Downloaded 10/13/16 to 140.117.168.50. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

SIAM J. DISCRETE MATH. (© 2004 Society for Industrial and Applied Mathematics
Vol. 18, No. 2, pp. 219-225

APPROXIMATING MAXIMUM CLIQUE BY
REMOVING SUBGRAPHS*

URIEL FEIGET

Abstract. We show an algorithm that finds cliques of size (logn/loglogn)? whenever a graph
has a clique of size at least n/(logn)® for an arbitrary constant b. This leads to an algorithm
that approximates max clique within a factor of O(n(loglogn)?/(logn)3), which matches the best
approximation ratio known for the chromatic number. The previously best approximation ratio
known for max clique was O(n/(logn)?2).

Key words. approximation algorithm, clique, independent set
AMS subject classifications. 05C69, 05C85, 68W25

DOI. 10.1137/5089548010240415X

1. Introduction. Max clique is the problem of finding a clique of maximum
size in an input graph. This problem is NP-hard. An algorithm is said to have
approximation ratio p for max clique if, on every graph, it is guaranteed to find a
clique whose size is at most a factor of p smaller than that of the maximum clique.
We allow p to grow as a function of n (the number of vertices in the input graph).
Hastad [8] shows that for every ¢ > 0 there is no polynomial algorithm that approx-
imates max clique within a ratio of n'~¢, unless NP has expected polynomial time
algorithms. (See [10] for additional information in this respect.) The best approx-
imation ratio known for max clique was O(n/(logn)?) by Boppana and Halldors-
son [4].

The problem of max independent set is strongly related to the max clique problem
(by complementing the graph), and hence shares the same approximation ratio. The
chromatic number of a graph is the smallest number of independent sets that cover all
vertices of the graph. It shares essentially the same hardness of approximation results
as max clique [5, 10] (this is an empirical observation rather than a theorem). In
terms of approximation algorithms, Halldorsson [6] shows that the chromatic number
can be approximated within a ratio of O(n(loglogn)?/(logn)?3), which is better than
the best approximation ratio known for max clique.

In this paper we show an algorithm that approximates max clique within a ratio of
O(n(loglogn)?/(logn)?), matching the known approximation ratio for the chromatic
number. The technically new ingredient in our result is an algorithm that finds cliques
of size (logn/loglogn)? whenever a graph has a clique of size at least n/(logn)® for
an arbitrary constant b. This algorithm is based on ideas which can be viewed as
natural extensions of ideas used by Boppana and Halldorsson [4] and by Berger and
Rompel [2].

In section 2 we describe our new algorithm. In section 3 we explain how (combined
with ideas from [6]) it leads to an O(n(loglogn)?/(logn)?) approximation ratio for
max clique. In section 4 we discuss possible future research directions.

*Received by the editors March 18, 2002; accepted for publication (in revised form) February

2, 2004; published electronically October 1, 2004. This research was supported by Israel Science
Foundation grant 263/02.
http://www.siam.org/journals/sidma/18-2/40415.html
fDepartment of Computer Science and Applied Mathematics, The Weizmann Institute, Rehovot
76100, Israel (uriel.feige@weizmann.ac.il).

219

Downloaded 10/13/16 to 140.117.168.50. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

220 URIEL FEIGE

2. The new algorithm. Let G(V, E) be an input graph with n vertices which
contains a clique of size n/k. In this graph we wish to find a large as possible clique.
For a parameter ¢t < n/k, we shall give an algorithm that finds a clique of size at
least t(logs,(n/t) — 3). The running time of the algorithm is O((th)nc), where ¢ is
some universal constant. For every b > 0, whenever k < (logn)®, we can choose t =
O(logn/loglogn), and then our algorithm finds a clique of size Q((logn/loglogn)?)
in polynomial time.

In the course of our algorithm, we shall consider vertex induced subgraphs of G.

DEFINITION 2.1. Let G be a graph with a clique of size n/k. A vertex induced
subgraph S is called poor if it does not contain a clique of size |S|/2k.

LEMMA 2.2. Let G be a graph with a clique of size n/k. Let S1,Sa,... be arbi-
trary disjoint poor subgraphs of G (with no clique of size |S;|/2k, respectively). Let
G'(V', E") be the vertex induced subgraph of G that remains after removing the poor
subgraphs. Then |V'| > n/2k, and G' contains a clique of size at least |V'|/k.

Proof. The union of disjoint poor subgraphs is itself a poor subgraph. Any
subgraph of G contains at most n vertices. Hence the poor subgraph cannot contain
a clique larger than n/2k. As G has a clique of size n/k, at least n/2k of the clique
vertices must remain in G’, proving |V'| > n/2k.

