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Abstract

It has been widely accepted by many studies that non-linearity exists in the financial markets and that neural networks can be effectively

used to uncover this relationship. Unfortunately, many of these studies fail to consider alternative forecasting techniques, the relevance of

input variables, or the performance of the models when using different trading strategies. This paper introduces an information gain technique

used in machine learning for data mining to evaluate the predictive relationships of numerous financial and economic variables. Neural

network models for level estimation and classification are then examined for their ability to provide an effective forecast of future values.

A cross-validation technique is also employed to improve the generalization ability of several models. The results show that the trading

strategies guided by the classification models generate higher risk-adjusted profits than the buy-and-hold strategy, as well as those guided by

the level-estimation based forecasts of the neural network and linear regression models.
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1. Introduction

Over the past two decades many important changes have

taken place in the environment of financial markets. The

development of powerful communication and trading

facilities has enlarged the scope of selection for investors

(Elton and Gruber, 1991). Traditional capital market theory

has also changed and methods of financial analysis have

improved (Poddig and Rehkugler, 1996). Forecasting stock

return or a stock index is an important financial subject that

has attracted researchers’ attention for many years. It

involves an assumption that fundamental information

publicly available in the past has some predictive

relationships to the future stock returns or indices. The

samples of such information include economic variables

such as interest rates and exchange rates, industry specific

information such as growth rates of industrial production

and consumer price, and company specific information such

as income statements and dividend yields. This is opposed
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to the general perception of market efficiency (Fama, 1970).

In fact, the efficient market hypothesis states that all

available information affecting the current stock values is

constituted by the market before the general public can

make trades based on it (Jensen, 1978). Therefore, it is

impossible to forecast future returns since they already

reflect all information currently known about the stocks.

This is still an empirical issue because there is considerable

evidence that markets are not fully efficient, and it is

possible to predict the future stock returns or indices with

results that are better than random (Lo and MacKinlay,

1988).

Recently, Balvers, Cosimano, and McDonald (1990),

Breen, Glosten, and Jagannathan (1990), Campbell (1987),

Fama and Schwert (1977), Fama and French (1988, 1989),

Ferson (1989), Keim and Stambaugh (1986), and Schwert

(1990) among others, provide evidence that stock market

returns are predictable by means of publicly available

information such as time-series data on financial and

economic variables, especially those with an important

business cycle component. These studies identify that such

variables as various interest rates, monetary growth rates,

changes in industrial production, and inflation rates are

statistically important for predicting a portion of the stock

returns. However, most of the above studies attempting to
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capture the relationship between the available information

and the stock returns rely on simple linear regression

assumptions. There is no evidence to support the assumption

that the relationship between the stock returns and the

financial and economic variables is perfectly linear. This is

due to the fact that there exists the significant residual

variance of the actual stock return from the prediction of the

regression equation. Therefore, it is possible that nonlinear

models are able to explain this residual variance and

produce more reliable predictions of the stock price

movements (Mills, 1990; Priestley, 1988).

Since many of the current modeling techniques are based

on linear assumptions, a new kind of financial analysis that

considers the nonlinear analysis of integrated financial

markets needs to be considered. Even though there exists a

number of non-linear regression techniques, most of these

techniques require that the non-linear model must be

specified before the estimation of parameters can be

determined. One non-linear modeling technique that may

overcome these problems involves the use of neural

networks (Hill, O’Connor, and Remus, 1996). In fact,

neural networks offer a novel technique that does not require

a pre-specification during the modeling process because

they independently learn the relationship inherent in the

variables. This is especially useful in security investment

and other financial areas where much is assumed, and little

is known about the nature of the processes determining asset

prices (Burrell and Folarin, 1997). Neural networks also

offer the flexibility of numerous architecture types, learning

algorithms, and validation procedures. As a result, the

discovery and use of non-linearity in financial market

movements and analysis to produce better predictions of

future stock returns or indices has been greatly emphasized

by various researchers and financial analysts during the last

few years (see Abhyankar, Copeland, and Wong, 1997).

Current studies that reflect an interest in applying neural

networks to answer future stock behaviors include Cheno-

weth and Obradovic (1996), Desai and Bharati (1998),

Gencay (1998), Leung, Daouk, and Chen (2000), Motiwalla

and Wahab (2000), Pantazopoulos et al. (1998), Qi and

Maddala (1999), and Wood and Dasgupta (1996).

To this end, it has been found that stock trading driven by

a certain forecast with a small forecasting error may not be

as profitable as trading guided by an accurate prediction of

the sign of stock return (Aggarwal and Demaskey, 1997;

Leung et al., 2000; Maberly, 1986; Wu and Zhang, 1997).

Nonetheless, having an accurate prediction of a certain

stock or stock index return still has numerous benefits.

Given the existence of a vast number of articles addressing

the predictabilities of stock market return, most of the

proposed models relied on various assumptions and often

employ a particular series of input variables without

justification as to why they were chosen. Obviously, a

systematic approach to determine what inputs are important

is necessary. In regard to this, the present paper will begin

with the discussion of the methodology for data selection
and then introduce an information gain data mining

technique for performing the variable relevance analysis.

Two neural network approaches that can be used for

classification and level estimation will also be briefly

reviewed in the third section, followed by a discussion of the

neural network models, including the generalized

regression, probabilistic, and multi-layer feed-forward

neural networks that were developed to estimate the value

(level) and classify the direction (sign) of excess stock

returns on the S&P 500 stock index portfolio. In addition,

the five-fold cross validation and early stopping techniques

were also implemented in this study to improve the

generalization ability of the feed-forward neural networks.

The resulting data selection and model development,

empirical results, and discussion and conclusion will then

be presented, respectively. Finally, the data sources and

descriptions are given in the Appendix.
2. Methodology for data selection

In general, large-scale deterministic components, such as

trends and seasonal variations, should be eliminated from

the inputs since the network will attempt to learn the trend

and use it in the prediction (Nelson et al., 1999;

Pantazopoulos et al., 1998). Therefore, the data collected

in this study, excluding DIV, T1, SP, DY, and ER, were

seasonally adjusted allowing the networks to concentrate on

the important details necessary for an accurate prediction

(the source and definition of all the variables are given in the

Appendix). In addition, due to the lag associated with the

publication of macroeconomic indicators as mentioned by

Qi and Maddala (1999), certain data, particularly PP, IP,

CP, and M1, were included in the base set with a two-month

time lag while the rest of the variables were included with a

one-month time lag. Constructing the data in this manner

ensures that the forecasting models using these variables

will be similar to real-world practice. Specifically, only

observable, but not future data were employed as inputs to

the forecasting models. As a result, these time lags were

used throughout the experiment to maintain realistic

situations when data are gathered.

