
89

A N IMPROVED ALGORITHM TO FIND THE LENGTH
OF THE LONGEST COMMON SUBSEQUENCE

OF TWO STRINGS*

Shufen Kuo
George R. Cross

Washington State University
Department of Computer Science

Pullman, WA 99164-1210

ABSTRACT

Let A and B be strings of common length n. Define LLCS(A, B) to be the length of the
longest common subsequence of A and B. Hunt and Szymanski presented an algorithm for
finding LLCS(A, B) with time complexity O((r + n)logn), where r is the number of elements
in the set {(i,j)lA[i] = B[j]}. In the worst case the algorithm has running time of O(n21ogn).
We present an improvement to this algorithm which changes the time complexity to O(r +
n(LLCS(A, B) + logn)). Some experimental results show dramatic improvements for large n.

K E Y W O R D S

Analysis of Algorithms, Pattern Recognition, Artificial Intelligence

Supported in part by an equipment donation from Tektronix, Inc.

90

1. I n t r o d u c t i o n

The length of the longest common subsequence (abbreviated LLCS) of two strings

strings can be used to measure the similarity between two strings. We are investigating

algorithms to retrieve trademark names which are similar to a proposed trademark as

part of a legal reasoning system which assesses trademark infringement.

There are several paperspresenting algorithms to find the LLUS of two strings. A

generalization of the LLCS problem is the string-to-string correction or string-editing

problem. Wagner and Fischer[5] presented an algorithm for str ing-to-str ing correction

problem in quadratic time and space, which can be applied to find the longest common

subsequence of two strings. Hirschberg[1] presented a quadratic t ime and linear space

algorithm. Hunt and Szymanski[2] presented a fast algorithm h~ving running time of

O((r + n)log n) and space complexity O(r + n), where r is the number of elements in the

set { (i , j) I A[i] = B[j]}, n is the length of strings in question. Mukhopadhyay[3] also

presented an algorithm with running time of the same complexity as Hunt and Szymanski's

algorithm. On the average r is n2/k , where k = IEI and E is the alphabet. These

algorithms are not very efficient when n is large and k is small. Nakatsu et a/.[4] presented

an O(n(m - p)) algorithm, where n and rn are lengths of two strings, rn < n, and p is the

LLCS of the two strings. When p is close to m, Nakatsu's algorithm runs in linear time.

We present a modified Hunt-Szymanski algorithm that shows a dramatic improve-

ment in running time for large n. The organization of this paper is as follows: Section

2 fixes notation for the remainder of the paper, Section 3 reviews the original Hunt-

Szymanski algorithm, Section 4 describes our improvements to the algorithm and Section

5 presents some experimental results.

91

2. Definit ions and Notat ion

In this section, we define conventions, notation and terminology that will be used

throughout this paper.

A string C = cac2...e~ is a subsequence of string A = ala2...am if C is formed

by deleting ra - p (not necessarily adjacent) symbols from A. For example, "cut" is a

subsequence of "computer".

A string C is a common subsequence of strings A and B if C is a subsequence of A

and also a subsequence of B. US is the abbreviation of common subsequence.

A string C is a longest common subsequence of string A and string B if C is a

common subsequence of A and B of maximal length. LLCS(A,B) is the abbreviation

for the length of the longest common subsequence of the strings A and B. For example,

LLCS("wings", "magics') = 2 with longest common subsequences "is" and "gs."

We denote the length of string A by IA]. A[i] is the ith element of A and A[i : j]

denotes the substring A[i] A[i + 1] . . . A[j].

3. T h e Or ig ina l H u n t - S z y m a n s k i A l g o r i t h m

Hunt and Szymanski[2] presented an algorithm for finding LLCS(A, B). The Hunt-

Szymanski algorithm has time complexity O((r + n)logn), where r is the number of

elements in the set {(i,j)lA[i] = B[j]}, and n is the length of strings. In the worst case,

the algorithm has a running time of O(n2logn).

The key data structure needed by Hunt-Szymanski algorithm is an array of threshold

values Ti,k (0 < i, k < n) defined by

Ti,k = rain.{ j I A[I : i] and B [I : j] contain a CS of length k }.