Removing a poor subgraph from G increases the relative density of the maximum
clique in the remaining graph. Hence G’ contains a clique of size at least |V'|/k. 0

Our algorithm works in phases. The input to a phase is a vertex induced subgraph
G'(V',E’) of G. (The input to the first phase is the graph G itself.) This subgraph
contains a clique of size |V’|/k. A phase is completed when one of the following two
conditions hold:

1. A clique of size tlogs; (|V’|/6kt) is found.
2. A poor subgraph is found.

If upon finishing a phase the first condition holds, then the algorithm terminates.
If upon finishing a phase the second condition holds, then the poor subgraph is re-
moved from G’ and a new phase begins with the resulting graph. From Lemma 2.2 it
follows that the invariant that the input graph contains a clique of size |V'|/k is main-
tained when moving from phase to phase. Moreover, by removing poor subgraphs,
|[V’| cannot drop below n/2k, and hence eventually the algorithm must terminate and
output a clique of size at least tlogs, (n/12k%t) > t(logs, (n/t) — 3).

It remains to show how a single phase is performed. Recall that the input to a
phase is a graph G’(V’, E') which has a clique of size at least |V'|/k. The location of
the clique is unknown to the algorithm, but the value of k is known. The algorithm
has a parameter t. The larger the ¢, the larger the size of the clique eventually found.
However, the running time of the algorithm also increases with ¢, and eventually we
shall choose t = logn/loglogn to balance these two factors.

Each phase has several iterations. The input to an iteration is a subgraph
G'(V",E") of G' and a set of vertices C' that form a clique in V' \ V”. When
the iteration ends, either the set C' grows (and V" shrinks), or V' is declared as poor.
In the first iteration G = G’ and C is empty. We now describe a single iteration:

1. If |[V"| < 6kt, end the phase and output C.

2. Partition V" into disjoint parts, each with 2kt vertices. (For simplicity we
assume that 2kt divides |V"”|. The algorithm can easily be modified to handle
the case that this is not so with negligible effect on the size of the final clique
output by the algorithm.)

Downloaded 10/13/16 to 140.117.168.50. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

APPROXIMATING MAXIMUM CLIQUE BY REMOVING SUBGRAPHS 221

3. In each part P;, consider all possible subsets S;; of vertices of cardinality ¢.
(Namely, for every part P;, for every subset j, |S;;| = t.)

4. Let N(S;;) be the set of vertices in V"\ S;; that are neighbors in G” to every
vertex in S;;. (Hence S;;, N(S;;) form the two sides of a complete bipartite
graph in G”.) Call S;; good if the subgraph of G” induced on S;; is a clique
and |N(S;;)| > |[V"|/2k —t.

5. If some set S;; described above is good, then C' = C'|J S;;, and go to the next
iteration with the subgraph induced on N(S;;) serving as the new G”.

6. If no set S;; is good, then declare V" poor, and end the phase.

We first analyze the running time of a phase. The number of iterations in a phase
is clearly bounded by |V’|/t, as each iteration removes at least ¢ vertices from V'.
The number of parts considered in an iteration is |V”|/2kt. In each part there are

(th) subsets to consider. For each subset, the test of whether it is good or not takes

polynomial time. Hence the whole phase takes polynomial time if (2ft) is polynomial
in n. This condition governs the choice of t. We shall be interested in the case where
k < (logn)® for some constant b > 0, in which case we can take t = logn/loglogn,
ensuring a polynomial running time.

We now analyze the output of a phase.

LEMMA 2.3. If a phase declares a set V' poor, then indeed the subgraph of G
induced on V' does not contain a clique of size |V"|/2k.

Proof. Assume that the subgraph induced on V" contains a clique of size |V"'|/2k.
Then by the pigeon-hole principle, at least one of the parts P; will contain at least
t vertices from this clique. The subset that corresponds to these t vertices must be
good (it is a clique and has the rest of the clique vertices as its neighbors), and hence
V" will not be declared poor. d

Note that Lemma 2.3 does not claim an if and only if relation. Step 5 of an
iteration may succeed even if the subgraph induced on V" does not contain a clique
of size |V"|/2k, and then the algorithm does not declare V" poor.

LEMMA 2.4. If a phase ends by outputting the set C, then this set contains at
least tlogs, (n' /6kt) vertices, and these vertices form a clique in G'.