In this study, the differences [Pt –PtK1] of variables were

provided to the networks so that different input variables can

be compared in terms of change to the monthly stock returns,

since the level changes of the variable may be more

meaningful to the models than the original values when

forecasting a financial time series. Monthly data from March

1976 to December 1999, for a total of 286 periods and for

each of 31 financial and economic variables, were collected

and analyzed. These variables, including PPtK1, CPtK1,

IPtK1, M1tK1, T3t, T6t, T12t, T60t, T120t, CD1t, CD3t, CD6t,

AAAt, BAAt, DIVt, T1t, SPt, DYt, TE1t, TE2t, TE3t, TE4t, TE5t,

TE6t, DE1t, DE2t, DE3t, DE4t, DE5t, DE6t, and DE7t, were

primarily employed to predict the level and to classify the

sign of the excess stock returns (ERtC1) on the S&P 500
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index portfolio. These data consisted of a mixture of the

variables conducted by various researchers, including Desai

and Bharati (1998), Leung et al. (2000), Motiwalla and

Wahab (2000), and Qi and Maddala (1999). However, two

variables often used in the literature, long-term treasury rates

and commercial papers, were not applicable due to the fact

that the 30-year treasury rate provided by the Federal Reserve

Board of Governors started from February 1977, while the

series of commercial papers had been discontinued because

of a change in methodology in September 1997. Therefore,

several financial instruments, such as CD and T-bill rates

with additional maturities were included to supplement

unavailable data in this study.

While uncertainty in selecting the predictive variables to

forecast stock returns still exits, as can be observed from a

variety of input variables used in a recent literature survey,

several techniques such as regression coefficients (Qi and

Maddala, 1999), autocorrelations (Desai and Bharati, 1998),

backward stepwise regression (Motiwalla and Wahab,

2000), and genetic algorithms (Motiwalla and Wahab,

2000) have been employed by a few studies to perform

variable subset selection. In addition, several researchers,

such as Leung et al. (2000), Gencay (1998), and

Pantazopoulos et al. (1998), subjectively selected the

subsets of variables based on empirical evaluations. None

of these studies, however, have incorporated all available

variables previously mentioned in the literature to uncover

input data that may be effective in predicting stock returns.

Obviously, many of variables gathered in these studies may

be irrelevant or redundant to the prediction of stock returns.

In fact, leaving out relevant variables or keeping irrelevant

variables may be detrimental, causing confusion to the

neural network models. Besides, the use of many variables

would require a neural network that contains an excessive

number of neurons and possibly many hidden layers. It is

fundamentally impossible to train such a network if few data

are available during its modeling. Unfortunately, there is no

consistent method that has been used to pick out the useful

variables in stock return forecasting. This may be due to the

fact that the behavior of this data is not well known.

One alternative that can be used to extract valuable

information and knowledge from large amounts of data

involves the use of data mining (Han and Micheline, 2000).

Specifically, there have been many studies in some areas of

data mining (i.e., machine learning, fuzzy logic, statistics,

and rough set theories) on variable relevance analysis for

data understanding. This relevance analysis, therefore, may

be performed on the financial data with the aim of removing

any irrelevant or redundant variables from the learning

process. The general idea behind variable relevance analysis

is to compute some measures that can be used to quantify

the relevance of variables hidden in a large data set with

respect to a given class or concept description. Such

measures include information gain, the Gini index,

uncertainty, and correlation coefficients. For this study, an

inductive learning decision tree algorithm that integrates an
information gain analysis technique with a dimension-based

data analysis method was selected as it can be effectively

used for variable subset selection (Han and Micheline,

2000). The resulting method removes the less information

producing variables and collects the variables that contain

more information. Therefore, it may be the most appropriate

data mining technique to perform variable subset selection

when the usefulness of the data is unknown. While using the

information gain analysis technique, the predicted direc-

tions of excess stock returns were used as class distributions

for the experiment. The resulting variables with the high

information gain were chosen as the relevant input variables

provided to the neural network models. The following

paragraphs give a brief introduction to the information gain

calculation. It is recommended that readers who are

interested in full details of the information gain algorithm

should refer to Quinlan (1993).

Let S be a set consisting of s data samples. Suppose the

class label variable has m distinct values defining m distinct

classes, Ci (for iZ1, 2,.., m). Let si be the number of

samples of S in class Ci. The expected information needed to

classify a given sample is given by:

Iðs1; s2; s3;.; smÞ ZK
Xm

iZ1

pilog2ðpiÞ

where pi is the probability that an arbitrary sample belongs

to class Ci and is estimated by si/s. Note that a log function

to the base 2 is used since the information is encoded in bits.

Let variable A have v distinct values denoted in order from

small to large values as {a1, a2, a3,., av}. Any split value

lying between ai and aiC1 will have the same effect of

dividing the samples into those whose value of the variable

A lies in {a1, a2, a3,., ai} and those whose value is in {aiC1,

aiC2, aiC3,., av}. However, the midpoint of each interval is

usually chosen as the representative split. It is defined as

(aiCaiC1)/2. Thus, there are vK1 possible splits on A, all of

which are examined. Note that examining all vK1 splits is

necessary to determine the highest information gain of A.

Variable A can therefore be used to partition S into 2

subsets, {S1, S2}, where Sj contains those samples in S that

have values {a1, a2, a3,., ai} or {aiC1, aiC2, aiC3,., av} of A.

Let Sj contain sij samples of class Ci. The expected information

based on this partitioning by A, also known as the “entropy” of

A, is given by:

EðAÞ Z
Xv

jZ1

s1j Cs2j C. Csmj

s
Iðs1j; s2j;.; smjÞ:

The term (s1jCs2jC.Csmj)/s acts as the weight of the jth

subset and is the number of samples in the subset (i.e., having

value aj of A) divided by the total number of samples in S. Note

that for a given subset Sj,

Iðs1j; s2j.; smjÞ ZK
Xm

iZ1

pijlog2ðpijÞ
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where pijZsij=jSjj and is the probability that a sample in Sj

belongs to class Ci. The information gain obtained by this

partitioning of the split on A is defined by:

GainðAÞ Z Iðs1; s2; s3;.; smÞKEðAÞ:

In this approach to relevance analysis, the highest

information gain for each of the variables defining the

samples in S can be obtained. The variable with the

highest information gain is considered the most discrimi-

nating variable of the given set. By computing the

information gain for each variable, a ranking of the

variables can be obtained. Finally, the relevant threshold is

determined to select only the strong relevant variables to

be used in the forecasting models.