92

For example, given the strings A = abcbdda, B = badbabd, we have T5,a = 1, T5,2 = 3,

T5,3 = 6, T5,4 = 7 and T5,5 = undefined. Once the array of threshold values Ti,k is

completely filled, the

L L C S (A , B) = maxI k] T,,k is defined}.

It is clear tha t Ti,o = 0 for all 0 < i _< n, and To,k = undefined for all 1 < k _< n. The

following Lemma suffices to compute all the threshold values since we can get Ti+l,k from

Ti,k-1 and Ti,k easily.

L e m m a : For all 1 < i, k < n

m i n { j [A[i] = B[j] and Ti-l,k-1 < j _< Ti-l ,k }
Ti,k = Ti-l ,k if no such j exists

Proof." See Hunt and Szymanski[2].

Using the Lemrna we need only a vector THRESH[O : n] to hold threshold values

instead of a 2-dimensional array. First , the T H R E S H vector is init ial ized as the first

row of the T array, tha t is T[0, k] (0 <_ k <_ n). Once the i th row of the T array is filled

up, i.e. T[i, k] (0 _< k _< n), we can overwrite the i th row to get the (i + 1)th row by

comput ing each Ti+l,k from Ti,k-1 and Ti,k.

In order to search for characters in the string B which match A[i], a list array

MATCHLIST[1 : n] is needed for this search. M A T C H L I S T [i] = < j l , j 2 , . . . , j p >

such tha t j l > j2 > . . . > jp, A[i] = B[jq] for 1 < q < p, and p is the to ta l number of

characters in str ing B which is matched by A[i]. For the strings A = abcbdda, B = badbabd

the desired lists are

93

MATCHLIST[1]
MATCHLIST[2]
MATCHLIST[3]
MATCHLIST[4]
MATCHLIST[5]
MATCHLIST[6]
MATCHLIST[7]

= < 5 , 2 >
= < 6, 4, 1 >
= < >
= MATCHLIST[2]
= < 7 , 3 >
= MATCHLIST[5]
= MATCHLIST[1].

The Hunt-Szymanski algorithm is presented below in Figure 1. Step I can be imple-

mented by sorting each string while keeping track of each character's original position.

The next step is to merge the sorted strings to create the MATCHLISTs.

Since the THRESH vector is monotonically increasing we can utilize a binary search

to implement the "find" operation (in Step 3) in time O(logn). The time complexity is

O(rlogn + nlogn) because the total number of elements in MATCHLISTs is r.

94

character string A l l : n], B [I : hi;
integer array THRESH[O : hi;
list array M A T C H L I S T [1 : n];

{ Step 1: Build Linked Lists }

for i := 1 step 1 until n do
set MATCHLIST[i] := < j l , j 2 , . . . , j p > such that

j l > j2 > . . . > jpand
A[i]=B[jq] for l < q < p;

{S tep 2: In i t i a l ize T h e T H R E S H A r r a y }

THRESH[O] := 0;
for i := 1 step 1 until n do

THRESH[i] := n + 1; { n + 1 means undefined)

{Step 3: C o m p u t e Success ive T H R E S H Values}

for i := 1 step 1 until n do
{ THRESH[k] = Ti-l,k for all k }

for j on MATCHLIST[i] do
begin

find k such that T H R E S H [k - 1] < j
if j < THRESH[k] then

THRESH[k] := j;
end; { THRESH[k] = Ti,k for all k }

print the largest k such that THRESH[k]

< THRESH[k];

: ~ n + l

F i g u r e 1: The Original Hunt-Szymanski Algorithm

4. The Improved Hunt-Szymanski Algorithm

95

Now we show how to improve the Hunt-Szymanski algorithm to have a running

time of O(r + n(LLCS(A,B) + logn)). We assume string A and string B have the same

length n. A central problem in the Hunt-Szymanski algorithm is that each list in the

MATCHLIST array must be in decreasing order. The following example explains this

requirement.

