
Theoretical Computer Science 237 (2000) 123–134
www.elsevier.com/locate/tcs

Some APX-completeness results for cubic graphs

Paola Alimonti a;∗;1, Viggo Kann b;2

a Dipartimento di Informatica e Sistemistica, University of Rome “la Sapienza”, Italy
bNumerical Analysis and Computing Science, Royal Institute of Technology, Stockholm, Sweden

Received April 1997; received in revised form February 1998
Communicated by G. Ausiello

Abstract

Four fundamental graph problems, Minimum vertex cover, Maximum independent set, Mini-
mum dominating set and Maximum cut, are shown to be APX-complete even for cubic graphs.
Therefore, unless P = NP, these problems do not admit any polynomial time approximation
scheme on input graphs of degree bounded by three. c© 2000 Elsevier Science B.V. All rights
reserved.

Keywords: Computational complexity; NP-hard optimization problems; approximation;
APX-completeness; cubic graphs

1. Introduction

Among combinatorial optimization problems that are computationally hard to solve,
NP-hard optimization problems on graphs have a great relevance both from the theo-
retical and practical point of view.
Despite the apparent simplicity of cubic and at-most cubic graphs, several NP-hard

graph problems remain NP-hard even if restricted to these classes of graphs, but become
polynomial time solvable for graphs of degree 2 [12, 14].
Since it is widely conjectured that NP-hard problems cannot be e�ciently solved,

one has to restrict oneself to compute approximate solutions. Therefore, it would be
desirable to identify if and how much boundedness of the graph degree is helpful in
approximation.

∗ Corresponding author.
E-mail address: alimon@dis.uniroma1.it (P. Alimonti).
1 Supported by: the CEE project ALCOM-IT ESPRIT LTR, project no. 20244, “Algorithms and

Complexity in Information Technology”; the Italian Project “Algoritmi, Modelli di Calcolo e Strutture
Informative”, Ministero dell’Universit�a e della Ricerca Scienti�ca e Tecnologica. Parts of this work were
done when the author was visiting the Royal Institute of Technology.
2 Supported by TFR.

0304-3975/00/$ - see front matter c© 2000 Elsevier Science B.V. All rights reserved.
PII: S0304 -3975(98)00158 -3

124 P. Alimonti, V. Kann / Theoretical Computer Science 237 (2000) 123–134

It is well known that the variation of NP-hard graph problems in which the degree
of the graph is bounded by a constant often allows to achieve di�erent results with
respect to the approximation properties. Namely, problems that for general graphs are
not approximable within a constant ratio (e.g. Maximum independent set, Minimum
dominating set and Minimum independent dominating set) have been shown to be in
APX (i.e. approximable within some constant) for bounded degree graphs. For some
NP-hard optimization problems that are approximable for general graphs (e.g. Minimum
vertex cover) better approximation ratios have been achieved for graphs of low degree
[5–7, 15, 16, 19, 20, 22, 24].
Nevertheless, many graph problems are APX-hard even if the degree of the graph is

bounded by some constant, and therefore they can be approximated within some con-
stant factor of the optimum, but cannot be approximated within any constant (PTAS)
[18–20, 24].
Some problems are known to be APX-hard even for cubic or at-most-cubic graphs

(e.g. Maximum three-dimensional matching and Maximum independent dominating set
[18, 19]). For several other graph problems it is just known that they are APX-hard
for graphs of some bounded degree greater than 3 [24].
In this work we show APX-hardness results for several optimization problems on

cubic or at-most-cubic graphs, namely for Minimum vertex cover (MIN VERTEX
COVER), Maximum independent set (MAX IND SET), Minimum dominating set
(MIN DOM SET), and Maximum cut (MAX CUT).
Surprisingly, simple reductions are used for three out of four of our results, but for

showing the APX-completeness of MAX CUT on cubic graphs we need a quite com-
plicated structure consisting of a chain of expander graphs. Expander graphs have been
used in di�erent ways in approximation preserving reductions [2, 3, 11, 24], and seems
to be very useful. For a description of expander graphs and an algorithm constructing
expander graphs we refer to [1].
The remainder of the paper is organized as follows. In Section 2, we state ba-

sic de�nitions and notations. In Section 3, we show the APX-completeness of MIN
VERTEX COVER, MAX IND SET and MIN DOM SET on cubic graphs. In Section
4, we prove the APX-completeness of MAX CUT on cubic graphs.