In this study, each of the neural network models was

compared against a linear regression model, as well as a

buy-and-hold strategy. For all models, the data set used in

this study was divided into two periods: the first period runs

from March 1976 to October 1992 for a total of 200 months

while the second period runs from November 1992 to

December 1999 for a total of 86 months. The former was

used for determining the specifications of the models and

parameters of the forecasting techniques. The latter was

reserved for out-of-sample evaluation and comparison of

performances among the forecasting models.
3. Neural network models

The theory of neural network computation provides

interesting techniques that mimic the human brain and

nervous system. A neural network is characterized by the

pattern of connections among the various network layers,

the numbers of neurons in each layer, the learning

algorithm, and the neuron activation functions. Generally

speaking, a neural network is a set of connected input and

output units where each connection has a weight associated

with it. During the learning phase, the network learns by

adjusting the weights so as to be able to correctly predict or

classify the output target of a given set of input samples.

Given the numerous types of neural network architectures

that have been developed in the literature, three important

types of neural networks, including the generalized

regression, probabilistic, and multi-layer feed-forward

neural networks were implemented in this study to compare

their predictive ability against the classical linear regression

model. The following three subsections give a brief

introduction of these three neural network models.

3.1. Multi-layer feed-forward neural network

Multi-layer feed-forward neural networks have been

widely used for financial forecasting due to its ability to

correctly classify and predict the dependent variable

(Vellido, Lisboa, and Vaughan, 1999). For each training

sample, the input variables are fed simultaneously into
a layer of units making up the input layer. The weighted

outputs of these units are, in turn, fed simultaneously to a

second layer of units known as a hidden layer. The hidden

layer’s weighted outputs can be input to another hidden

layer, and so on. The weight outputs of the last hidden layer

are input to units making up the output layer which issues

the network’s prediction for a given set of samples.

Backpropagation is by far the most popular neural

network algorithm that has been used to perform training on

the multi-layer feed-forward neural networks. It is a method

for assigning responsibility for mismatches to each of the

processing elements in the network by propagating the

gradient of the activation function back through the network

to each hidden layer down to the first hidden layer. The

weights are then modified so as to minimize the mean

squared error between the network’s prediction and the

actual target. Since the feed-forward neural networks are

well known, the network structures and backpropagation

algorithms are not described in this paper. However, readers

who are interested in greater detail can refer to Rumelhart

and McClelland (1986) for a comprehensive explanation of

the backpropagation algorithm used to train multi-layer

feed-forward neural networks.

During neural network modeling, Malliaris and Salchen-

berger (1993) suggest that validation techniques are

required to identify the proper number of hidden layer

nodes, thus avoid under-fitting (too few neurons) and over-

fitting (too many neurons) problems. Generally, too many

neurons in the hidden layers, hence, too many connections,

produce a neural network that memorizes the data and lacks

the ability to generalize. One approach that can be used to

avoid over-fitting is n-fold cross-validation (Peterson,

St Clair, Aylward, and Bond, 1995). A five-fold cross-

validation, which was used in this experiment, can be

described as follows: The data sample is randomly

partitioned into five equal-sized folds and the network is

trained five times. In each of the training passes, one fold

is omitted from the training data and the resulting model is

validated on the cases in that omitted fold, which is also

known as a validation set. The first period (200 months) of

the data set is used for the five-fold cross-validation

experiment, leaving the second period for truly untouched

out-of-sample data. The average root-mean squared error

over the five unseen validation sets is normally a good

predictor of the error rate of a model built from all the data.

Another approach that can be used to achieve better

generalization in trained neural networks is called early

stopping (Demuth and Beale, 1998). This technique can be

effectively used with the cross-validation experiment. The

validation set is used to decide when to stop training. When

the network begins to over-fit the data, the error on the

validation cases will typically begin to rise. In this study, the

training was stopped when the validation error increased for

five iterations, causing the return of the weights and biases

to the minimum of the validation error. The average error

results of the validation cases (40 months in each fold for
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this study) from the n-fold cross-validation experiment can

finally be used as criteria for determining the optimal

network structure, namely the number of hidden layers,

number of neurons, learning algorithms, learning rates, and

activation functions.
t

xn hn

wn
tΣ

Fig. 1. Generalized regression neural network architecture.
3.2. Generalized regression neural network

While a number of articles address the ability of the

multi-layer feed-forward neural network model with back-

propagation for financial forecasting, none of these studies

has practically applied the generalized regression neural

network (GRNN) to forecast stock returns. Like the feed-

forward neural networks, the GRNN can be used for

function approximation to estimate the values of continuous

dependent variables such as future position, future values,

and multivariable interpolation. The GRNN is a kind of

radial basis function network and also looks similar to a

feed-forward neural network responding to an input pattern

by processing the input variables from one layer to the next

with no feedback paths (Specht, 1991). However, its

operation is fundamentally different. The GRNN is based

on nonlinear regression theory that can be used for any

regression problem in which an assumption of linearity is

not justified.

The training set contains the values of x (independent

variables) that correspond to the value of y (dependent

variable). This regression method will produce the optimal

expected value of y, which minimizes the mean squared

error. The GRNN approach uses a method that frees the

necessity to assume a specific functional form. In fact, it

allows the appropriate form to be expressed as a probability

density function that is empirically determined from

observed data using the window estimation (Parzen,

1962). Therefore, this approach is not limited to any

particular forms and requires no prior knowledge of the

estimated function. The GRNN formula is briefly described

as follows:

E½yjx� Z

ÐN
KN yf ðx; yÞdyÐN
KN f ðx; yÞdy

where y is the output of the estimator, x is the estimator input

vector, E [yjx] is the expected value of y given x, and (x, y) is

the known joint continuous probability density function of x

and y. When the density (x, y) is not known, it will be

estimated from a sample of observations of x and y. For a

nonparametric estimate of (x, y), the class of consistent

estimators proposed by Parzen (1962) is used. As a result,

the following equation gives the optimal expected value

of y:

y Z

Pn
iZ1 hiwiPn

iZ1 hi

where wi is the target output corresponding to the input

training vector xi and the output y, hiZexp½KD2
i =ð2s2Þ� is
the output of hidden neuron, D2
i Z ðxKuiÞ

T ðxKuiÞ is the

squared distance between the input vector x and the training

vector u, and s is a smoothing parameter of the radial basis

function. The GRNN architecture is shown in Fig. 1. The

neurons of hidden layer 1 are created to hold the input

vectors. The weights between the newly created hidden

neurons and the neurons of hidden layer 2 are assigned the

target value.
4. Probabilistic neural network

In contrast to the GRNN used to estimate the values of

continuous variables, the probabilistic neural network

(PNN) finds decision boundaries between categories of

patterns. Therefore, the PNN is mainly used for classifi-

cation problems. The PNN is a parallel implementation of a

standard Bayesian classifier and has a four-layer network

that can perform pattern classification. It is based essentially

on the estimation of probability density functions for

various classes learned from training samples. The PNN

learns from the sample data instantaneously and uses these

probability density functions to compute the nonlinear

decision boundaries between classes in a way that

approaches the Bayes optimal (Specht, 1990). The PNN

formula can be briefly explained as follows:

fAðxÞ Z
1

ð2pÞP=2sPn

Xn

iZ1

zi

where fA(x) is the probability density function estimator for

class A, p is the dimensionality of training vector, ziZ
exp½KDi=ð2s2Þ� is the output of hidden neuron, DiZ ðxK
uiÞ

T ðxKuiÞ is the distance between the input vector x and

the training vector u from category A, and s is a smoothing

parameter.

