
Journal of Complexity 29 (2013) 44–52

Contents lists available at SciVerse ScienceDirect

Journal of Complexity

journal homepage: www.elsevier.com/locate/jco

Efficient algorithms for the longest common subsequence
problem with sequential substring constraints✩

Chiou-Ting Tseng a, Chang-Biau Yang a,∗, Hsing-Yen Ann b

a Department of Computer Science and Engineering, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
b National Center for High-Performance Computing, Tainan 74147, Taiwan

a r t i c l e i n f o

Article history:
Received 10 June 2011
Accepted 18 July 2012
Available online 11 August 2012

Keywords:
Algorithm design
Bioinformatics
Longest common subsequence
Constrained LCS
Sequential substring

a b s t r a c t

In this paper, we generalize the inclusion constrained longest
common subsequence (CLCS) problem to the hybrid CLCS problem
which is the combination of the sequence inclusion CLCS and the
string inclusion CLCS, called the sequential substring constrained
longest common subsequence (SSCLCS) problem. In the SSCLCS
problem, we are given two strings A and B of lengths m and n,
respectively, formed by alphabet Σ and a constraint sequence C
formed by ordered strings (C1, C2, C3, . . . , C l) with total length r .
The problem is that of finding the longest common subsequence D
of A and B containing C1, C2, C3, . . . , C l as substrings and with the
order of the C ’s retained. This problem has two variants, depending
on whether the strings in C cannot overlap or may overlap. We
propose algorithms with O(mnl+ (m+ n)(|Σ | + r)) and O(mnr +

(m+n)|Σ |) time for the two variants. For the special case with one
or two constraints, our algorithm runs in O(mn+(m+n)(|Σ |+ r))
or O(mnr + (m + n)|Σ |) time, respectively—an order faster than
the algorithm proposed by Chen and Chao.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Given two strings A = a1a2a3 · · · am and B = b1b2b3 · · · bn, the longest common subsequence (LCS)
problem is that of finding the longest common part of A and B by deleting zero or more characters
from A and B. It was first proposed in 1974 by Wagner and Fischer [23]. Much ink has been expended
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on this topic in the past few decades [24,3,21], and lots of variants of the LCS problem have also
been proposed, such as themosaic LCS problem [15], themerged LCS problem [14,20], the cyclic string
correction problem [18] and the block edit problem [2].

Given two strings A and B and a constraint sequence C with lengths m, n and r respectively, the
constrained longest common subsequence (CLCS) problem is that of finding the LCS of A and B containing
C as a subsequence. In 2003, Tsai [22] first proposed an algorithm with complexity O(m2n2r). In the
same year, Peng [19] also proposed an improved algorithm with O(mnr) time and space complexity.
Later on, many other papers [4,10,16] also proposed improved algorithms for the CLCS problem.
Recently, Gotthilf et al. [13], Chen and Chao [9] proposed the related variant which excludes the given
constraint as a subsequence. Chen and Chao [9] also provided solutions for two other variants which
are string inclusion and string exclusion CLCS problems, although the algorithm for string exclusion
CLCS is wrong. In 2010, Chen [8] proposed an algorithm for the hybrid CLCS problem which is the
combination of sequence inclusion CLCS and sequence exclusion CLCS. Given two strings A and B, and
two constraint sequences P and Q , this problem is that of finding the CLCS of A and B containing P as
a subsequence and excluding Q as a subsequence.

On the other hand, some researchers put a constraint on the number of symbol occurrences in the
alphabet in the LCS. In the exemplar LCS (ELCS) problem [6], Σ is divided into the mandatory set Σm
and the optional set Σo. The ELCS problem is that of restricting the number of symbol occurrences in
Σm and Σo in the final LCS obtained. The repetition free LCS (RFLCS) problem [1,12,11,5] and doubly
constrained LCS (DC-LCS) problem [7] are those of finding the LCS such that each symbol appears at
most once and twice, respectively. They are both special cases of the ELCS problem, when Σo = Σ .

In this paper, we generalize the inclusion CLCS problem to the hybrid CLCS problemwhich involves
the sequence inclusion CLCS and the string inclusion CLCS, called the sequential substring constrained
longest common subsequence (SSCLCS) problem. The problem is defined as follows.

