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Most Probable Longest Common Subsequence for
Recognition of Gesture Character Input

Darya Frolova, Helman Stern, Member, IEEE, and Sigal Berman, Member, IEEE

Abstract—This paper presents a technique for trajectory classi-
fication with applications to dynamic free-air hand gesture recog-
nition. Such gestures are unencumbered and drawn in free air.
Our approach is an extension to the longest common subsequence
(LCS) classification algorithm. A learning preprocessing stage is
performed to create a probabilistic 2-D template for each gesture,
which allows taking into account different trajectory distortions
with different probabilities. The modified LCS, termed the most
probable LCS (MPLCS), is developed to measure the similarity
between the probabilistic template and the hand gesture sample.
The final decision is based on the length and probability of the
extracted subsequence. Validation tests using a cohort of gesture
digits from video-based capture show that the approach is promis-
ing with a recognition rate of more than 98% for video stream
preisolated digits. The MPLCS algorithm can be integrated into a
gesture recognition interface to facilitate gesture character input.
This can greatly enhance the usability of such interfaces.

Index Terms—Classification, dynamic gestures, gesture recogni-
tion, longest common subsequence (LCS).

I. INTRODUCTION

G ESTURE TRACKING and recognition systems that al-
low free-air movements in 3-D space have been recently

introduced in the home entertainment environment. Several
systems (e.g., Wii) require a use of a handheld pointing device
to help detect movement in three dimensions. Other systems
are based on vision-captured gestures that require markings
or physical attachments to the hand or fingers. Unlike these,
unencumbered vision systems offer the freedom of gesturing in
the free air on a “come as you are” basis. Unencumbered free
motion vision systems place increased demands on the develop-
ment of real-time robust systems capable of operating in real-
life environments. One way of overcoming these disadvantages
is the use of 3-D vision camera systems.

Dynamic gesture recognition systems based on single video
camera output are able to recognize only planar gestures and
are most accurate for gestures performed perpendicular to the
camera’s line of sight. Although many research studies continue
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attempts to create a robust dynamic gesture recognition system
based on such video stream data [1], [2], the fact that the
equipment does not allow the capture of all 3-D space-time ges-
ture variations greatly restricts a potential gesture vocabulary
design.

While, recently, 3-D cameras have been widely used for
hand and full body tracking in 3-D space, gesture recognition
methods for sign and character input still require gestures to
be performed in a specific embedded 2-D plane. Most of the
work in the digit/character recognition field has been done on
handwritten digits using paper or a digital tablet. Character
input is commonly found with touch screen devices in mobile
phone and tablet computer screens.

Hand tracking provides a continuous video stream of the
segmented hand but raises the problem of extracting those
frames that constitute single gesture trajectories from it. Such a
problem is referred to as gesture spotting [3] and is exacerbated
because such trajectories may be of different lengths. One solu-
tion is warping a test trajectory to match a predetermined tem-
plate of an exemplary gesture trajectory. Dynamic time warping
(DTW) and hidden Markov models (HMMs) are methods that
can simultaneously align such signals, using stored determinis-
tic and statistical trajectory representations, respectively. Both
methods have been applied successfully to recognize speech
[4] and handwriting [5]. Currently, they are also the most used
methods for recognition of gestures [2], [6]–[8]. HMMs are
able to statistically model a set of samples, while DTW, as an
exemplar-based matching procedure, usually requires matching
with a plurality of prototypes to get comparable performance.

The precursor to DTW is the longest common subsequence
(LCS) method of alignment. The LCS algorithm was developed
for matching subword sequences in deoxyribonucleic acid se-
quences and documents, and only a few authors have employed
the LCS for gesture classification [9]–[11]. The LCS method is
similar to DTW which attempts to line up a test and template
sequence temporally, using feature distance costs. The LCS
is more robust to noise and outliers than DTW. Instead of a
complete mapping between all points, in the LCS algorithm, a
point without a good matching can be ignored. LCS tasks can be
solved using a brute-force approach, where all possible subse-
quences of one of the strings are found. Once all possible strings
are found, each string is tested to see if it is a subsequence of
the other string [12], [13]. Dynamic programming is used to
reduce the time and space complexity of the problem. It uses a
2-D array to store the size of the LCS [13]. For the case of two
sequences of n and m elements, the running time and space of
the algorithm are both O(mn). The space can be reduced to
O(n) if the traceback of longest subsequence is not needed.
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In this research, a new supervised learning algorithm, which
combines the advantages of the classical LCS algorithm with
statistical techniques, is presented. The method, called the most
probable LCS (MPLCS) algorithm, allows the classification of
time-dependent 2-D curves. As such, it is applicable to hand
gesture recognition of motion trajectories extracted from video
input streams. Although the method can be used for any free-
form trajectory, we focus on its use for 3-D space free from
handwritten character recognition.