Theoretically, the PNN can classify an out-of-sample

data with the maximum probability of success when enough

training data is given (Wasserman, 1993). Fig. 2 presents the

PNN architecture. When an input is presented to the hidden

layer 1, it computes distances from the input vector to the

training vectors and produces a vector whose elements

indicate how close the input is to the vectors of the training

set. The hidden layer 2 then sums these elements for each

class of inputs to produce a vector of probabilities as its net

output. Finally, the activation function of the PNN output
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layer picks the maximum of these probabilities and

classifies it into specific output classes.
Input Layer

Hidden Layer

x1

x15

Output Layer

Predicted Value

Fig. 3. A three layer feed-forward neural network for level estimation.
5. Data selection and model development

The selection of the input variables is a modeling

decision that can greatly affect the model performance. In

the neural network environment, the information gain data

mining analysis was used to find good subsets of the full set

of the first-period input variables. Of the 31 variables, 15

variables were selected by the information gain data mining

analysis as strong relevant predictors for the data set used in

this study. They include M1, T3, T6, T120, CD1, CD3, CD6,

SP, TE2, TE3, TE4, DE2, DE3, DE5, and DE7. Thus, these

variables were consistently used as the input variables for

training the neural networks throughout the modeling stage.

The values of the input variables were first preprocessed by

normalizing them within a range of K1 and C1 to

minimize the effect of magnitude among the inputs and

thus increase the effectiveness of the learning algorithm.

It is well known that most trading practices adopted by

financial analysts rely on accurate prediction of the price

levels of financial instruments. Nonetheless, some recent

studies have suggested that trading strategies guided by

forecasts on the direction of the change in price level may be

more effective and thus can generate higher profits.

Aggarwal and Demaskey (1997) report that the performance

of cross hedging improves significantly if the direction of

changes in exchange rates can be predicted. In another

study, Maberly (1986) explores the relationship between

the direction of inter-day and intra-day price changes on the

S&P 500 futures. Wu and Zhang (1997) investigate the

predictability of the direction of change in the future spot

exchange rate. Recently, Leung et al. (2000) find that the

forecasting models based on the direction of stock return

outperform the models based on the level of stock return in

terms of predicting the direction of stock market return and

maximizing profits from investment trading.

The above-mentioned studies demonstrate the usefulness

of forecasting the direction of change in the price or return

level by means of a gain or a loss. In fact, the results of these

findings are reasonable because accurate price estimation,
as determined by its deviation from the actual observation,

may not be a good predictor of the direction of change in the

price levels of financial instruments. To facilitate a more

effective forecast developed in this study, the two

forecasting approaches, namely classification and level

estimation, were investigated to evaluate the resulting

performances of the model development. Specifically, the

feed-forward neural networks were developed to both

estimate the value (level) and classify the direction (sign)

of excess stock returns on the S&P 500 index portfolio.

Based on their network architectures, however, the GRNN

was used to estimate the level of excess stock return while

the PNN was employed to classify the sign of excess stock

return in this study. Finally, the conventional linear

regression model was developed to serve as a benchmark

for performance comparison purposes. Note that the second

period test data were never used during the model

development so that these forecasting models were always

tested on truly untouched out-of-sample data.
5.1. Neural network models for level estimation

For the feed-forward neural network using the back-

propagation algorithm, a sigmoid hyperbolic tangent

function was selected as the activation function to generate

an even distribution over the input values. A single hidden

layer was chosen for the neural network model since it has

been successfully used for financial classification and

prediction (Swales and Yoon, 1992). Accordingly, the

feed-forward neural network was built with three layers

including the input layer, hidden layer, and output layer.

Each of the relevant 15 input variables was assigned a

separate input neuron to the input layer of the feed-forward

neural network. One output neuron was used in the output

layer to represent the predicted excess stock return of a

given set of the 15 input variables. The network

configuration of this level estimation experiment is given

in Fig. 3. In this study, the connection weights were initially

randomized and then determined during the backpropaga-

tion training process.

After many experiments with various numbers of hidden

layer neurons, learning algorithms, and learning rates,
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the feed-forward neural network employing 15 neurons in

the input-layer, 21 neurons in the hidden layer, 0.2 learning

rate, and a resilient backpropagation training algorithm was

found to be the best network architecture based on the

lowest average root-mean squared error over the five-fold

cross-validation experiment. In other words, this network

architecture generated the lowest average root-mean

squared error over the cases of five omitted folds (validation

sets) in this study. Note that the root-mean squared error

(RMSE) used in the feed-forward neural network for level

estimation is defined as:

RMSE Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

iZ1

ðyi K tiÞ
2

s

where yi is the predicted excess stock return, ti is the actual

excess stock return, and n is the number of validation cases

(40 in this study). The average RMSE results were

calculated only after the neural network outputs have been

scaled back to their normal values. By conducting the five-

fold cross-validation experiment, the forecasting results will

not be based on a single network output because five neural

network models were developed from the five different data

sets. For this reason, the predicted excess stock returns of

the five network outputs were averaged to generate the

weighted excess return in this experiment. As a result, the

weighted excess return (WER) can be derived as:

WER Z
y1 Cy2 Cy3 Cy4 Cy5

5

where y1, y2, y3, y4, and y5 are the predicted excess stock

returns of the five neural network models developed from

the five-fold cross-validation experiment.

To further improve the forecasting performance, we also

examined a portfolio network model consisting of the

network architecture that produced the lowest RMSE in

each omitted fold cross-validation experiment. In other

words, the neural network model generating the lowest

RMSE from each omitted fold experiment was chosen as

one of the five neural networks deliberately combined as the

portfolio network model. The resulting portfolio network

architectures using the lowest RMSE in each omitted fold

experiment are provided in Table 1. It is observed that the

suitable neurons used in the hidden layer of the five

combined portfolio networks that were trained based on

different omitted folds are different. This observation
Table 1

Portfolio neural network model for level estimation

Omitted Folds Input layer

neurons

Hidden layer

neurons

Learning rate

1 15 23 0.3

2 15 27 0.2

3 15 24 0.3

4 15 11 0.2

5 15 21 0.2
suggests the importance of network modeling for a separate

omitted fold experiment because the potentially better

trained neural network may be obtained from the specific

validation cases. Again, the WER of the portfolio network

model was calculated from the five combined portfolio

network outputs.