Definition 1 (SSCLCS). Given two strings A and B of lengths m and n, respectively, and a constraint
sequence C formed by ordered strings (C1, C2, C3, . . . , C l) of total length r , where C i is called the ith
partition of the constraint and each C i

= c i1c
i
2 · · · c ili , the SSCLCS problem is that of finding the LCS D

of A and B such that D contains substrings C1, C2, C3, . . . , C l and the partition order is retained.

The sequence inclusion CLCS is a special case of SSCLCS where each partition is a single character
and the string inclusion CLCS is also a special case of SSCLCS where there is only one partition.
There are two different definitions of the partition order being retained. First, the partitions cannot
overlap in the resulting SSCLCS. Second, the partitions may overlap in the resulting SSCLCS but the
positions are monotonically increasing, that is, the starting and ending positions of the partitions in
the resulting SSCLCS are both increasing. For example, consider A = atcatatgag, B = atcatctagg and
C = (acat, tag). acatagg is an SSCLCS of the second variant, but it is not the first one. Here, we only
consider themonotonically increasing case. If two neighboring partitions have the containing relation
in the SSCLCS, itmeans one of the partition is a substring of the other. In this case, there is no use for the
shorter string, and we can spend O(r2) time to preprocess the input constraints to filter the contained
ones out.

The rest of this paper is organized as follows. In Section 2, we give an improved algorithm for the
string inclusion CLCS problem with one partition. The required time is improved from O(mnr) [9] to
O(mn+(m+n)(|Σ |+r)). In Section 3, we propose an algorithm for the SSCLCS problemwithmultiple
partitions which do not overlap in the resulting answer. In Section 4, we present an algorithm for the
multi-partition case where the partitionsmay overlap in the resulting SSCLCS. Our algorithms require
O(mnl + (m + n)(|Σ | + r)) and O(mnr + (m + n)|Σ |) time for the two variants of the problem,
respectively. Finally, in Section 5, we will give some conclusions.

2. An improved algorithm for the string inclusion CLCS problem

In this section, exactly one partition is considered, so we omit the superscript whenwe refer to the
constraint C . That is, C = c1c2c3 · · · cr . Chen and Chao [9] proposed an algorithm with O(mnr) time
for solving the string inclusion CLCS problem by calculating a 3D lattice directly with the dynamic
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Table 1
The PrevMatch table for A = atcatatgag .

1 2 3 4 5 6 7 8 9 10
a t c a t a t g a g

a −1 1 1 1 4 4 6 6 6 9
c −1 −1 −1 3 3 3 3 3 3 3
g −1 −1 −1 −1 −1 −1 −1 −1 8 8
t −1 −1 2 2 2 5 5 7 7 7

programming technique applying to A, B and C . As noted above, the string inclusion CLCS problem is
a special case of the SSCLCS problem with only one partition. Because many cells in their lattice are
not used, we can compact the 3D lattice into a 2D lattice. Since the characters of the constraint C need
to be consecutive in SSCLCS, after the first character of C is matched, the next character in SSCLCS
must be the second character of C . With this fact, we can find the possible match of the constraint
by continuously finding the next occurrence of the next character of the constraint in A and B. For
example, consider A = atcatatgag, B = atcatctagg and C = tag . We have a2 = b5 = c1, so we can
find the best SSCLCS containing C starting at (2, 5) by jumping through (4, 8), (8, 9). On the other hand,
we can wait until the last character of C is matched, and then we find the nearest occurrence of the
previous character reversely. Since we perform the dynamic programming approach, we should not
refer to cells that have not yet been calculated. Thus, we will perform the matching process in the
backward (reverse) way.

We use LCS(S1, S2) to denote the LCS between S1 and S2 and |LCS(S1, S2)| to denote its length. Ai..j
is also used to denote the substring of a string A starting at position i and ending at position j. It is easy
to obtain the following fact.

Proposition 1. Suppose that ai = bj = cr . If Aî..i and Bĵ..j contain C as their subsequences, then
LCS(A1..̂i−1, B1..ĵ−1) ⊕ C ⊕ LCS(Ai+1..m, Bj+1..n) forms a feasible solution of the SSCLCS problem, where
⊕ denotes the string concatenation operation.