2. De�nitions

The degree of a vertex v in an undirected graph is denoted d(v). The degree of a
graph is the maximum degree of any vertex in the graph. A graph is cubic if every
vertex has degree 3, and at-most-cubic if every vertex has degree at most 3.
Several notions of approximation scheme preserving reducibilities have been pro-

posed with the aim of establishing hardness and completeness results in APX and of
deriving proofs of intractability of arbitrary approximation for NP-hard optimization
problems [10, 23, 24].

P. Alimonti, V. Kann / Theoretical Computer Science 237 (2000) 123–134 125

Among them, the AP-reducibility introduced in [9] is perhaps the strictest one appear-
ing in the literature that allows to obtain natural APX-completeness results. Namely,
using AP-reducibility one can show that a problem F does not admit polynomial time
approximation scheme by proving that F is APX-hard w.r.t. AP-reducibility, i.e., every
approximable problem can be AP-reduced to F . If F is both approximable within c
for some c and APX-hard w.r.t. AP-reducibility then it is APX-complete w.r.t. AP-
reducibility.
A more restricted kind of reducibility that has been very popular, since it has been

introduced in [24], is the L-reducibility.
Given two NP optimization problems F and G and a polynomial time transformation

f from instances of F to instances of G, we say that f is an L-reduction if there are
positive constants � and � such that for every instance x of F
1. optG(f(x))6� · optF(x),
2. for every feasible solution y of f(x) with objective value mG(f(x); y)= c2 we
can in polynomial time �nd a solution y′ of x with mF(x; y′)= c1 such that
|optF(x)− c1|6� |optG(f(x))− c2|.
If a problem F is APX-complete w.r.t. L-reducibility then it is also APX-complete

w.r.t. AP-reducibility. This enables us to prove APX-completeness by means of the
easier-to-use L-reducibility, which therefore will be used in the paper.

2.1. De�nitions of problems

Here the problems considered in the paper are de�ned, and known approximation
results are given. A much larger list of optimization problems and their approximability
can be found in [8, 4].

MAX CUT–B
Instance: Graph G=(V; E) of degree bounded by B.
Solution: A partition of V into two parts: a red part PR and a green part PG.
Measure: Cardinality of the set of edges that are cut, i.e., edges with one end point

in PR and one end point in PG.
Approximability: Approximable within 1.139 [13] for every B, and APX-complete for

some (large) constant B [24].

MAX IND SET–B
Instance: Graph G=(V; E) of degree bounded by B.
Solution: An independent set for G, i.e., a subset V ′ ⊆V such that no two vertices in

V ′ are joined by an edge in E.
Measure: Cardinality of the independent set, i.e., |V ′|.
Approximability: Approximable within 1.201 for B=3 [6, 7], and APX-complete for

B¿4 [24].

MIN DOM SET–B
Instance: Graph G=(V; E) of degree bounded by B.

126 P. Alimonti, V. Kann / Theoretical Computer Science 237 (2000) 123–134

Solution: A dominating set for G, i.e., a subset V ′ ⊆V such that for all u∈V − V ′

there is a v∈V ′ for which (u; v)∈E.
Measure: Cardinality of the dominating set, i.e., |V ′|.
Approximability: Approximable within 1.75 for B=3 [16], and APX-complete for

B¿8 [24].

MIN VERTEX COVER–B
Instance: Graph G=(V; E) of degree bounded by B.
Solution: A vertex cover for G, i.e., a subset V ′ ⊆V such that for all (u; v)∈E at

least one of u and v is included in V ′.
Measure: Cardinality of the vertex cover, i.e., |V ′|.
Approximability: Approximable within 1.167 [6] for B=3, and APX-complete for

B¿4 [24].