Unlike the feed-forward neural networks, the GRNN can

be designed very quickly, and no early stopping technique is

required during its training. Therefore, there would be no

need to randomly partition the data into equal-sized folds for

cross-validation. As a result, the first period (200 months) of

the data set was used in network training for predicting the

excess stock returns of the last 86 months. In this study,

a smoothing parameter of the radial basis function equal to

1.00 was selected to approximate the network function more

efficiently. The GRNN training process employed the same

input variables, pre-processing techniques, and post-

processing techniques as those of the feed-forward neural

network models.
5.2. Neural network models for classification

Other than the output layer structure, the feed-forward

neural network for classification employed the same

network structures as those used for level estimation.

Since there are two classes of the signs of excess stock

return, two output neurons were employed for the output

layer to represent the different classes of the predicted

excess stock return. In this study, the vectors [C1 K1] and

[K1 C1] represented the predicted positive and negative

signs of excess stock return, respectively. Fig. 4 provides the

network configuration of the feed-forward neural network

for classification. The output neuron with the highest value

was taken to represent the predicted sign of excess stock

return based on a given set of the 15 input variables.

In this experiment, the feed-forward neural network

employing 15 neurons in the input layer, 27 neurons in the

hidden layer, 0.3 learning rate, and a resilient back-

propagation training algorithm was found to be the best

network architecture with the lowest average root-mean

squared error over the five-fold cross-validation experiment.
Class 1

Class 2

x15

Fig. 4. A three layer feed-forward neural network for classification.
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The root-mean squared error (RMSE) used in the feed-

forward neural network for classification is defined as:

RMSE Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2n

Xn

iZ1

fðy1 K t1Þ
2 C ðy2 K t2Þ

2g

s

where y1 and y2 are the predicted classes of excess stock

return of the two output neurons, t1 and t2 are the actual

classes of excess stock return, and n is the number of

validation cases. Just like the previously developed feed-

forward neural network models for level estimation, the

forecasting results will be based on five network outputs.

Therefore, the majority of the signs of five network outputs

is used to determine the decisive predicted sign of excess

stock return. For example, when the five network models

generate three positive predicted signs and two negative

predicted signs of excess stock return based on a given set of

the 15 input variables, the decisive predicted sign of excess

stock return is resolved to be positive.

In addition, a portfolio network model for classification

that consists of the network architecture producing the

lowest RMSE in each omitted fold cross-validation

experiment was explored. The resulting portfolio network

architectures using the lowest RMSE in each omitted fold

experiment are given in Table 2. As can be seen, the suitable

hidden layer neurons of the five combined portfolio

networks are different implying the similar observation of

those of the portfolio network model for level estimation.

Similarly, the decisive predicted sign of excess stock return

of the portfolio network model was derived from the

majority of the five combined portfolio network outputs.

Like the GRNN, the design of the PNN is fast and

straightforward. In fact, neither training nor early stopping

technique is required during its design. Therefore, the first

period (200 months) of the data set was used in network

modeling for predicting the sign of the excess stock returns

of the last 86 months. Also, a smoothing parameter equal to

1.00 was selected to entirely consider several nearby design

vectors. Again, the PNN design employed the same input

variables and pre-processing techniques as those of the feed-

forward neural network models.
5.3. Linear regression for level estimation

In the linear regression forecasting, the backward

stepwise regression for dimensionality reduction was
Table 2

Portfolio neural network model for classification

Omitted Folds Input layer

neurons

Hidden layer

neurons

Learning rate

1 15 21 0.3

2 15 19 0.2

3 15 28 0.3

4 15 27 0.3

5 15 23 0.3
employed to assume a linear additive relationship. This

method started with the full set of variables in the model.

The worst of the original variables was determined and

removed from the full set. At each subsequent iteration or

step, the worst of the remaining variables was removed from

the last updated set. The significant t-statistics were used as

criteria for retention of the significant input variables in the

linear regression model. The remaining variables were thus

used in predicting excess stock returns. In this study, the

backward stepwise technique kept 10 variables, PP, M1, T3,

T12, T60, CD1, CD6, BAA, SP, and DE7, as the significant

input variables in the regression model (aZ0.05). The

regression model has the following function:

ERt C1 ZK0:444 C ð0:959!PPtK1ÞC ð0:100!M1tK1Þ

C ð2:525!T3tÞC ð5:981!T12tÞ

C ðK4:584!T60tÞC ðK1:050!CD1tÞ

C ðK5:472!CD6tÞC ðK1:437!BAAtÞ

C ðK0:027!SPtÞC ð8:295!DE7tÞ

where all the regression coefficients are significant and the

F-statistic is 2.027 (p-value 0.033), indicating that these

forecasting variables contain information about future

excess stock returns (F-critical Z1.91). The regression

model shows that the changes of PP, M1, T3, T12, and DE7

have a positive effect on predictions of excess stock return,

whereas the effect on excess stock returns of T60, CD1,

CD6, BAA, and SP is negative.
6. Results

The predictive performances of the developed models

were evaluated using the untouched out-of-sample data

(second period). This is due to the fact that the superior in-

sample performance does not always guarantee the validity

of the forecasting accuracy. One possible approach for

evaluating the forecasting performance is to investigate

whether traditional error measures such as those based on

the RMSE or correlation (CORR) between the actual out-of-

sample returns and their predicted values are small or highly

correlate, respectively. However, there is some evidence in

the literature suggesting that traditional measures of

forecasting performance may not be strongly related to

profits from trading (Pesaran and Timmermann, 1995). An

alternative approach is to look at the proportion of time that

the signs of excess stock returns (SIGN) are correctly

predicted. In fact, Leitch and Tanner (1991) state that the

forecasting performance based on the sign measure matches

more closely to the profitability performance than do

traditional criteria.

Therefore, in Table 3, we report all of the three

performance measures of the original level estimation



Table 3

Second period performance measures

CORR RMSE SIGN

Level Estimation

Models

Original

Level NN

0.0231 1.1614 0.6628*

Portfolio

Level NN

0.0528 1.1206 0.6860*

GRNN 0.0714 1.1206 0.6860*

Regression 0.0300 1.4467 0.4767

Classification

Models

Original

Class NN

0.2300 1.2200 0.6279*

Portfolio

Class NN

0.3150 1.0997 0.6977*

PNN 0.3020 1.2575 0.6047*
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feed-forward neural network using the lowest average

RMSE (Original level NN), the portfolio level estimation

feed-forward neural network using the lowest RMSE in

each omitted fold (Portfolio level NN), the GRNN, the

linear regression model (Regression), the original classifi-

cation feed-forward neural network using the lowest

average RMSE (Original Class NN), the portfolio classifi-

cation feed-forward neural network using the lowest RMSE

in each omitted fold (Portfolio Class NN), and the PNN

from November 1992 to December 1999. RMSE in Table 3

represents the root-mean squared error between the actual

and predicted signs of excess stock return. CORR refers to

the Pearson correlation coefficient between the actual and

predicted signs of excess stock return (Pesaran and

Timmermann, 1992). SIGN denotes the proportion of

times the predicted signs of excess stock returns are

correctly classified. Note that the C1 and K1, representing

the positive and negative decisive predicted signs of the

PNN and the classification feed-forward neural networks,

were used to compute the resulting classification perform-

ances in the study. To compare the classification perform-

ances with those of the Regression, the GRNN, and the feed-

forward neural networks for level estimation, the original

RMSE and CORR performance measures of these level

estimation models were recalculated in connection with the

signs of C1 and K1 of the classification models. That is,

when the positive predicted value of excess stock return is

generated by the level estimation models, it will be

converted to the C1 or vice versa. The reason for this

recalculation is that the PNN model is designed to give the

exact signs of C1 and K1. Therefore, the prediction of the

other forecasting models is required to adjust for unbiased

performance comparisons.

