text documents, but not so. We expect

that because of time needed for cleaning documents.

The cleaning process of HTML tags do not last too

long, but on the other hand reduces the number of

unnecessary words for clustering. Searching time for

some random string is about the same.

The search time is in the range of zero milliseconds to

the four milliseconds for web documents, and to the

max nine milliseconds for text documents. All these

parameters show that the STC algorithm is perfect for

both text documents and the web documents.

4 Conclusion

Suffix tree clustering is one of the most important

algorithm that is in use in the process of clustering. This

algorithm have linear complexity O(n).

Linear complexity puts this algorithm in the top of

clustering algorithms. Response time in the process of

clustering is minimal compared with other clustering

algorithms.

This low complexity return fast search in suffix tree.

Because of that reasons this algorithm is used in online

clustering, and in web document clustering. In the

process of searching the first ten results shall be taken as

the best. Application created by authors tests other side

of suffix tree clustering too.

That other side is pure text documents. Test was build in

parallel with web documents. In practice clustering and

search using suffix tree clustering is very well.

Execution time for text documents is slightly higher

than the execution time for the web documents.

Corpus of words that is selected is not so big but in

other hand is representative. That corps is quite

sufficient for successful testing.

Test result show that suffix tree clustering is good

algorithm for all data types, and all documents types.

Authors plans new research in this field. Maybe parallel

testing with some other clustering algorithm and some

improvements of suffix tree clustering.

Some interesting idea may be testing suffix tree

clustering on the big knowledge database or parallel

execution.

References

[1] M. Kantardzic, “Data mining concepts models methods

and algorithms,” John Wiley & Sons, Inc., Hoboken, New

Jersey, pp. 5-25, 2011.

[2] O. Zamir, O. Etzioni, “Web Document Clustering: A

Feasibility Demonstration,” Proc. ACM SIGIR

conference on Research and development in information

retrieval, New York, USA, pp. 46-54, 1998.

[3] O. Zamir, O.Etzioni, “A Dynamic Clustering interface to

Web search results,” Computer Networks, Netherlands,

Amsterdam, 31(11-16):1361-1374, 1999.

[4] D. Sharma, “Stemming Algorithms: A Comparative

Study and their Analysis,” International Journal of

applied information systems, Foundation of Computer

Science FCS, New York, USA, Volume 4, Number 3, pp.

7-12, 2012.

[5] A. Ganesh, “A Comparative Study of Stemming Algorithms”

International Journal of Computer Technologies and

Application, vol. 2. num. 6, pp.1930-1938, 2012.

[6] R. Chatterjee, “Auto-assemblage for Suffix Tree

Clustering,” International Journal of Advanced Research

in Computer Engineering & Technology, volume 1, Issue

4, June 2012.

[7] F. Deng, “Web Service Matching based on Semantic

Classification,” Master Thesis, School of Health and

Society, Department of Computer Science, pp. 9-20, 2012

[8] M. Galaen, “Document klynging (document clustering),”

Master of Science in Informatics, Norwegian University

of Science and Technology, pp. 19-42, 2008.

[9] C. Kennington, “Application of Suffix Trees as an

Implementation Technique for Varied-Length N-gram

Language Models,” Master’s Thesis, Saarland University,

pp. 9-13, 2011.

[10] E. Ukkonen, “On-line construction of suffix tree,”

Algoritmica, 1995.

[11] D. Gusfield, “Algorithms on Strings, Trees and Sequences:

Computer Science and Computational Biology,”

Published by the Press Syndicate of the University of

Cambridge, New York, USA, pp. 90-207, 1997.