Furthermore, if there is another i′, î ≤ i′, and Ai′..i also contains C as its subsequence, then the
solution derived from Ai′..i is not worse than the above solution obtained in Proposition 1. Thus, we
can conclude the following theorem.

Theorem 1. Let T = {(i′, j′, i, j)|ai = bj = cr , i′ and j′ are the largest indices such that Ai′..i and
Bj′..j contain C as their subsequences}. The SSCLCS solution can be obtained by finding the maximum of
LCS(A1..i′−1, B1..j′−1) ⊕ C ⊕ LCS(Ai+1..m, Bj+1..n), where (i′, j′, i, j) ∈ T .

To find the previous occurrence of a certain character, we reverse the NextMatch table proposed
by Landau et al. [17] into the PrevMatch table which records the previous occurrence position of
each symbol in every position. An example of a PrevMatch table for A = atcatatgag is shown in
Table 1, where −1 means that the character never appears. The PrevMatch table can be constructed
in O(|S| |Σ |) time and space, where S denotes the input string and Σ denotes the alphabet set of S.

We call the index i′ (j′) in Theorem 1 the starting position corresponding to ending position
i (j). For each ending position, the corresponding starting position can be calculated with at most
r lookups in the PrevMatch table. We name the starting position tables for A and B as StartPos tables
ζA and ζB, respectively. For the position whose corresponding starting position does not exist, we
fill −1 in the StartPos table. For example, suppose A = atcatatgag and C = acat . Then, we have
ζA = [−1, −1, −1, −1, 1, −1, 1, −1, −1, −1]. For the same A, suppose C = tag; we have ζA =

[−1, −1, −1, −1, −1, −1, −1, 5, −1, 7]. The time required for constructing the two StartPos tables
is O((m+ n)r), since each position requires at most r lookups in the PrevMatch table and each lookup
takes only constant time.

We find the string inclusion CLCS with a two-layer dynamic programming lattice. Let M[i, j, k]
denote the length of SSCLCS between A1..i and B1..j with k partitions (strings) satisfied. When k = 0,
it is layer 0 that represents the lattice of the ordinary LCS, in which no constraint is considered. And,



C.-T. Tseng et al. / Journal of Complexity 29 (2013) 44–52 47

Table 2
The two-layer dynamic programming lattice for the string inclusion CLCS problem with A = atcatatgag, B = atcatctagg and
C = acat .

i j
0 1 2 3 4 5 6 7 8 9 10
– a t c a t c t a g g

Layer 0

0 – 0 0 0 0 0 0 0 0 0 0 0
1 a 0 1 1 1 1 1 1 1 1 1 1
2 t 0 1 2 2 2 2 2 2 2 2 2
3 c 0 1 2 3 3 3 3 3 3 3 3
4 a 0 1 2 3 4 4 4 4 4 4 4
5 t 0 1 2 3 4 5 5 5 5 5 5
6 a 0 1 2 3 4 5 5 5 6 6 6
7 t 0 1 2 3 4 5 5 6 6 6 6
8 g 0 1 2 3 4 5 5 6 6 7 7
9 a 0 1 2 3 4 5 5 6 7 7 7

10 g 0 1 2 3 4 5 5 6 7 8 8

Layer 1

0 – −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞

1 a −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞

2 t −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞

3 c −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞

4 a −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞

5 t −∞ −∞ −∞ −∞ −∞ 4 4 4 4 4 4
6 a −∞ −∞ −∞ −∞ −∞ 4 4 4 5 5 5
7 t −∞ −∞ −∞ −∞ −∞ 4 4 5 5 5 5
8 g −∞ −∞ −∞ −∞ −∞ 4 4 5 5 6 6
9 a −∞ −∞ −∞ −∞ −∞ 4 4 5 6 6 6

10 g −∞ −∞ −∞ −∞ −∞ 4 4 5 6 7 7

when k = 1, it is layer 1 that represents the lattice of CLCS length, containing the given constraint
string. Layer 0 can be constructed by using the ordinary LCS dynamic programming formula, with the
additional boundary condition that M[i, j, 0] = −∞ if i < 0 or j < 0. The dynamic programming
formula for layer 1 is described in Eq. (1). The string inclusion CLCS can be found by tracing back
from M[m, n, 1] following the PrevMatch table and the ordinary LCS trace back link in the dynamic
programming lattice.