According to Table 3, the empirical results show that

neither the classification nor the level estimation neural

network models can accurately predict the signs of excess

stock return because of the relatively low correlation

relationship, although each of these models, excepting the

Original Level NN model, is unquestionably better than

the model using linear regression. This is due to the fact that

the CORR of these models indicates higher positive
relationship between the actual and predicted signs of

excess stock return. It is also observed that the CORR of the

classification models is constantly better than that of the

level estimation models. In particular, the Portfolio Class

NN has the highest CORR (0.3150) that can be obtained

from the experiment. This reveals that the neural networks,

especially the classification models, perform more accu-

rately in correctly predicting the portion of future excess

stock returns.

Regarding the second performance measure, the results

again confirm that the linear regression model is the least

accurate performer because it generates the highest RMSE

(1.4467) compared to that of the neural network models. In

contrast, the Portfolio Class NN model produces the lowest

RMSE (1.0997). Nonetheless, the remaining two classifi-

cation models, the Original Class NN and PNN models,

signal slightly higher RMSE results than those of the level

estimation neural network models. For the third perform-

ance measure, the results show that the percentage of the

correct signs (SIGN) generated by the neural network

models is far more accurate and consistently predictive than

that of the linear regression forecast. This is because the

correct signs produced by all of the neural network models

are always either greater than or equal to 0.6047. For

statistical evaluation, the null hypothesis of no predictive

effectiveness was calculated by conducting a one-sided test

of Ho: pZ0.50 against Ha: p O 0.50. The SIGN marked

with an asterisk (*) in Table 3 indicates the significant

differences from the benchmark of 0.5 at a 95% level of

confidence. More importantly, the Portfolio Class NN

model once again signals the highest SIGN (0.6977)

obtainable from the study, whereas the linear regression

forecast has obtained only 0.4767 of the correct signs. This

result verifies that the correct signs generated by each neural

network model are better than random. In summary, the

overall out-of-sample forecasts using the GRNN and

Portfolio Class NN models are more accurate than those

using the Original Level NN and Portfolio Level NN,

Original Class NN, PNN, and Regression models with

respect to their approaches. Particularly, the Portfolio Class

NN model is proven to be the best performer in all of the

performance measures used in this study. These findings

strongly support the non-linearity relationship between the

past financial and economic variables and the future stock

returns in the financial markets.

6.1. Trading simulation

A trading simulation was developed in an effort to

further examine if the neural network models could

practically be used to generate higher profits than those

earned either by employing the traditional regression

model or by simply following a buy-and-hold (passive)

investment strategy. The operational details of the trading

simulation are explained as follows: The trading

simulation assumes that in the beginning of each monthly
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period the investor makes an asset allocation decision of

whether to shift assets into T-bills or an S&P 500 stock

portfolio. It should be noted that the S&P 500 is the

value-weighted index in which its index level can be

used to perfectly track capital gains on the underlying

portfolio if investors were to buy each share in the index

in proportion to its outstanding market value. This

strategy, which seems impossible for small investors, is

applicable for portfolio and fund managers who have the

ability to shape a one-month ahead asset allocation in the

equity markets. In spite of this limitation, small investors

can purchase shares in index mutual funds that hold

shares in proportion to their representation in the S&P

500. Finally, it is assumed that the money invested in

either T-bills or a stock portfolio becomes illiquid and

remains detained in that security until the end of the

month.

In the beginning of each month the investor has to decide

whether to purchase the S&P 500 portfolio or T-bills,

depending on whether the predictions generated by the

forecasting models call for a positive or negative excess

return result in the next month, respectively. Note that the

reason why the excess stock return generated by the

forecasting models is used as a trading decision, as

compared to a risk free return in a one-month T-bill, is

that it provides a measure of how well the models perform

relative to the minimum returns gained from depositing the

money in a risk-free account (Leung et al., 2000). The

above-mentioned strategies imply full investment in either a

stock or T-bill for the whole month. Leveraging or short

selling when investing is not allowed in this study, since

several factors such as up-tick exchange rules, dividends

paid during short selling, and margin calls must be

considered to reflect a more realistic trading practice.

Dividends and transaction costs are also ignored for this

study. It should also be noted that the trading strategies

between the level estimation and classification models are

slightly different because of the unique nature of their

approaches. The following describes the trading strategies

developed for both level estimation and classification

models.
Table 4

Simulated trading results

Monthly Return S

NN Level Estimation

Models

Original Level NN 1.55 3

Portfolio Level NN 1.58 3

GRNN 1.47 3

Sign Port Level NN 1.62 3

NN Classification

Models

Original Class NN 1.51 2

Portfolio Class NN 1.72 3

PNN 1.26 2

Benchmark Regression 0.89 2

Buy-and-Hold 1.54 3

T-bill 0.37 -
Trading strategy for level estimation models:

If ERtC1O0, then

Fully invest in stocks or maintain, and receive the

actual stock return for the period tC1 (RtC1);

Else (if ERtC1%0), then

Fully invest in Treasury bills or maintain, and

receive the actual Treasury bill return for the

period tC1 (T1Ht)

where ER is the excess stock return given by the

forecasting models.

Trading strategy for classification models:

If CtC1ZC1, then

Fully invest in stocks or maintain, and receive the

actual stock return for the period tC1 (RtC1);

Else (if CtC1Z-1), then

Fully invest in Treasury bills or maintain, and receive

the actual Treasury bill return for the period tC1

(T1Ht)

where C is the sign of excess stock return given by the

forecasting models.

Inspired by the notation that predictability with small

forecasting errors may not necessarily imply profitability,

another experiment is adapted based on the sign of forecasted

excess stock returns using the Portfolio Level NN model. In

contrast to the Portfolio Level NN model which uses the

weighted excess return (WER) calculated from the five

network outputs of the neural network models with the lowest

RMSE from each omitted fold experiment, this new portfolio

model (Sign Port Level NN) directs the trading based on the

majority of the signs of the five network outputs obtained

from the Portfolio Level NN model. After performing the

trading simulations, the resulting mean or monthly return on

investment, standard deviation, and Sharpe ratio generated

from each forecasting model over the second period (86

months) are calculated and presented in Table 4.

