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ABSTRACT 

Let A and B be strings of common length n. Define LLCS(A, B) to be the length of the 
longest common subsequence of A and B. Hunt and Szymanski presented an algorithm for 
finding LLCS(A, B) with time complexity O((r + n)logn), where r is the number of elements 
in the set {(i,j)lA[i ] = B[j]}. In the worst case the algorithm has running time of O(n21ogn). 
We present an improvement to this algorithm which changes the time complexity to O(r + 
n(LLCS(A, B) + logn)). Some experimental results show dramatic improvements for large n. 
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1. I n t r o d u c t i o n  

The length of the longest common subsequence (abbreviated LLCS) of two strings 

strings can be used to measure the similarity between two strings. We are investigating 

algorithms to retrieve trademark names which are similar to a proposed trademark as 

part of a legal reasoning system which assesses trademark infringement. 

There are several paperspresenting algorithms to find the LLUS of two strings. A 

generalization of the LLCS problem is the string-to-string correction or string-editing 

problem. Wagner and Fischer[5] presented an algorithm for str ing-to-str ing correction 

problem in quadratic time and space, which can be applied to find the longest common 

subsequence of two strings. Hirschberg[1] presented a quadratic t ime and linear space 

algorithm. Hunt and Szymanski[2] presented a fast algorithm h~ving running time of 

O((r + n)log n) and space complexity O(r + n), where r is the number of elements in the 

set { ( i , j )  I A[i] = B[j]}, n is the length of strings in question. Mukhopadhyay[3] also 

presented an algorithm with running time of the same complexity as Hunt and Szymanski's 

algorithm. On the average r is n2/k , where k = IEI and E is the alphabet. These 

algorithms are not very efficient when n is large and k is small. Nakatsu et a/.[4] presented 

an O(n(m - p)) algorithm, where n and rn are lengths of two strings, rn < n, and p is the 

LLCS of the two strings. When p is close to m, Nakatsu's algorithm runs in linear time. 

We present a modified Hunt-Szymanski algorithm that  shows a dramatic improve- 

ment in running time for large n. The organization of this paper is as follows: Section 

2 fixes notation for the remainder of the paper, Section 3 reviews the original Hunt- 

Szymanski algorithm, Section 4 describes our improvements to the algorithm and Section 

5 presents some experimental results. 



91 

2. Definit ions and Notat ion  

In this section, we define conventions, notation and terminology that will be used 

throughout this paper. 

A string C = cac2...e~ is a subsequence of string A = ala2...am if C is formed 

by deleting ra - p (not necessarily adjacent) symbols from A. For example, "cut" is a 

subsequence of "computer". 

A string C is a common subsequence of strings A and B if C is a subsequence of A 

and also a subsequence of B. US is the abbreviation of common subsequence. 

A string C is a longest common subsequence of string A and string B if C is a 

common subsequence of A and B of maximal length. LLCS(A,B) is the abbreviation 

for the length of the longest common subsequence of the strings A and B. For example, 

LLCS( "wings", "magics') = 2 with longest common subsequences "is" and "gs." 

We denote the length of string A by IA]. A[i] is the ith element of A and A[i : j] 

denotes the substring A[i] A[i + 1 ] . . .  A[j]. 

3. T h e  Or ig ina l  H u n t - S z y m a n s k i  A l g o r i t h m  

Hunt and Szymanski[2] presented an algorithm for finding LLCS(A, B). The Hunt- 

Szymanski algorithm has time complexity O((r  + n)logn), where r is the number of 

elements in the set {(i,j)lA[i] = B[j]}, and n is the length of strings. In the worst case, 

the algorithm has a running time of O(n2logn). 

The key data  structure needed by Hunt-Szymanski algorithm is an array of threshold 

values Ti,k (0 < i, k < n) defined by 

Ti,k = rain.{ j I A[ I :  i] and B [ I :  j] contain a CS of length k }. 
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For example,  given the strings A = abcbdda, B = badbabd, we have T5,a = 1, T5,2 = 3, 

T5,3 = 6, T5,4 = 7 and T5,5 = undefined. Once the array of threshold values Ti,k is 

completely filled, the 

L L C S ( A , B )  = maxI  k ] T,,k is defined}. 

It  is clear tha t  Ti,o = 0 for all 0 < i _< n, and To,k = undefined for all 1 < k _< n. The 

following Lemma suffices to compute  all the threshold values since we can get Ti+l,k from 

Ti,k-1 and Ti,k easily. 

L e m m a :  For all 1 < i, k < n 

m i n { j  [ A[i] = B[j] and Ti-l,k-1 < j _< Ti-l ,k } 
Ti,k = Ti-l ,k if no such j exists 

Proof." See Hunt  and Szymanski[2]. 

Using the Lemrna we need only a vector THRESH[O : n] to hold threshold values 

instead of a 2-dimensional array. First ,  the T H R E S H  vector is init ial ized as the first 

row of the T array, tha t  is T[0, k] (0 <_ k <_ n). Once the i th  row of the T array is filled 

up, i.e. T[i, k] (0 _< k _< n), we can overwrite the i th  row to get the (i + 1)th row by 

comput ing each Ti+l,k from Ti,k-1 and Ti,k. 

In order to search for characters  in the string B which match  A[i], a list array 

MATCHLIST[1 : n] is needed for this search. M A T C H L I S T [ i ]  = <  j l , j 2 , . . . , j p  > 

such tha t  j l  > j2 > . . .  > jp, A[i] = B[jq] for 1 < q < p, and p is the  to ta l  number  of 

characters  in str ing B which is matched by A[i]. For the strings A = abcbdda, B = badbabd 

the desired lists are 
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MATCHLIST[1] 
MATCHLIST[2] 
MATCHLIST[3] 
MATCHLIST[4] 
MATCHLIST[5] 
MATCHLIST[6] 
MATCHLIST[7] 

= < 5 , 2 >  
= < 6, 4,  1 > 
= < >  
= MATCHLIST[2] 
= < 7 , 3 >  
= MATCHLIST[5] 
= MATCHLIST[1]. 