MAX 3-SAT–B
Instance: Set of variables X , set of disjunctive clauses C over the variables X , where

each clause consists of at most three variables, and each variable occurs in
at most B clauses.

Solution: Truth assignment of X .
Measure: Cardinality of the set of clauses from C that are satis�ed by the truth as-

signment.
Approximability: Approximable within 1.143 for every B [21], and APX-complete for

B¿3 [4, 25]. This hardness result is used to show the hardness results
for all listed problems above.

3. APX-completeness of some problems on cubic graphs

It is known that MIN VERTEX COVER−B, MAX IND SET−B and MIN DOM
SET–B are included in APX and APX-complete for some bounded degree B (see the
problem list above). In the following, we will show that these problems remain APX-
complete even if the degree of the graphs is bounded by 3.

Theorem 3.1. MIN VERTEX COVER−3 is APX-complete.

Proof. Since MIN VERTEX COVER−3∈APX we just have to show that it is APX-
hard. Let f be the following L-reduction from MIN VERTEX COVER−4 to MIN
VERTEX COVER−3.
Given a graph G=(V; E) of bounded degree 4 construct an at-most-cubic graph

G′=(V ′; E′) by splitting every degree 4 vertex as shown in Fig. 1.
It is easy to see that from every vertex cover C ⊆V of G we can construct a vertex

cover C′ ⊆V ′ of G′=f(G) of size exactly |C|+s where s is the number of vertices of
degree 4 in G. In C′ we include every vertex in C that has degree smaller than 4, and

P. Alimonti, V. Kann / Theoretical Computer Science 237 (2000) 123–134 127

Fig. 1. The transformation of a degree 4 vertex used both in the reduction from MIN VERTEX COVER−4
to MIN VERTEX COVER−3 and the reduction from MAX IND SET−4 to MAX IND SET−3.

for each vertex v∈V of degree 4 we do as follows. If v∈C then v1; v2 ∈C′, if v =∈C
then u∈C′. Since G has bounded degree 4 we have 4|C|¿∑

v∈C d(v)¿|E|¿|V |¿s.
We see that |C′|= |C|+s65·|C|. Hence, the �rst property of an L-reduction is satis�ed
with �=5.
Conversely, given a vertex cover C′ ⊆V ′ of G′=f(G) we transform it back to a

vertex cover C ⊆V of G in the following manner. Note that for each triple of vertices
v1; v2; u∈V ′ coming from a vertex v∈V of degree 4: either u∈C′, or at least two
vertices belong to C′. Include in C any vertex of degree less than 4 that belongs to
C′ and any vertex v∈V of degree 4 such that at least two of the vertices v1; v2 and u
belong to C′. Observe that C is a vertex cover of G and |C|6|C′| − s. Together with
the observations from the preceding paragraph this shows that f is an L-reduction with
�=1.

Theorem 3.2. MAX IND SET−3 is APX-complete.

This result was recently and independently proved by Berman and Fujito [6], and
Halld�orsson and Yoshihara [17] using complex reductions from MAX 3-SAT−B. We
can give a much simpler proof of this result using the same reduction as in the proof
of Theorem 3.1. Analogously, the reductions by Berman et al. could be used to show
that MIN VERTEX COVER−3 is APX-complete.

Proof (Outline). Since the complement of any vertex cover is an independent set the
same transformation as above can be used to prove the theorem. This is an L-reduction
from MAX IND SET−4 to MAX IND SET−3 with �=5 and �=1.

Theorem 3.3. MIN DOM SET−3 is APX-complete.

Proof. We will use the fact that L-reductions compose [24], and �rst give an L-
reduction f1 from MIN VERTEX COVER−3 to MIN DOM SET−6 and then an L-
reduction f2 from MIN DOM SET−6 to MIN DOM SET−3. Since isolated vertices
are trivially included in any dominating set we can, without loss of generality, assume
that the graph contains no isolated vertices in the hardness proof.
Given an at-most-cubic graph G=(V; E) construct a graph G′=(V ′; E′) of bounded

degree 6 in the following way. For each edge (u; v) in the former graph insert an extra
vertex w and edges (u; w), (v; w), see Fig. 2.