This paper is organized as follows. Section II contains
an overview of the relevant research in the field of gesture
character recognition. The architecture of the MPLCS algo-
rithm is presented in Section III, followed by a description of
the capture and preprocessing of a gesture trajectory training
set in Section IV. The methods for probabilistic clustering
and gesture template creation are described in Section V.
Section VI presents the detailed description of the MPLCS
method. Sections VII and VIII contain experimental results
and a discussion, respectively. Conclusions are presented in
Section IX.

II. PREVIOUS ART

In this section, we provide a short review of dynamic ges-
ture recognition methods with the focus on recognition of
handwritten characters. Gesture recognition is widely used in
human–computer interaction (HCI). Different hardware used
for HCIs which includes video cameras, magnetic tracking
devices, and depth sensing cameras produces different types of
data and may require different recognition methods.

Magnetic devices provide a hand gesture trajectory in a
direct manner yet facilitate only encumbered operation. Camera
devices facilitate unencumbered gestures, yet hand tracking
should be performed to segment the hand trajectory from other
motion. An example is the use of color and motion cues for
hand tracking in a real-world environment [13]. A unified
algorithm based on dynamic space-time warping (DSTW) that
combines a trajectory recognition technique together with spa-
tiotemporal segmentation of hand motion from a color video is
presented in [1]. Here, the authors require that the users return
their hands to the rest position after performing each digit. The
use of 3-D sensing devices and stereoscopic sets of cameras
not only improves hand tracking but also allows recognition of
complex hand postures [6], [14] and reconstruction of full-hand
motion and a smooth surface model of the hand [15].

Dynamic gesture recognition for HCI should be performed
online (a comparison of online and offline recognition methods
can be found in [16]). One of the advantages of online cap-
turing devices (cameras and digital tablets for handwriting) is
their ability to capture temporal information (e.g., velocity and
acceleration). Raza et al. [17] use accelerometer information
obtained from wireless Wii Remote device for recognition of
unistroke gesture digits.

Trajectories of interest typically appear in continuous
streams of motion (gesture sequences or handwriting trajecto-
ries). In continuous video streams, a challenging problem is to
segment out the portion of the stream that contains only the
dynamic gesture information [18]. This problem is known as

gesture spotting. Trajectory segmentation at points of minimum
velocity (e.g., [8], [19], and [20]) or curvature [9] was found
useful for gesture spotting. The gestures were divided into
primitives (strokes) that were later grouped in sequences. Ges-
ture segmentation based on trajectory extrema and HMM was
used for classification by Li et al. [21]. Sclaroff et al. [22] used
continuous dynamic programming for gesture spotting. The use
of strokes to solve the problem of subgestures occurring within
a complete gesture and the problem of subdigits was discussed
in [1] and [22]. Conversely, the problem of ligatures (the
merging of two gestures as one) was dealt with in handwriting
by Hu et al. [23]. Lee and Kim [18] suggest a two-stage HMM-
based procedure based on using a threshold model which is an
ergodic model of all trained gestures. A gesture is identified
only when the likelihood of the best fitting model is higher than
that of the threshold model.

A character can be represented by a set of informational
features which may be global or local and based on either static
or dynamic properties of the character [16]. The choice of the
features may depend on a priori information available about
the data. Many character classification algorithms use global
characteristics like trajectory shape or moments [16], thus re-
ducing the number of features to a few features per trajectory. In
[12], a feature vector for each gesture digit was constructed by
connecting feature distributions in each direction, and template
matching was used for recognition.