The Hunt-Szymanski algorithm is presented below in Figure 1. Step I can be imple- 

mented by sorting each string while keeping track of each character's original position. 

The next step is to merge the sorted strings to create the MATCHLISTs.  

Since the THRESH vector is monotonically increasing we can utilize a binary search 

to implement the "find" operation (in Step 3) in time O(logn). The time complexity is 

O(rlogn + nlogn) because the total number of elements in MATCHLISTs is r. 
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character string A l l :  n], B [ I :  hi; 
integer array THRESH[O : hi; 
list array M A T C H L I S T [ 1  : n]; 

{ Step 1: Build Linked Lists } 

for i := 1 step 1 until n do 
set MATCHLIST[ i ]  := < j l , j 2 , . . . , j p  > such that  

j l  > j2 > . . .  > jpand 
A[ i ]=B[ jq] for l  < q <  p; 

{S tep  2: In i t i a l ize  T h e  T H R E S H  A r r a y }  

THRESH[O] := 0; 
for i := 1 step 1 until n do 

THRESH[i]  := n + 1; { n + 1 means undefined ) 

{Step  3: C o m p u t e  Success ive  T H R E S H  Values} 

for i := 1 step 1 until n do 
{ THRESH[k] = Ti-l,k for all k } 

for j on MATCHLIST[ i ]  do 
begin 

find k such that  T H R E S H [ k  - 1] < j 
if j < THRESH[k] then 

THRESH[k] := j; 
end; { THRESH[k] = Ti,k for all k } 

print the largest k such that THRESH[k] 

< THRESH[k]; 

: ~ n + l  

F i g u r e  1: The Original Hunt-Szymanski Algorithm 
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Now we show how to improve the Hunt-Szymanski algorithm to have a running 

time of O(r + n(LLCS(A,B) + logn)). We assume string A and string B have the same 

length n. A central problem in the Hunt-Szymanski algorithm is that  each list in the 

MATCHLIST array must be in decreasing order. The following example explains this 

requirement. 

Suppose 

MATCHLIST[i] =< 52, 20, 17, 14, 13, 10, 8, 3, 1 >, 

and before executing the ith iteration, the THRESH array has the following contents: 

index: 0 1 2 3 4 5 6 

contents: 0 2 4 30 32 41 78 

In Step 3 of the Hunt-Szymanski algorithm, we want to find k such that  

THRESH[k-  1] < j < THRESH[k]. 

The first element, 52, in the ith list of MATCHLIST fits THRESH[6], and the next 

six elements in the ith list of MATCHLIST all fit THRESH[3]. We want the smallest 

possible j, i.e. 8, to be in THRESH[3] at the end of the process; thus, each list of 

MATCHLIST should be in decreasing order. 

The value in THRESH[3] will be overwritten six times until the final value, the 

smallest, 8 is written to it. Thus, the algorithm is quite inefficient. If we keep the lists 
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in increasing order then for each iteration it only takes at most one write for each slot in 

THRESH array. Using the above example, we keep the list in increasing order: 

< 1,3,8,10,14,17,20,52, > .  

The improved Step 3 which we call Step 3* is given in Figure 2. 

For the above example, first 1 is written to THRESH[i], then 3 is written to 

THRESH[2], and then 8 is written to THRESH[3]. The third slot was only written 

once since 10, 13, 14, 17 and 20 are all less than or equal to temp and will be skipped. 

In Step 3*, we use linear search for finding k. However, k does not have to start from 

0 for each j;  the search starts from the slot in which previous write takes place. Each slot 

is scanned at most once for each i. Since k _< LLCS(A, B) holds for every k, and there 

are n iterations, we see that the inner loop is visited no more than nLLCS(A, B) times. 

During this process the MATCHLIST has been visited r times and the sort to build 

the MATCHLIST needs O(nlogn) time. Putting all of these together, we see that the 

improved algorithm has time complexity 

O(r + nLLCS(A,B) + nlogn) = O(r + n(LLCS(A,B) + logn)). 
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{Step  3*: C o m p u t e  Success ive  THRESH Values} 

for i := 1 step 1 until n do 
begin 

temp := 0; k := 0; 
for each j in MATCHLIST[i] do 

if j > temp then 
begin 

repeat k := k + 1 
until j < THRESH[k]; 
temp := THRESH[k]; 
THRESH[k] := j 

end 
end; 

F igure  2: Improved Section of Hunt-Szymanski Algorithm 
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5. E x p e r i m e n t a l  Resul ts  

We performed some timings for Hunt-Szymanski Algorithm and the improved Hunt- 

Szymanski Algorithm for random inputs on a Tektronix ~ 0 4  workstation (Motorola 

68010-based) machine in Extended Common LISP. In Table 1, t ime 1 and t ime 2 are the 

mean running times for 100 pairs of random strings of length n using the original Hunt- 

Szymanski algorithm and then the improved Hunt-Szymanksi algorithm, respectively. We 

also report the corresponding standard deviations for these runs in the columns labelled 

s.d. The time recorded here is in internal time units of one thousandth of a second. 

Table  1 

Running Time Comparison in Thousandths of a Second 

n time 1 s.d. t ime 2 s.d. 

20 259 58 178 43 

100 5,787 368 1,454 57 

200 25,897 1,012 3,978 65 

300 62,073 1,697 7,520 73 

400 118,840 3,099 11,934 196 

The data in the above table reveals that the new algorithm is very efficient when n 

is large. 
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