128 P. Alimonti, V. Kann / Theoretical Computer Science 237 (2000) 123–134

Fig. 2. The transformation of an edge in the reduction from MIN VERTEX COVER−3 to MIN DOM
SET−6.

Fig. 3. The transformation of a degree 4 vertex in the reduction from MIN DOM SET−6 to MIN DOM
SET−3.

It is easy to see that every dominating set D⊆V ′ of G′=f1(G) can be transformed
into an equally good or better vertex cover C ⊆V of G by including in C the following
vertices. For each vertex v∈D such that v∈V , include v in C. For each vertex w∈D
such that w =∈V , choose a vertex v such that (v; w)∈E′ and include v in C.
Now, consider a vertex cover C ⊆V of G. We can construct a dominating set D⊆V ′

of G′ of the same size by including in D exactly the same vertices. Thus, f1 is an
L-reduction with �= �=1.
Now, we describe the L-reduction f2 from MIN DOM SET−6 to MIN DOM

SET−3. Given a graph G=(V; E) of bounded degree 6 construct an at-most-cubic
graph G′=(V ′; E′) in the following manner. Each vertex v∈V of degree 4 is split
and transformed as shown in Fig. 3.
For each vertex v∈V of degree 5 or 6 we do in a similar way except for the fact that

we split v into three vertices, instead of two and extend the previous construction with
a third leg from the center vertex w. More precisely, in addition to the construction
in Fig. 3 we construct vertices v3, u3;1, u3;2, and edges (v3; u3;1), (u3;1; u3;2), (u3;2; w).
v3 is then connected to the 5th (and, if d(v)= 6, 6th) neighbour of v. Now, every
vertex has degree at most 3.
It is easy to see that any dominating set D′ ⊆V ′ of G′=f2(G) can be transformed

back to a dominating set D⊆V of G as follows. For each vertex v∈V of degree
less than 4 we include v in D i� v∈D′. Otherwise, let V (v) be the set of vertices
that v was transformed into, and let K(v)= |V (v) ∩ D′|. If d(v)= 4 we include v in
D i� K(v)¿3, and if d(v)¿5 we include v in D i� K(v)¿4. It is clear that D is a
dominating set of size |D|6|D′| − 2 · s1 − 3 · s2, where s1 and s2 are the number of
vertices of degree 4 and greater than 4 in V , respectively.
Finally, given a dominating set D⊆V of G we can construct a dominating set

D′ ⊆V ′ of G′=f2(G) such that |D′|= |D| + 2 · s1 + 3 · s2. Since G has bounded
degree 6, we have |D|¿|V |=7. Therefore |D′|6|D|+ 3 · (s1 + s2)622 · |D|.

P. Alimonti, V. Kann / Theoretical Computer Science 237 (2000) 123–134 129

Fig. 4. The transformation of vertices of degree 2 and 1 in the reduction from at-most-cubic graphs to cubic
graphs.

Thus, opt(f2(G))622 · opt(G) and we have shown that f2 is an L-reduction with
�=22 and �=1.

The above results are still valid for cubic graphs. We show this for MIN VERTEX
COVER−3.
We can assume that the graph does not contain any isolated vertices (since they

would not contribute to the solution in any case). Transform each vertex v of degree
two or one as shown in Fig. 4.
From every solution of size c in the at-most-cubic graph we can construct a solution

in the cubic graph of size exactly 4s1 + 2s2 + c, where s1 and s2 are the number of
vertices of degree 1 and 2 in the at-most-cubic graph, respectively.

4. APX-completeness of MAX CUT on cubic graphs

In this section we will show that MAX CUT−3 is APX-complete in two steps. First,
we will show that MAX CUT is APX-hard for multigraphs of degree 6, and then for
simple graphs of degree 3.