The monthly returns gained from always investing in a

stock portfolio (Buy-and-Hold) or a short term T-bill
td. of Return Sharpe Ratio Equal-variance

.56 0.33 1.20

.61 0.34 1.20

.64 0.30 1.12

.55 0.35 1.25

.99 0.38 1.32

.16 0.43 1.43

.67 0.33 1.20

.49 0.21 0.89

.68 0.32 1.16

- -
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(see T1H in the Appendix) are provided as the benchmark

for performance comparisons in this study. According to

Table 4, the buy-and-hold strategy has a monthly return of

1.54% over the last 86-month period, and the monthly

return on the risk-free T-bill account is approximately 0.

37%. The trading results show that the GRNN, Original

Class NN, PNN, and Regression models generate less

monthly returns than that of the buy-and-hold account. In

fact, the resulting monthly return guided by the regression

forecast is 0.81% less than that of the buy-and-hold

account. This result suggests that the classical linear

regression model and some neural network models cannot

effectively be used to account for an accurate forecast of

stock returns. On the other hand, slightly higher monthly

returns over the buy-and-hold account can be obtained

from trading driven by the Original Level NN and

Portfolio Level NN models. Noteworthy, it is found that

the monthly return generated by the Portfolio Class NN

and Sign Port Level NN forecasts are better than those of

the other forecasting models with respect to their

approaches.

One observation that can be made about the results is that

the S&P 500 Index during the trading period presents an

episode of significant rise in stock prices (bull market). In

fact, its return is approximately equal to an annualized 18.

46% over the trading period. This may be the reason why

several forecasting models developed could not signifi-

cantly achieve better performance than that of the buy-and-

hold account during this period. Fig. 5 illustrates samples of

cumulative investment return over the second period

forecast (from November 1992 to December 1999) guided

by the Portfolio Class NN, Regression, Buy-and-Hold, and

T-bill models. As can be perceived from Fig. 5, the

cumulative investment return of the Regression model is

slightly higher than that of the buy-and-hold account in the

early period of the forecasting months (from November 92

to September 95). Disappointedly, the cumulative invest-

ment return of the Regression model keeps increasing at the

declining rate as compared to that of the buy-and-hold

account in the later period of the forecasting months
 

Fig. 5. A cumulative investment return (86 months) of the Portfolio Class

NN, Regression, Buy-and-Hold, and T-bill models.
(after September 95). This may be due to the fact that the

Regression model has no persistent ability to generate

long-term profits. Even so, the cumulative investment return

guided by these forecasting models is better than that of the

risk-free T-bill account.

A Sharpe ratio analysis was also included in the study. It

is simply the mean excess return of the trading divided by its

standard deviation. The higher the Sharpe ratio, the higher

the return and the lower the volatility. It is observed that all

classification neural network models yield higher Sharpe

ratio performance than that of the buy-and-hold account. In

fact, all of the feed-forward neural network models

developed in the study generate higher Sharpe ratio

performance than that of the buy-and-hold account. More

importantly, the Portfolio Class NN model, which yields a

monthly return of 1.72%, is the best performer among the

forecasting models evaluated in the study in terms of the

Sharpe ratio performance. A paired two-sample test for

mean return differences was also performed. The resulting t-

statistics of the Original Level NN, Portfolio Level NN,

GRNN, Sign Port Level NN, Original Class NN, Portfolio

Class NN, and PNN models in comparison to the Regression

model are 2.315, 2.327, 1.860, 2.509, 2.826, 3.248, and 1.

781, respectively (t-criticalZ1.988 and aZ0.05). The

results indicate that all of the neural network models,

excluding the GRNN and PNN models, significantly

outperform the conventional linear regression forecast at a

95% level of confidence.

For comparability, the equivalent-variance portfolios

(Equal-variance) using a combination of the return based

on trading from each forecasting tool and the risk-free

asset were created to evaluate the investment returns

under the same volatility. Since the Regression model

has the lowest standard deviation, the standard deviations

of the other forecasting models were reduced to match

that of the Regression model by combining them with

the existing T-bill account. The results show that all of

the neural network models, except the GRNN model,

outperform the buy-and-hold account under this risk-

adjusted return calculation. Remarkably, the monthly

return based on trading guided by the Portfolio Class NN

model is 0.27% greater than that of the buy-and-hold

strategy under the same investment uncertainty. In other

words, the difference of 0.27% is approximately equal to

an annualized 3.24% of investment return under the

identical risk exposure. Moreover, the averaged returns

over each type of neural network forecasting models

(classification versus level estimation under the same

volatility) were also computed. The results show that the

averaged return based on trading guided by classification

models is 1.32%, compared to 1.19% for the level

estimation models. This result supports the findings of

Leung et al. (2000) that the classification models can

generate higher profits than the level estimation models

on the S&P 500 index trading.
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7. Discussion and conclusions

An attempt has been made in this study to investigate the

predictive power of financial and economic variables by

adopting the variable relevance analysis technique in

machine learning for data mining. This approach seems

particularly attractive in selecting the variables when the

usefulness of the data is unknown, especially when non-

linearity exists in the financial market as found in this study.

Since it has been long known that the determinant between

the variables and their interrelationships over stock returns

could change over time, different relevant input variables

may be obtained by conducting this data mining technique

under different time periods. In particular, we examined the

effectiveness of the neural network models used for level

estimation and classification. The results show that the

trading strategies guided by the neural network classifi-

cation models generate higher profits under the same risk

exposure than those suggested by the other strategies,

including the buy-and-hold strategy, as well as the level

estimation forecasts of neural network and linear regression

models.

More importantly, it is found that the highest profitability

improvement guided by the Portfolio Class NN model is

consistent with its three superior performance measures,

namely the Pearson correlation, the root-mean squared

error, and the correct sign of excess stock return. However,

it can be observed from several forecasting models that

better results of performance measurement do not always

imply higher profitability. For instance, the GRNN model

has better results of all three performance measures than the

Original Level NN model does, yet it does not outperform

the Original Level NN model in terms of the profits obtained

from trading. This suggests that the forecast that has a

higher percentage of correct sign may not necessarily yield

higher profit. In fact, it may be due to the fact that the

Original Level NN model gives better prediction of signs

when the actual monthly stock return is highly volatile, thus

receiving higher trading profits. This observation suggests

the importance of making an accurate asset allocation

(between stock and T-bill) when the positive or negative

actual stock return of the next month is significant.