Many methods (e.g., alignment algorithms like LCS, DTW,
and DSTW) use location information of each point, which is
actual point position (x−y coordinates), velocity (features were
used, for example, by [19] for handwriting recognition), and,
sometimes, acceleration [17]. In [24], 3-D coordinates of body
markers were converted into quantized velocity vectors. HMM
was used to interpret those sequences, which are directional
code words characterizing the trajectory of the motion.

One of the approaches to gesture character recognition is the
analysis of similarity measures between gestures represented by
time series. One of the possible measures of similarity between
two strings is the analysis of their common substrings, and the
most popular measure is the LCS [7], [13]. Later, Wang [25]
proposed to use the number of all common subsequences in or-
der to capture the maximal common information in sequences.
A strong theoretical approach of measuring a similarity of
two fuzzy sets (by finding their closest common subsequence)
can be found in [5]. A similarity measure that is analogous
to our approach combines the deterministic and probabilistic
matching scores obtained from the LCS [10].

Generative factored or coupled state models such as HMM
or dynamic Bayesian networks [26], [27] assume that the
observations are conditionally independent. Such restrictions
make it difficult or even impossible to accommodate long-range
observation dependences or multiple overlapping features. Dis-
criminative methods such as LCS or conditional random fields
(CRFs), on the other hand, avoid the independence assumption
and allow nonlocal dependencies, yet they lack the ability to
capture hidden states or the statistical strength of methods such
as HMM. CRF does not facilitate estimation of the conditional
probability of a class label of an entire sequence. In an effort
to address these, Wang et al. [26] suggests hidden-state CRFs
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(HCRFs) that enhance CRF by incorporating hidden states. The
latent-dynamic CRF suggested by Morency et al. [31] combines
the strengths of CRF and HCRF capturing both extrinsic dy-
namics and intrinsic substructures. In this, they facilitate recog-
nition of unsegmented gestures. We have undertaken to enhance
the LCS method which has previously not been considered as a
prominent gesture recognition method. Our work provides not
only a new LCS method but also a probability-based one. The
new algorithm, MPLCS, can also be used for the recognition of
unsegmented gestures.

Motion variability is a major problem for all human gesture
recognition algorithms. Keskin et al. [24] treat the problem
of motion variability between users by replacing variable tra-
jectories by several alternative trajectories, each with lesser
variability. Wilson and Bobick [28] developed a parametric
HMM algorithm by extending the HMM model to include a
global parametric variation in the output probabilities of the
HMM states. This method is intended for gesture recognition of
parameterized gestures, i.e., gestures with a systematic spatial
motion variation and not general motion variability. Our ap-
proach is different, as we handle large variability at the point
level of a trajectory in a statistical manner. Thus, instead of
increasing the exemplary template models by replacing one
trajectory by several trajectories, where most of the replacement
trajectories are similar to the original, we retain the same trajec-
tory and handle variations at the point level by representing it
as Gaussian mixture model (GMM) with several components.

III. ARCHITECTURE OF THE MPLCS ALGORITHM

The MPLCS algorithm provides a general solution to the
problem of recognizing free-space handwritten character ges-
tures. The recognition method is based on the LCS algorithm
which advocates the use of the LCS as an indication of the
similarity between a pair of sequences. Unlike the classical
deterministic 1-D LCS, a probabilistic LCS algorithm is de-
veloped to compare 2-D probabilistic templates to 2-D input
probabilistic patterns. The use of a probabilistic 2-D template
rather than a deterministic 1-D template allows a more general
representation of the data set by taking into account possible
trajectory distortions with different probabilities.

The architecture of the MPLCS contains three main modules:
Training, Storage, and Recognition. Each gesture g is repre-
sented as a separate model which consists of a set of Gaussian
components Θg and a single template Tg . A set of training
gestures is captured and used in a training procedure to learn
the model parameters, which are later used in the recognition
module. Learned parameters (Gaussian components Θg and
template Tg) are stored in the Storage module of the system.
The recognition process flows as follows: The input trajectory
is transformed into a feature vector, which is converted into
2-D patterns according to all Gaussian components. Then,
for each fixed g, a pattern is compared to the 2-D template
Tg that represents gesture g. The result of this comparison
is interpreted as the measure of similarity between the input
trajectory and a gesture g. The final classification is performed
according to the learned model classification rule. Although the
MPLCS algorithm was developed for preisolated gesture digit

Fig. 1. The system is organized as a combination of three functional com-
ponents, each containing a set of independent modules. Model learning is
performed offline in the dynamic gesture training component. Models are stored
in the storage component. Recognition is performed online.