Theorem 4.1. MAX CUT−6 for multigraphs is APX-complete.

Proof. We will construct an L-reduction from MAX 3-SAT−3 to MAX CUT−6 for
multigraphs. Suppose we are given an instance of MAX 3-SAT−3 with n variables
and m clauses. Without loss of generality, we can assume that every variable occurs
positively in at least one clause and negatively in at least one clause, and that every
clause consists of two or three literals. MAX 3-SAT−3 with instances satisfying these
restrictions is known to be APX-complete [4].
Construct a multigraph with a vertex set consisting of two vertices named xi and

xi (the variable vertices) for each variable, and four vertices named yj, yj, b2j−1 and
b2j for each clause. For each clause we construct edges as shown in Fig. 5. We also,
for every variable xi, include two parallel edges between the vertices xi and xi. The
degree of the graph is 6.
Consider a solution where all the bi vertices in the graph are placed in the same

part, say the red part.
If we look at the subgraphs in Fig. 5 we can see (in both cases) that if all lk

vertices are in the red part, then at most 4 edges can be cut, but if at least one of the

130 P. Alimonti, V. Kann / Theoretical Computer Science 237 (2000) 123–134

Fig. 5. The constructed edges from clauses l1 ∨ l2 and l1 ∨ l2 ∨ l3, respectively.

lk vertices is in the green part, then it is always possible to choose parts for yj and
yj so that 6 edges are cut.
If xi and xi are placed in the same part we can move one of them to the other part

without decreasing the number of cut edges. This is because at least one of xi and xi
occurs just in one clause, and has therefore just two edges incident to it except the
two edges incident on it connecting xi and xi.
Now, we have a correspondence between the values of the variables and the partition

of the variable vertices – if the variable xi is true then the vertex xi is green and xi is
red, and if the variable xi is false then the vertex xi is red and xi is green. Thus, the
number of cut edges will be 2n+ 4m+ 2s where s is the number of satis�ed clauses
in the corresponding MAX 3-SAT−3 problem instance. This shows that the second
property of the L-reduction is satis�ed with �= 1

2 .
Recall that the above reasoning is valid only if all the bj vertices are in the same

part. In order to obtain this we construct a bipartite cubic expander between the bj
vertices and an equivalently large set of new vertices, called c1; j. We then construct
a chain of bipartite cubic expanders between {ci; j} and {ci+1; j} for 16i¡k, where
k is a constant to be decided later. We thus have k + 1 layers of vertices that are
connected by expanders. The degree of each vertex is at most 6. Let N be the number
of bj vertices (which means that N is the number of vertices in any of the k + 1
layers).
Ajtai has shown that cubic bipartite expander graphs of size N can be constructed

in polynomial time in N [1]. Such an expander G=(A ∪ B; E) has the property that
for every subset A′ ⊆A with |A′|6|A|=2, A′ is connected to at least (1+)|A′| vertices
in B, and vice versa, where is some �xed positive constant.
Consider a solution for the constructed MAX CUT instance and let the red part PR

be the part containing most of the bj vertices. We will show that at least the number
of cut edges we lose by moving all the bj vertices that are in the green part PG to PR
will be gained by cutting all edges in all expanders.
By moving the bj vertices in PG to PR the number of cut edges not in the expander

chain is decreased by at most |{bj}∩PG|. On the other hand, by putting all the vertices
in the layers {bj} and {ci; j} for every even i in PR, and all the vertices in the layers
{ci; j} for every odd i in PG, we will show that the cardinality of the cut in the expander
chain is increased by at least the same number.
To show this, we calculate the gain that is guaranteed between any layers of vertices

achieved by putting all the vertices as speci�ed above. We will make use of the property
of bipartite expanders.