M[i, j, 1] = max


−∞ if i ≤ 0 or j ≤ 0;
M[i − 1, j − 1, 1] + 1 if ai = bj;
M[ζA[i] − 1, ζB[j] − 1, 0] + r if ai = bj = cr;
M[i − 1, j, 1]
M[i, j − 1, 1] otherwise.

(1)

As examples, the two layers for A = atcatatgag, B = atcatctagg and C = acat are illustrated in
Table 2.

Theorem 2. The string inclusion CLCS problem can be solved by using Eq. (1).

Proof. The correctness of layer 0 follows from the ordinary dynamic programming for LCS. For layer 1,
initially there is no CLCS containing the constraint, so we set the length to −∞. The value of one cell
on layer 1 becomes positive only after it refers to layer 0 and the StartPos tables do not return−1, that
is, when we find an occurrence of the constraint string. And since there cannot be any other character
inside the region matching the constraint string, adding the length of the constraint is evidently
correct. After we find the constraint string, the rest of the part can be foundwith the ordinary dynamic
programming formula. �
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In summary, we first construct the PrevMatch tables for A and B in O((m + n)|Σ |) time and space.
Second, we use the PrevMatch tables to construct the StartPos tables ζA and ζB in O((m + n)r) time
and space. With ζA and ζB, each cell in the M table can be obtained in constant time. So the time
complexity of our algorithm is O(mn + (m + n)(|Σ | + r)), which improves a lot on that of Chen and
Chao’s method [9] with O(mnr) time. Our space complexity is O(mn + (m + n)|Σ |).

3. Algorithms for non-overlapping partitions

In Section 2, we presented an algorithm for the case where there is a single partition in the
constraint sequence. In this section, we are going to extend it to two or more partitions which do
not overlap in the SSCLCS answer.

For ease of understanding,wewill first discuss the casewhere exactly twopartitions are involved in
the constraint sequence. We extend the idea used in the previous section to solve this problem. Layer
0 stores the ordinary LCS length, in which no constraint is considered. Layers 1 and 2 correspond to
the matching of the first partition and both partitions, respectively. We also construct the PrevMatch
tables of A and B first. Since the StartPos table depends on the constraint, the StartPos tables for the two
partitions are different. We denote them as ζ 1 and ζ 2. Layers 0 and 1 are constructed as the previous
section. For layer 2, because these two partitions cannot overlap, we can apply a DP similar to that for
layer 1 to it. Note that the value in layer 1 will become positive only after the end of the first matching
to C1. If the corresponding starting position of C2 is in the middle of the first matching to C1 in layer
1, the SSCLCS length will still be −∞. For example, if we add a second partition tag to the example
in Table 2, the values of layer 2 are all −∞ except that the values of (10, 9) and (10, 10) are 7. When
M[8, 9, 2] refers toM[4, 6, 1], there is no LCS between atca and atcatc containing acat , so the SSCLCS
should still be −∞.

Now, we propose the algorithm for an arbitrary number of partitions. Let ζ k
A and ζ k

B denote the
StartPos tables for Ck on A and B, respectively. The dynamic programming formula is given in Eq. (2):

M[i, j, k] = max



−∞ if k = 0 and (i < 0 or j < 0);
0 if k = 0 and i = 0 and j ≥ 0;
0 if k = 0 and i ≥ 0 and j = 0;
−∞ if k ≥ 1 and (i ≤ 0 or j ≤ 0);
M[i − 1, j − 1, k] + 1 if ai = bj;

M[ζ k
A [i] − 1, ζ k

B [j] − 1, k − 1] + lk if k ≥ 1 and ai = bj = cklk;

M[i − 1, j, k]
M[i, j − 1, k]

otherwise.

(2)

Theorem 3. Eq. (2) solves the SSCLCS problem with l partitions that the partitions cannot overlap.