Proof. Each iteration of the phase adds t vertices to C. To lower bound the
number of iterations in a phase, let n” denote the number of vertices in the beginning
of an iteration. Then the next iteration starts with at least n” /2k — ¢ vertices. When
t < n'”/6k, then this number is at least n”’/3k. Hence the number of iterations needed
to reduce |V”'| from |V'| to 6kt is at least logs, (|[V'|/6kt). This gives the desired lower
bound on the number of vertices in C.

The fact that the vertices of C form a clique in G’ (and hence also in G) follows
from the fact that each subset of vertices that is added into C' is a clique and makes
a complete bipartite graph with all vertices added after it.]

3. An O(n(loglogn)?/(log n)3) approximation ratio. Without loss of gen-
erality we assume that the approximation algorithm for max clique knows the size of
the maximum clique in the input graph. (There are only n possible values to try out,
or even only logn, as it suffices for our purpose to know the size within a factor of
2.) We divide possible maximum clique sizes into three ranges, applying a different
algorithm in each case.

If the maximum clique size is below n/(logn)3, simply output a single vertex,
achieving an O(n/(logn)3) approximation ratio. If the maximum clique size is above
n/(logn)3, the algorithm presented in section 2 finds in polynomial time a clique
of size Q((logn/loglogn)?). This gives an O(n(loglogn)?/(logn)?) approximation

Downloaded 10/13/16 to 140.117.168.50. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

222 URIEL FEIGE

ratio for max clique whenever the size of the maximum clique is O(n/logn). If the
maximum clique size is above n/logn, we use a modified version of our algorithm, as
described below, so as to find cliques of size larger than (logn/loglogn)?.

The key to the improvement is the use of a specialized algorithm for finding large
cliques in graphs that have cliques of size larger than 2nloglogn/logn. For this
purpose we shall use the algorithm of Boppana and Halldorsson [4]. (Potentially, the
more complicated algorithm of Alon and Kahale [1] can be used here instead of [4].)

The algorithm of [4] is based on the known fact from Ramsey theory that any
graph on n = (iﬁ;z) vertices contains either an independent set of size r or a clique
of size s. Moreover, there is an efficient algorithm for finding one of the two. In the
context of approximating clique, finding a clique of size s may be the desirable event
of the algorithm, whereas finding an independent set of size r can serve as the event
of discovering a poor subgraph (in the terminology of our paper, provided that the
input graph has a clique of size greater than n/r), and this subgraph can be removed.
We shall use the following proposition regarding the performance guarantee of the
algorithm of [4]. (For a proof, see [6], for example.)

PROPOSITION 3.1. In a graph that has a clique larger than 2nloglogn/logn, the
algorithm of [4] produces a clique of size at least (logn)3/6loglogn.

The above immediately implies an O(n(loglogn/logn)?) approximation algo-
rithm for max clique. If the input graph has a clique larger than 2nloglogn/
logn, use the algorithm of [4]. Otherwise, use our algorithm from section 2.

We can save an Q(loglogn) factor in the approximation ratio by adapting the
approach of Halldorsson [6] (which he used to save an §(loglogn) factor in the ap-
proximation ratio for the chromatic number) to our context.

Recall the notion of a good subgraph S;; from section 2. It required in particular
that [N (S;;)| > n”/2k —t. Modify the definition of good to require that |[N(S;;)| >
Ntest — L, Where nieqt is the largest value still satisfying

n < 1Ogntest . 717”
test = 210g 108 Nest 2k)

Include also the following test which is done in the case tha % —t < |N(Si)| <
Ntest — t. Run the algorithm of [4] on the subgraph induced on S;; U N(S;;). If it
finds a clique of size at least (logniest)®/610g10g ngest, join this clique to C' and end
the algorithm. Otherwise, do not consider S;; to be good (and if no subset of size ¢
is found to be good in the new sense, declare V' poor).

The analysis of the modified algorithm is similar in many respects to that of the
algorithm of section 2. We present here the changes to the proofs of Lemmas 2.3
and 2.4.

LEMMA 3.2. If a phase of the modified algorithm declares a set V' poor, then
indeed the subgraph of G induced on V"' does not contain a clique of size |V"|/2k.