Suppose

MATCHLIST[i] =< 52, 20, 17, 14, 13, 10, 8, 3, 1 >,

and before executing the ith iteration, the THRESH array has the following contents:

index: 0 1 2 3 4 5 6

contents: 0 2 4 30 32 41 78

In Step 3 of the Hunt-Szymanski algorithm, we want to find k such that

THRESH[k- 1] < j < THRESH[k].

The first element, 52, in the ith list of MATCHLIST fits THRESH[6], and the next

six elements in the ith list of MATCHLIST all fit THRESH[3]. We want the smallest

possible j, i.e. 8, to be in THRESH[3] at the end of the process; thus, each list of

MATCHLIST should be in decreasing order.

The value in THRESH[3] will be overwritten six times until the final value, the

smallest, 8 is written to it. Thus, the algorithm is quite inefficient. If we keep the lists

96

in increasing order then for each iteration it only takes at most one write for each slot in

THRESH array. Using the above example, we keep the list in increasing order:

< 1,3,8,10,14,17,20,52, > .

The improved Step 3 which we call Step 3* is given in Figure 2.

For the above example, first 1 is written to THRESH[i], then 3 is written to

THRESH[2], and then 8 is written to THRESH[3]. The third slot was only written

once since 10, 13, 14, 17 and 20 are all less than or equal to temp and will be skipped.

In Step 3*, we use linear search for finding k. However, k does not have to start from

0 for each j; the search starts from the slot in which previous write takes place. Each slot

is scanned at most once for each i. Since k _< LLCS(A, B) holds for every k, and there

are n iterations, we see that the inner loop is visited no more than nLLCS(A, B) times.

During this process the MATCHLIST has been visited r times and the sort to build

the MATCHLIST needs O(nlogn) time. Putting all of these together, we see that the

improved algorithm has time complexity

O(r + nLLCS(A,B) + nlogn) = O(r + n(LLCS(A,B) + logn)).

97

{Step 3*: C o m p u t e Success ive THRESH Values}

for i := 1 step 1 until n do
begin

temp := 0; k := 0;
for each j in MATCHLIST[i] do

if j > temp then
begin

repeat k := k + 1
until j < THRESH[k];
temp := THRESH[k];
THRESH[k] := j

end
end;

F igure 2: Improved Section of Hunt-Szymanski Algorithm

98

5. E x p e r i m e n t a l Resul ts

We performed some timings for Hunt-Szymanski Algorithm and the improved Hunt-

Szymanski Algorithm for random inputs on a Tektronix ~ 0 4 workstation (Motorola

68010-based) machine in Extended Common LISP. In Table 1, t ime 1 and t ime 2 are the

mean running times for 100 pairs of random strings of length n using the original Hunt-

Szymanski algorithm and then the improved Hunt-Szymanksi algorithm, respectively. We

also report the corresponding standard deviations for these runs in the columns labelled

s.d. The time recorded here is in internal time units of one thousandth of a second.

Table 1

Running Time Comparison in Thousandths of a Second

n time 1 s.d. t ime 2 s.d.

20 259 58 178 43

100 5,787 368 1,454 57

200 25,897 1,012 3,978 65

300 62,073 1,697 7,520 73

400 118,840 3,099 11,934 196

The data in the above table reveals that the new algorithm is very efficient when n

is large.

99

References

(1) Hirschberg, D. S. June 1975. "A Linear space Algorithm for Computing Maximal

common Subsequences". Communications of the A CM, vol.18 no.6; 341-343.

(2) Hunt, James W. and Szymanski, Thomas G. May 1977. "A Fast Algorithm for

Computing Longest Common Subsequences". Comm. ACM, vol.20 no.5; 350-353.

(3) Mukhopadhyay, Amar. 1980. "A Fast Algorithm for the Longest-Common-

Subsequence Problem". Information Sciences, vol.20; 69-82.

(4) Nakatsu, N. Kambayashi, Y. and Yajima, S. 1982. "A Longest Common Subse-

quence Algorithm Suitable for Similar Text Strings". Acta Informatica, vol.18;

171-179.

(5) Wagner, Robert A. and Fischer, Michael J. Jan. 1974.

Correction Problem". J. A CM, vol.21 no.l; 168-173.

"The String-to-String