Proof. The correctness of each M[i, j, k] is shown as follows. For k = 0, the dynamic programming
formula is almost the same as the ordinary dynamic programming formula for computing the
traditional LCS because there is no constraint in layer 0. The only difference is that some extra pseudo-
cells have value −∞ when i < 0 or j < 0. For k ≥ 1, it is separated into four cases. First, before the
partition of this layer is contained in the SSCLCS, its length should be−∞, so we set the initial value of
the boundary condition to−∞. Second, when ai ≠ bj, the LCS length cannot be increased, sowe adopt
the ordinary dynamic programming formula. Third, when ai = bj, it can be added into the SSCLCS of
A1..i−1 and B1..j−1. In this case, if the partition of this layer is not contained in SSCLCS(A1..i−1, B1..j−1),
then M[i − 1, j − 1, k] is −∞, so the M[i, j, k] obtained will still be −∞. Otherwise, the constraint
cannot stop us from adding it. Fourth, when ai = bj = Ck

lk
, it possibly satisfies the partition of this

layer. In this case, we can jump directly to the corresponding starting position, with the help of the
StartPos table, and add length lk to the answer. But if Ck is not a subsequence of A1..i or B1..j, the StartPos
table will return −1, so we set the virtual boundary condition with i < 0 or j < 0 to return −∞. �
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Table 3
The StartPos tables for A = atcatatgag, C = (acat, tag).

w i
1 2 3 4 5 6 7 8 9 10
a t c a t a t g a g

acat

0(−) −2 −2 −2 −2 0 −2 0 −2 −2 −2
1(a) −1 −1 −1 −1 1 −1 1 −1 −1 −1
2(c) −1 −1 −1 −1 3 −1 3 −1 −1 −1
3(a) −1 1 −1 −1 4 −1 6 −1 −1 −1
4(t) −1 2 −1 −1 5 −1 7 −1 −1 −1

tag

0(−) −2 −2 −2 −2 −2 −2 −2 4 −2 6
1(t) −1 −1 −1 −1 −1 −1 −1 5 −1 7
2(a) −1 −1 −1 −1 −1 −1 −1 6 −1 9
3(g) −1 −1 −1 −1 −1 −1 −1 8 −1 10

The time and space complexities of the preprocessing for constructing the StartPos tables are both
O((m+n)(|Σ |+r)). The time and space complexities of Eq. (2) are bothO(mnl), since the required time
for each cell is constant. So the total time and space complexities are both O(mnl+ (m+n)(|Σ |+ r)).

4. Algorithms for overlapping partitions

In this section, we discuss the SSCLCS variant where the partitions may overlap, but the starting
and ending positions are both monotonically increasing. We first discuss the case of two partitions in
Section 4.1 and then we extend the algorithm to an arbitrary number of partitions in Section 4.2

4.1. An algorithm for two partitions

When two partitions are allowed to be overlapped, the situations become different for each
overlapping length (including zero length). Because the number of valid overlapping lengths is not
more thanmin(l1, l2), it is beneficial to find, in advance, the lengths of all valid overlapping substrings
for which a certain suffix of C1 overlaps a certain prefix of C2. We can apply the brute force method
with time complexity O(l1l2) since this is not the dominating part of the time complexity.

The DP formula for layer 0 is the same as Eq. (2). For layers 1 and 2, when wematch ai and bj to c2l2 ,
we cannot directly refer to ζ 2

A [i]− 1 or ζ 2
B [j]− 1. Instead, we have to consider every valid overlapping

length and add the remaining suffix length of C2, obtained by removing the overlapping length, to
the length of the SSCLCS ending with C1. To achieve this, we have to extend the StartPos table from
one dimension to two dimensions. If there is an overlapping length w, 1 ≤ w ≤ min(l1, l2) − 1, we
may only consider the match to the suffix C2

w+1..l2
. However, there cannot be any character matching

between C2
w and C2

w+1, so we have to consider the match to C2
w..l2

. We use ζ 2
A [i, w](ζ 2

B [j, w]) to record
the corresponding starting position where the match to C2

w..l2
ends at ai(bj). So the original ζ 2

A table
is equal to ζ 2

A [i, 1]. When there is no overlap, we set virtual ζ 2
A [i, 0] = ζ 2

A [i, 1] − 1 and ζ 2
B [j, 0] =

ζ 2
B [j, 1] − 1 for this case. As examples, the two-dimensional StartPos tables for A = atcatagtag and
C = (acat, tag) are shown in Table 3.