Proof. Assume that the subgraph induced on V" contains a clique of size |V"'|/2k.
Then by the pigeon-hole principle, at least one of the parts P; will contain at least
t vertices from this clique. Let S;; be such a subset. Then |N(S;;)| > n”/2k —t. If
IN(Sij)| > niess —t, then S;; is good, and V" will not be declared poor. If |N(S;;)| <
Nest — ¢, then the subgraph induced on S;; U N(S;;) contains nes; vertices (if it
contains fewer vertices, add to it vertices arbitrarily) and a clique of size n”/2k =
Ntest 2108 108 Nest / 10g Nyest. Then by Proposition 3.1, the algorithm of [4] finds a clique
of size (10g Nyest) /6 log log niest, and the phase ends without declaring V* poor. 1]

Downloaded 10/13/16 to 140.117.168.50. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

APPROXIMATING MAXIMUM CLIQUE BY REMOVING SUBGRAPHS 223

LEMMA 3.3. Let k and t be such that logn/2loglogn < k < logn and t =
logn/loglogn. If a phase ends by outputting the set C, then this set is a clique
on at least Q(tlog, n') vertices, where b = ©(kloglogn’/logn’). In particular, if a
graph has a clique of size ©(nloglogn/logn), the algorithm finds a clique of size
Q((logn)?/loglogn).

Proof. The proof is a modification of the proof of Lemma 2.4. We present the
differences. The reader is advised to recall the new definition of a good subgraph
(that appears prior to Lemma 3.2).

Consider iterations only up to the point where n” < v/n’ (ensuring that logn’ =
O(logn'), a fact that simplifies our computations). If before that point the new test
finds a clique of size (10gntest)®/610g10g Ntest, then we are done, because Nyes; is
large enough to make this clique size Q((logn’)3/loglogn’). If the new test does
not find such a clique, then in every iteration the good set S;; that was found
had |N(Si;)| > ntest (Where the value of nyes; depends on the particular iteration).
This means that n” decreases by a factor of O(kloglogn’/logn’) between itera-
tions, rather than O(k). The number of iterations becomes at least log, v/n’, where
b= 0O(kloglogn'/logn'). O

Summing up, for every value of k we can approximate a clique within a ratio of
O(n(loglogn)?/(logn)?), in graphs with cliques of size n/k. For k < logn/2loglogn,
use the algorithm of [4]; for logn/2loglogn < k < logn, use the algorithm of this
section; for logn < k < (logn)?3, use either the algorithm of this section or that of
section 2; and for k > (logn)3, just output a single vertex.

4. Discussion. Extending ideas from [4, 2, 6], an O(n(loglogn)?/(logn)?) ap-
proximation ratio is obtained for max clique. This matches the best approximation
ratio for the chromatic number. The fact that the two approximation ratios are
essentially the same is a consequence of a general framework that we explain below.

Some algorithms for approximating the chromatic number (including [2, 6]) are
based on repeatedly finding large independent sets (which serve as color classes). To
find a large independent set, they use the fact that every subgraph of a k-colorable
graph is itself k-colorable. Hence every subgraph S has an independent set of size at
least |S|/k.

This principle cannot be applied directly when approximating maximum inde-
pendent set or max clique. It is not true that in a graph with a clique of size n/k
every subgraph S has a clique of size |S|/k. The new idea of our paper is to ignore
this fact. We run our approximation algorithms for max clique under the assump-
tion that every subgraph does have a clique of size |S|/k or, in fact, slightly smaller.
(We chose |S|/2k, but the constant 2 is arbitrary and can be replaced by any other
constant greater than 1.) For some subgraphs encountered by the algorithm, this as-
sumption is incorrect. However, then one of two things happens: either the algorithm
works anyway, or it gets stuck. The point is that, in any case, we make progress.
If the algorithm works, we do not care that the assumption was incorrect. If the
algorithm gets stuck, then we deduce that the subgraph on which the algorithm got
stuck is poor and remove it from the input graph. In the graph that remains the rel-
ative size of the maximum clique increases, making the task of finding a large clique
easier.

Some other principles that are used in algorithms for approximate coloring also
have an analogue in the context of max clique (or max independent set). An instruc-
tive example is the algorithm of Alon and Kahale [1] for finding independent sets of
size roughly n3/* in graphs that have independent sets of size somewhat larger than

Downloaded 10/13/16 to 140.117.168.50. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

224 URIEL FEIGE

n/3. This algorithm is based on the approach of Karger, Motwani, and Sudan [9]
for coloring 3-colorable graphs with roughly n'/* colors. The approach of [9] uses
semidefinite programming to obtain a so-called vector 3-coloring of the graph and
also uses the idea of Wigderson [12] that the neighbors of a vertex in a 3-colorable
graph make a bipartite subgraph. Interestingly, both these principles have their ana-
logues in the algorithm of [1]. On the other hand, it is not clear to what extent the
principles used in the algorithms of [3, 7] can be used in the context of finding large
independent sets in graphs that are not k-colorable but do have an independent set
of size roughly n/k.