P. Alimonti, V. Kann / Theoretical Computer Science 237 (2000) 123–134 131

We �rst consider the number g0 of uncut edges between the bj vertices and the c1; j
vertices in the given solution. By changing the partition as described above, the uncut
edges will be cut, so the gain will be g0. Let m0 = |{bj} ∩ PG| and m1 = |{c1; j} ∩ PR|.
By construction m06N=2. We need to consider two cases.
Case 1: m16N=2. The m0 vertices in {bj}∩PG are connected to at least (1+) ·m0

vertices in {c1; j}. Of these vertices at least (1 +) · m0 − m1 must be in {c1; j} ∩ PG,
which means that at least (1 +) · m0 − m1 of the edges from {bj} ∩ PG are uncut.
Similarly (1+) ·m1−m0 of the edges from {c1; j} ∩PR to {bj} are uncut. Therefore,
g0¿(1 +) · m0 − m1 + (1 +) · m1 − m0¿(m0 + m1)¿ · m0.
Case 2: m1¿N=2. Since the expander property is valid only for subsets of size at

most N=2 we just look at the noncut edges from a subset of size N=2 of {c1; j} ∩ PR.
Then we get

g0¿(1 +) · (N=2)− m0¿(1 +) · m0 − m0 = · m0:

Thus in both cases the number of uncut edges between the two layers of vertices is
at least · m0.
By similarly counting noncut edges in the rest of the expander chain we will obtain

that if at layer i the number mi of vertices placed in the “wrong” part of the cut is no
greater than N=2, the gain gi between layer i and layer i + 1 is at least · mi.
If in some layer i we have mi¿N=2, the gain gi between layer i and layer i+1 can

be calculated exactly as above, but with respect to the set of vertices placed in the
right part instead of the wrong part. Indeed, in this case, the set of vertices placed in
the right part has size N −mi6N=2, and, thus, the property of bipartite expanders can
be used. The gain then becomes gi¿ · (N − mi).
Therefore, if (23) · m06mi6N − (23) · m0 for all i we will gain at least (23) · m0 in

each layer. If we choose k¿3=(2 ·) the total gain will become at least m0.
In order to consider the cases where mi is small or large for some i we compute the

gain in another way. The total number of expander edges from {bj} ∩ PG is 3m0, and
the total number of edges from {c1; j} ∩ PR to {bj} is 3m1. Therefore, we can observe
that if m0¿m1, at least 3(m0 − m1) of the edges from {bj} ∩ PG to {c1; j} must be
incident to vertices in {c1; j} ∩ PG and thus must be uncut. In the same way, we get
the gain gj¿max{3(mj − mj+1); 0} for the layer j. Suppose mi¡(23) · m0 for some
i. Summing over all layers up to level i we get a total gain of at least 3(m0 − mi)
¿m0.
Finally, if for some i we have mi¿N − (23) ·m0 we can do as for small mi, but work

in the other direction. Indeed, since m06N=2, if mi¿N − (23) ·m0, at least 3(m1−m0)
of the edges from {c1; j} ∩ PR to {bj} must be incident to vertices in {bj} ∩ PR
and then must be uncut. Analogously, we get the gain gj¿max{3(mj − mj+1); 0} for
the layer j. Therefore, if for some i we have mi¿N − (23) · m0, we sum over all
layers up to level i and get a total gain of at least 3(N − (23) · m0 − (N − m0))¿m0.
Thus, we can move all bj vertices to the same part without decreasing the size of the
cut.

132 P. Alimonti, V. Kann / Theoretical Computer Science 237 (2000) 123–134

Fig. 6. A degree 4 vertex and the gadget originating from this vertex.

Fig. 7. A degree 6 vertex and the gadget originating from this vertex.

Finally, we have to show the �rst property of the L-reduction. If s is the number of
satis�ed clauses then the maximum number of cut edges is

2s+ 2n+ 4m+ k · 3N =2s+ 2n+ (4 + 6k)m6(16 + 12k)s;
since we know that s¿m=2 and 3m¿2n. The reduction satis�es the �rst property of
the L-reduction with �=16 + 12k where k = d3=(2 ·)e.

Theorem 4.2. MAX CUT−3 is APX-complete.