LetM1[i, j, 1]be the lattice sameas layer 1 of Eq. (2).M2[i, j, 1] is the lattice for recording the SSCLCS
length with matching C1 exactly at the end and it is obtained by removing ‘‘M[i − 1, j − 1, k] + 1 if
ai = bj’’ from Eq. (2). Let W2 be the set of all valid lengths of overlap between C1 and C2. For a valid
overlapping lengthw ∈ W2, the SSCLCS length is equal toM2[ζ

2
A [i, w], ζ 2

B [j, w], 1]+ l2 −w. We jump
to ζ 2

A [i, w] but not ζ 2
A [i, w + 1] − 1 because C2

w and C2
w+1 must be consecutive in the SSCLCS. The
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situation is similar for ζ 2
B [j, w]. Thus, the DP formula for layer 2 is given as follows:

M1[i, j, 2] = max



−∞ if i ≤ 0 or j ≤ 0;
M1[i − 1, j − 1, 2] + 1 if ai = bj;
M2[ζ

2
A [i, w], ζ 2

B [j, w], 1] + l2 − w,

where w is a valid overlapping length inW2 if ai = bj = c2l2;

M1[ζ
2
A [i, 0], ζ 2

B [j, 0], 1] + l2, if ai = bj = c2l2;
M1[i − 1, j, 2]
M1[i, j − 1, 2] otherwise.

(3)

Consider our previous example, A = atcatatgag, B = atcatctagg and C = (acat, tag), whose
valid overlapping length is 1. The earliest matching to C2 occurs at M1[8, 9, 2]; M1[8, 9, 2] =

max(M1[4, 6, 1] + 3,M2[5, 7, 1] + 2) = 6.
The required time and space are analyzed as follows. Let |W2| be the total number of valid overlaps

between the two partitions where |W2| ≤ min(l1, l2). For the preprocessing, we spend O((m+n)|Σ |)
time and space in constructing the PrevMatch tables of A and B. O((m+ n)l1)time and O(m+ n) space
are required to construct the ζ 1 tables. We take O((m + n)l2) time and space to construct the new ζ 2

tables. It takes O(l1l2) time and O(|W2|) space to calculate the valid overlapping lengths. For the DP
lattice, layers 0 and 1 are constructed in O(mn) time and space. Layer 2 is constructed in O(mn|W2|)
time and space because there are atmost |W2| cases in each cell. So the total time and space complexity
is O(mn|W2| + (m + n)(|Σ | + r) + l1l2) = O(mnr + (m + n)|Σ |), where r = l1 + l2.

Chen and Chao [9] proposed an algorithm for the case where two constraints of lengths ρ1 and
ρ2 are given and the order is arbitrary in the CLCS. Their algorithm requires O(mnρ1ρ2) time and
O(mn(ρ1+ρ2)) space. To solve this problem,we can performour algorithm in this subsection twice by
setting the two partitions differently. So our algorithm is an order faster than the algorithm proposed
by Chen and Chao.

4.2. An algorithm for an arbitrary number of partitions

In this section, we extend the algorithm for two partitions to one for an arbitrary number of
partitions. M[i, j, k] still denotes the SSCLCS length between A1,...,i and B1,...,j containing C1, . . . , Ck

as substrings. In the preprocessing phase, we first construct the PrevMatch tables for A and B. Second,
we use the PrevMatch tables to construct the StartPos tables for all partitions with all overlapping
lengths. Third, for every two consecutive partitions Ck−1 and Ck, we find all valid lengths of overlap,
to form the setWk.