Let us note that approximate coloring can be performed by repeatedly approx-
imating maximum independent set. This combined with the known hardness of ap-
proximation results for maximum independent set implies that the approximation
ratio for max clique can be at most a constant factor better than that of min coloring.
(See [6] for more details.) This leads to the following interesting question.

e Are the best possible approximation ratios for max clique and the min chro-
matic number the same (up to multiplicative constant factors)?

Boppana and Halldorsson [4] pointed out connections between approximating
max clique and Ramsey theory. In an approach similar to our algorithm (in fact,
their algorithm inspired ours), they remove “poor” subgraphs from the input graph.
In their case, the poor subgraphs are large enough independent sets, whose existence
(if the graph has no large clique) is guaranteed by Ramsey theory. Moreover, their
nonexistence suggests an efficient algorithm for finding relatively large cliques (because
the relevant arguments in Ramsey theory are constructive). In our case, we define
a poor subgraph in such a liberal way that Ramsey theory becomes unnecessary in
order to argue about its existence. Specifically, a poor subgraph S is one that does
not contain a clique of size |S|/2k, whereas our approximation algorithm is satisfied
by finding a clique which is very much smaller than n/2k. Clearly, either such a clique
exists, or the whole graph is poor. Hence unlike Ramsey theory, existence is not an
issue here. The only issue is to have an efficient algorithm that finds either a clique
or a poor subgraph.

Nevertheless, there are connections between our algorithm and Ramsey theory,
and we point them out as they may prove fruitful in the future. There is a more general
version of the classical Ramsey numbers. Given parameters r and s, let f(r,s,n)
denote the minimum over all n vertex graphs that have no s-clique of the maximum
cardinality of a subgraph that has no r-clique. In our context of approximating clique,
we could use lower bounds on f(r, s,n), provided that certain conditions hold:

1. f(r,s,n) > kr.
2. The lower bound is constructive: there is an efficient algorithm for finding
either an s-clique or a subgraph on f(r, s, n) vertices without an r-clique.

Using an algorithm similar to that of section 2 we could then find cliques of size
roughly s in graphs that have cliques of size n/k. The current bounds known for the
function f(r,s,n) [11] are too weak to offer improved approximation ratios for max
clique. Let us remark that previously published work on f(r, s,n) dealt only with the
case that r < s, which is the only case that makes sense in the context of Ramsey
theory. However, in our context, where we seek a constructive version, the case r > s
also makes sense.

Acknowledgments. The author thanks Shimon Kogan for helpful discussions
and thanks Magnus Halldorsson, Robert Krauthgamer, and Michael Langberg for
useful comments on earlier versions of this manuscript.

Downloaded 10/13/16 to 140.117.168.50. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

APPROXIMATING MAXIMUM CLIQUE BY REMOVING SUBGRAPHS 225

REFERENCES

N. ALON AND N. KAHALE, Approzimating the independence number via the 0-function, Math.
Programming, 80 (1998), pp. 253-264.

B. BERGER AND J. ROMPEL, A better performance guarantee for approximate graph coloring,
Algorithmica, 5 (1990), pp. 459-466.

A. BLum AND D. KARGER, An O(n3/14)—coloring algorithm for 3-colorable graphs, Inform.
Process. Lett., 61 (1997), pp. 49-53.

R. BoppANA AND M. HALLDORSSON, Approzimating mazimum independent sets by excluding
subgraphs, BIT, 32 (1992), pp. 180-196.

U. FEIGE AND J. KILIAN, Zero knowledge and the chromatic number, J. Comput. System Sci.,
57 (1998), pp. 187-199.

M. HALLDORSSON, A still better performance guarantee for approzimate graph coloring, Inform.
Process. Lett., 45 (1993), pp. 19-23.

E. HALPERIN, R. NATHANIEL, AND U. ZWICK, Coloring k-colorable graphs using relatively small
palettes, J. Algorithms, 45 (2002), pp. 72-90.

J. HAsTAD, Clique is hard to approzimate within n'~¢, Acta Math., 182 (1999), pp. 105-142.

D. KARGER, R. MoTwANI, AND M. SUDAN, Approzimate graph coloring by semidefinite pro-
gramming, J. ACM, 45 (1998), pp. 246—265.

S. KHot, Improved inapproximability results for mazclique, chromatic number and approzimate
graph coloring, in Proceedings of the 42nd Annual Symposium on Foundations of Computer
Science, Las Vegas, NV, 2001, IEEE Computer Society Press, Los Alamitos, CA, 2001,
pp- 600-609.

B. Subakov, A new lower bound for a Ramsey-type problem, Combinatorica, to appear.

A. WIGDERSON, Improving the performance guarantee of approzimate graph coloring, J. ACM,
30 (1983), pp. 729-735.