Proof. We simply give a reduction from MAX CUT−6 for multigraphs to MAX
CUT−3 for simple graphs.
For a vertex v of degree d; 26d65 we do like follows: split the vertex into d split

vertices v1; : : : ; vd of degree 1. Then add d extra vertices and construct a ring where
every other vertex is one of the split vertices and every other vertex is a new vertex,
see Fig. 6.
It is easy to see that if the split vertices are put in the same part of the partition

and the new vertices are put in the other part, then every edge in the ring will be cut.
Otherwise, at least two of the edges in the ring will be uncut, and we can put all split
vertices in the same part as the majority of them without decreasing the size of the cut.
For a vertex of degree 6 we do in a similar way, except that we need to construct

two rings, one with v1, v2, v3, and one with v4, v5, v6. We add three new vertices to
connect the two rings, see Fig. 7.
Let us study a given solution restricted to this gadget originating from v. Suppose

k63 split vertices are in one part and the other 6− k split vertices in the other part.
If k =0 we can put the rest of the vertices so that all edges in the gadget are cut.

P. Alimonti, V. Kann / Theoretical Computer Science 237 (2000) 123–134 133

Fig. 8. The transformation of vertices of degree two in MAX CUT−3.

Otherwise, when putting all split vertices in the same part as the majority of them, it
is easy to see that we can cut all edges in the gadget except k of the edges from the
split vertices to the rest of the graph. We will show how to gain at least k edges in
the gadget by putting all split vertices in the same part.
For each of the two rings we can reason as in the above case, thus showing that if

all split vertices in one ring are not in the same part then we will lose at least two
of the edges in that ring. This means that we have already gained enough if k62, or
if k =3 and we gained two edges from both rings. The only remaining case is when
k =3 and all split vertices in one ring are in the �rst part and all split vertices in the
other ring are in the second part. But in this case three of the six edges connecting
the two rings must be uncut, so we will gain at least three edges by putting all split
vertices in the same part (and put the other vertices correctly).
Since we have split every vertex of degree at least 2 the constructed graph is,

obviously, a simple graph and has maximum degree 3. Suppose m is the original
number of edges and s is the maximum number of cut edges in the original problem.
We know that s¿m=2, and it is easy to check that we have added at most 3m edges. As
we have seen all added edges can be cut, so the optimum solution of the constructed
problem is bounded by s+ 3m67s.
Thus, the constructed transformation is an L-reduction with �=7 and �=1.

MAX CUT is APX-hard even for cubic graphs. To show this we just have to extend
the graph constructed in the above proof. Without loss of generality, we can assume
that the graph does not contain any vertices of degree less than 2, and that two vertices
of degree 2 never are neighbours. Transform each vertex w of degree two as shown
in Fig. 8. It is not hard to show that this is an L-reduction with �=8 and �=1.

Acknowledgements

We are grateful for comments from Magnus Halld�orsson, S. Srinivasa Rao, and the
anonymous referees.

References

[1] M. Ajtai, Recursive construction for 3-regular expanders, Proc. 28th Ann. IEEE Symp. on Foundations
of Comput. Sci., 1987, pp. 295–304.

134 P. Alimonti, V. Kann / Theoretical Computer Science 237 (2000) 123–134

[2] E. Amaldi, V. Kann, The complexity and approximability of �nding maximum feasible subsystems of
linear relations, Theoret. Comput. Sci. 147 (1995) 181–210.

[3] S. Arora, S. Safra, Probabilistic checking of proof: a new characterization of NP, Proc. 33rd Annual
IEEE Symp. on the Foundations of Computer Science, 1992, pp. 2–13.

[4] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela, M. Protasi, Approximate
Solution of NP-Hard Optimization Problems, Springer, Berlin, 1988, to appear.

[5] M. Bellare, O. Goldreich, M. Sudan, Free Bits, PCPs and non-approximability-towards tight results,
Proc. of the 36th Annual IEEE Conf. on Foundations of Computer Science, 1995, pp. 422–431.