Let M1[i, j, k] record the SSCLCS length between A1..i and B1..j with k partitions satisfied and
M2[i, j, k] store the SSCLCS length with matching Ck exactly at the end. The DP formula is given as
follows:

M1[i, j, k] = max



−∞ if i < 0 or j < 0;
0 if k = 0 and i = 0 and j ≥ 0;
0 if k = 0 and i ≥ 0 and j = 0;
−∞ if k ≥ 1 and (i ≤ 0 or j ≤ 0);
M1[i − 1, j − 1, k] + 1 if ai = bj;

M2[i, j, k] if k ≥ 1 and ai = bj = cklk;

M1[i − 1, j, k]
M1[i, j − 1, k]

otherwise.

(4)
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M2[i, j, k] = max



−∞ if i < 0 or j < 0;
0 if k = 0 and i = 0 and j ≥ 0;
0 if k = 0 and i ≥ 0 and j = 0;
−∞ if k ≥ 1 and (i ≤ 0 or j ≤ 0);

M2[ζ
k
A [i, w], ζ k

B [j, w], k − 1] + lk − w,
where w is a valid overlapping
length inWk if ai = bj = cklk;

M1[ζ
k
A [i, 0], ζ k

B [j, 0], k − 1] + lk, if ai = bj = cklk;

M2[i − 1, j, k]
M2[i, j − 1, k]

otherwise.

(5)

Theorem 4. The combination of Eqs. (4) and (5) solves the l-partition SSCLCS problemwhere the partitions
may overlap.

Proof. The SSCLCS answer D corresponds to characters in positions pa,1, pa,2, . . . , pa,|D| from A and
pb,1, pb,2, . . . , pb,|D| from B. Suppose ck1 matches pa,νk and pb,υk for all 1 ≤ k ≤ l. If two adjacent layers
do not overlap, then the correctness follows from Theorem 3. If Ck−1 overlaps with Ck in SSCLCS with
lengthwk, it follows that Ck−1

lk−1−wk+1..lk−1
= Ck

1..wk
. We always find the nearestmatch in both A and B, so

when we match for Ck
1..wk

from M[pa,νk+wk−1, pb,υk+wk−1, k] and M[pa,νk+wk−1, pb,υk+wk−1, k − 1], we
will trace both back toM[pa,νk , pb,υk , k−1]. Thus,M[pa,νk+lk−1, pb,υk+lk−1, k] = M[pa,νk−1 , pb,υk−1 , k−

1] + lk−1 + lk − wk − 1 which matches with our assumption. �

The complexity of the above algorithm is analyzed as follows. In the preprocessing phase, we need
O((m + n)|Σ |) time and space to construct the PrevMatch table of A and B. For each partition Ck, we
require O((m + n)lk) time and space to construct the StarPos table, so the total time required for all
StarPos tables is O((m + n)r). For every two consecutive partitions Ck−1 and Ck, we take O(lk−1lk)
time to find the valid overlapping lengths and use O(|Wk|) = O(lk) space to store them, where
|Wk| ≤ min(lk−1, lk). So the total time and space required for finding all valid overlapping lengths
are O(r2) and O(r), respectively. For the DP lattice, O(|Wk|) = O(lk) time and O(1) space are required
in each cell. So the total time and space for the DP lattice are O(mnr) and O(mnl), respectively. Thus,
the overall time and space are O(mnr + (m + n)|Σ |) and O(mnl + (m + n)(|Σ | + r)), respectively.

5. Conclusion

In this paper, we present a new variant of the CLCS problem, called the sequential substring
CLCS, in which the constraint consists of a set partitions whose positions in the SSCLCS answer are
monotonically increasing. We propose algorithms for two different variants depending on whether
the partitions cannot overlap or may overlap. For the former variant, the time and space complexities
are both O(mnl + (m + n)(|Σ | + r)). And for the second variant, our algorithm requires O(mnr +

(m + n)|Σ |) time and O(mnl + (m + n)(|Σ | + r)) space. For the special cases where only one or two
constraint strings are given, our algorithms achieve an order improvement in time complexity with
respect to the previous known algorithms proposed by Chen and Chao [9].

There are two possible future avenues to explore for our SSCLCS problem. The first one is that of
restricting the range for the distance between the partitions, which might be useful in motif finding.
The second one is that of excluding the constraint, that is, considering cases where the CLCS does not
contain sequential substrings.
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