Therefore, potentially higher investment return may be

obtained from training the networks to correctly predict the

signs of trading only when significant profit opportunities

exist. The above empirical results show that the trading

results based on several neural network forecasts can arrive

at higher profitability improvement than the buy-and-hold

strategies. However, this does not mean that the efficient

market hypothesis can be totally ignored. The reason being

that the buy-and-hold account can also be very profitable. In

fact, the profitability obtained from the neural network

forecasts will likely be less if transaction costs are taken into

consideration.

Feed-forward neural network training is usually not very

stable since the training process may depend on the choice
of a random start. Training is also computationally

expensive in terms of the training times used to determine

the appropriate network structure. The degree of success,

therefore, may fluctuate from one training pass to another.

Although the portfolio neural networks yield impressive

profits on average, it should raise concern that higher

profits are derived at the expense of exposing the investors

to higher risk. Nonetheless, the empirical findings in this

study show that our proposed development of the portfolio

network models using the n-fold cross-validation and early

stopping techniques does not sacrifice any of the first

period data used for training and validating the networks.

This is especially useful when the data size is limited. In

particular, we find that the method for improving the

generalization ability of feed-forward neural networks, a

combination of n-fold cross-validation and early stopping

techniques, clearly help improve the out-of-sample

forecasts. In addition to the early stopping advantage,

improvement may be due to the fact that five-time network

modeling allows the networks to extract more useful

information from the data. Thus, the prediction based on

the weighted excess return or the majority of excess return

sign could effectively be used to reduce the prediction

error. As a result, the portfolio network models for both

classification and level estimation consistently outperform

the linear regression, the generalized regression neural

network, the probabilistic neural network, and the buy-and-

hold account. More interestingly, the Sign Port Level NN

model is able to generate a higher return than the models

employing the level of excess stock returns. This strongly

suggests that the portfolio neural networks that direct the

trading based on the majority of the five network outputs

can be developed and used as a more efficient forecasting

tool.

In conclusion, both researchers and practitioners have

studied stock market prediction for many years. Many

studies conclude that stock returns can be predicted by some

financial and economic variables. To this end, our finding

suggests that financial forecasting is always and will remain

difficult since such data are greatly influenced by

economical, political, international, and even natural events.

Obviously, this study covers only fundamental available

information, while the technical analysis approach remains

intact. It is far from perfect as the technical analysis has

been proved to provide invaluable information during stock

price and stock return forecasting and to some extent has

been known to offer a relative mixture of human, political,

and economical events. In fact, there are many studies done

by both academics and practitioners in this area. If both

technical and fundamental approaches are thoroughly

examined and included during the variable relevance

analysis modeling, it would no doubt be a major

improvement in predicting stock returns. This study

assumes trading strategies of investing in either the stock

index portfolio or risk-free account in the absence of trading

costs. During the simulated trading exercise, the authors
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also noticed that the profitability results could change if a

different trading strategy was adopted by investors. In fact,

it is possible that investors would benefit from further

investigation on profits received from different trading

decisions. Finally, future research should consider the

trading simulation under the scenarios of stock dividends,

transaction costs, and individual-tax brackets to replicate

the realistic investment practices.
Appendix

SP Nominal Standard & Poor’s 500 index at the close of

the last trading day of each month. Source:

Commodity Systems, Inc. (CSI)

DIV Nominal dividends per share for the S&P 500

portfolio paid during the month. Source: Annual

dividend record/Standard and Poor’s Corporation

T1 Annualized average of bid and ask yields on one-

month T-bill rate on the last trading day of the month.

It refers to the shortest maturity T-bills not less than

one month in maturity. Source: CRSP tapes, the

Fama risk free rate files

T1H Monthly holding period return on one-month T-bill

rate on the last trading day of the month, calculated

as T1/12

R Nominal stock returns on the S&P 500 portfolio,

calculated as RtZ(SPtKSPtK1)/SPtK1

ER Excess stock returns on the S&P 500 portfolio,

calculated as ERtZRtKT1HtK1

DY Dividend yield on the S&P 500 portfolio, calculated

as DYtZDIVt/SPt

T3 3-month T-bill rate, secondary market, averages of

business days, discount basis. Source: H.15 Release

– Federal Reserve Board of Governors

T6 6-month T-bill rate, secondary market, averages of

business days, discount basis. Source: H.15 Release

– Federal Reserve Board of Governors

T12 1-year T-bill rate, secondary market, averages of

business days, discount basis. Source: H.15 Release

– Federal Reserve Board of Governors

T60 5-year T-bill constant maturity rate, secondary

market, averages of business days. Source: H.15

Release – Federal Reserve Board of Governors

T120 10-year T-bill constant maturity rate, secondary

market, averages of business days. Source: H.15

Release – Federal Reserve Board of Governors

CD1 1-month certificate of deposit rate, averages of

business days. Source: H.15 Release - Federal

Reserve Board of Governors

CD3 3-month certificate of deposit rate, averages of

business days. Source: H.15 Release – Federal

Reserve Board of Governors

CD6 6-month certificate of deposit rate, averages of

business days. Source: H.15 Release – Federal
Reserve Board of Governors

AAA Moody’s seasoned Aaa corporate bond yield,

averages of business days. Source: The Federal

Reserve Bank of St. Louis

BAA Moody’s seasoned Baa corporate bond yield,

averages of business days. Source: The Federal

Reserve Bank of St. Louis

PP Producer Price Index: Finished Goods. Source: U.S.

Department of Labor, Bureau of Labor Statistics

IP Industrial Production Index: Market Groups and

Industry Groups. Source: G.17 Statistical Release –

Federal Reserve Statistical Release

CP Consumer Price Index: CPI for All Urban Con-

sumers. Source: U.S. Department of Labor, Bureau

of Labor Statistics

M1 M1 Money Stock. Source: H.6 Release – Federal

Reserve Board of Governors

TE1 Term spread between T120 and T1, calculated as

TE1ZT120KT1

TE2 Term spread between T120 and T3, calculated as

TE2ZT120KT3

TE3 Term spread between T120 and T6, calculated as

TE3ZT120KT6

TE4 Term spread between T120 and T12, calculated as

TE4ZT120KT12

TE5 Term spread between T3 and T1, calculated as TE5Z
T3KT1

TE6 Term spread between T6 and T1, calculated as TE6Z
T6KT1

DE1 Default spread between BAA and AAA, calculated as

DE1ZBAAKAAA

DE2 Default spread between BAA and T120, calculated as

DE2ZBAAKT120

DE3 Default spread between BAA and T12, calculated as

DE3ZBAAKT12

DE4 Default spread between BAA and T6, calculated as

DE4ZBAAKT6

DE5 Default spread between BAA and T3, calculated as

DE5ZBAAKT3

DE6 Default spread between BAA and T1, calculated as

DE6ZBAAKT1

DE7 Default spread between CD6 and T6, calculated as

DE7Z CD6KT6
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