[6] P. Berman, T. Fujito, On approximation properties of the independent set problem for degree 3 graphs,
Proc. 3rd Workshop on Algorithms and Data Structures, Lecture Notes in Computer Science, vol. 955,
Springer, Berlin, 1995.

[7] P. Berman, M. F�urer, Approximating maximum independent set in bounded degree graphs, Proc. 5th
Ann. ACM-SIAM Symp. on Discrete Algorithms, ACM-SIAM, 1994, pp. 365–371.

[8] P. Crescenzi, V. Kann, A compendium of NP optimization problems, Technical Report SI=RR-
95=02, Dipartimento di Scienze dell’Informazione, Universit�a di Roma “La Sapienza”, 1995,
The list is updated continuously. The latest version is available as http://www.nada.kth.se/theory/
problemlist.html.

[9] P. Crescenzi, V. Kann, R. Silvestri, L. Trevisan, Structure in approximation classes, Proc. 1st Ann. Int.
Conf. Computing and Combinatorics, Lecture Notes in Computer Science, vol. 959, Springer, Berlin,
1995, pp. 539–548.

[10] P. Crescenzi, A. Panconesi, Completeness in approximation classes, Inform. Comput. 93 (1991)
241–262.

[11] P. Crescenzi, R. Silvestri, L. Trevisan, To weight or not to weight: where is the question? Proc. 4th
Ann. Israel Symp. Theory Comput. and Systems, IEEE, 1996, pp. 68–77.

[12] M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness,
W.H. Freeman and Company, San Francisco, 1979.

[13] M.X. Goemans, D.P. Williamson, Improved approximation algorithms for maximum cut and satis�ability
problems using semide�nite programming, J. ACM 42 (1995) 1115–1145.

[14] R. Greenlaw, R. Petreschi, Cubic graphs, ACM Comput. Surveys 27 (1995) 471–495.
[15] M.M. Halldorsson, Approximating the minimum maximal independence number, Inform. Process. Lett.

46 (1993) 169–172.
[16] M.M. Halld�orsson, Approximating k-set cover and complementary graph coloring, Proc. 5th Int. Conf. on

Integer Prog. and Combinatorial Optimization, Lecture Notes in Computer Science, vol. 1084, Springer,
Berlin, 1996, pp. 118–131.

[17] M.M. Halld�orsson, K. Yoshihara, Greedy approximations of independent sets in low degree graphs,
Proc. 6th Int. Symp. Algorithms and Comput., Lecture Notes in Computer Science, vol. 1004, Springer,
Berlin, 1995, pp. 152–161.

[18] V. Kann, Maximum bounded 3-dimensional matching is MAX SNP-complete, Inform. Process. Lett. 37
(1991) 27–35.

[19] V. Kann, On the approximability of NP-complete optimization problems, Ph.D. Thesis, Department of
Numerical Analysis and Computing Science, Royal Institute of Technology, Stockholm, 1992.

[20] V. Kann, Polynomially bounded minimization problems that are hard to approximate, Nordic J. Comput.
1 (1994) 317–331.

[21] H. Karlo�, U. Zwick, A 7=8-approximation algorithm for MAX 3SAT?, Proc. 37th Ann. IEEE Symp.
on Foundations of Comput. Sci., IEEE, 1997, pp. 406–415.

[22] C. Lund, M. Yannakakis, On the hardness of approximating minimization problems, J. ACM 41 (1994)
960–981.

[23] P. Orponen, H. Mannila, On approximation preserving reduction: complete problems and robust
measures, Tech. Rep. C-1987-28, Department of Computer Science, Univ. of Helsinki, 1987.

[24] C.H. Papadimitriou, M. Yannakakis, Optimization, approximation, and complexity classes, J. Comput.
Systems Sci. 43 (1991) 425–440.

[25] C.H. Papadimitriou, Computational Complexity, Addison-Wesley, Reading, MA, 1994.

All in-text references underlined in blue are linked to publications on ResearchGate, letting you access and read them immediately.