Fig. 2. (Top) Palm’s Graffiti Digits [1]. (Bottom) Example digit gestures “2”
and “3” as performed by a user (the dot indicates the start position).

recognition, it was also tested using a continuous gesture video
stream input. The architecture is shown in Fig. 1, with more
details presented in Sections IV–VI as follows.

IV. DYNAMIC GESTURE DATABASE CAPTURE

To achieve high recognition performance, the proposed
method, like other supervised learning algorithms, requires a
labeled training set of gestures, preferably performed by dif-
ferent people in order to capture all the performance variations
affected by user’s age, handwriting, mood, etc. Some free-air
gesture symbols are different from symbols written on paper, so
existing databases of handwritten alphanumeric characters do
not fully satisfy our purpose. Therefore, a database of “0”–“9”
digit trajectories performed in the style of Palm’s Graffiti Al-
phabet was created, using consistent starting points as shown
in Fig. 2. The data set contains approximately 100 samples of
each digit.

The output video was processed to extract the centroid posi-
tions of the hand in each frame to create its trajectory. It is de-
sirable for simplicity of the recognition algorithm to represent
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Fig. 3. (a) Original trajectories of the user’s hand. The user was performing
digit “3” in different directions with respect to the camera. (b)–(d) Three input
trajectories were projected onto the best fitting planes.

the gesture trajectory as a sequence of (x, y) coordinates. In the
case of 3-D camera, a dimensionality reduction is required.

Two types of data capture systems are considered: a single-
color-based camera and a 3-D depth camera. In the case of a sin-
gle video capturing device, the user’s hand is segmented from
the background, and positions of the centroids that represent
the hand location are computed. To track the hand, a modified
Camshift algorithm is used [29]. In this case, the input gesture
should be drawn on the plane that is approximately parallel to
the camera image plane in order to limit trajectory distortions.

In the case of a depth camera, the hand motion trajectory is
described by a sequence of 3-D points. Here, the gesture may be
performed from anywhere within the sensor field of view and
with an arbitrary angle to the camera plane. Using the fact that
the writing is naturally planar, a dimensionality reduction from
3-D to 2-D is performed. To approximate a complete trajectory
by a plane, we performed a principal component analysis (PCA)
using a sample data set for each of the 3-D trajectory points,
to reduce the dimensionality to two. The following conditions
must prevail to ensure that “most” of the trajectory does fall
within a plane. This is equivalent to ensuring that most of the
variation is accounted for by the first two eigenvalues. The
conditions that must be satisfied are

e3 ≤ τ1 ∗ V
e1
e2

≤ τ2.

Here, the eigenvalues {e1, e2, e3} and total variance V are
obtained from the PCA applied to input 3-D points, and {τ1, τ2}
are real numbers determined empirically from the data set. The
first condition indicates that the third eigenvalue captures less
than T1 of the total variance. The second condition guarantees
that the input points belong to a plane and not a line. If
both conditions are satisfied, the 3-D points are projected onto
a 2-D plane (the first two components obtained by PCA).
Fig. 3(a) shows an example of three sequential gesture “3”
digits performed at different angles with respect to the camera
plane. Their projections onto the fitting plane are shown in
Fig. 3(b)–(d).

Free-space hand drawing is a feedback-free operation, so re-
sulting trajectories may have very different shapes, orientations,

Fig. 4. Illustration of clustering of tangent angles. Adjacent tangent angles
usually form distributions that may overlap (two top histograms that correspond
to first and second tangent angles). Some angles may form more than one
cluster (bottom histogram that corresponds to the 22nd tangent angle). Here,
the vectors bifurcate into two different basic directions (where there is a sharp
bend or a looped bend).

sizes, and velocities. Personal handwriting styles also have a
great impact on the result.

From adjacent frames of a trajectory, local features are cho-
sen as interpoint motion directions and represented by tangent
angles (Fig. 4). These features are scale invariant (but not
rotation invariant).

V. OFFLINE DYNAMIC GESTURE TRAINING

Given a database of G gesture types, indexed as g =
1, 2, . . . , G, this section describes the process of clustering and
template creation for a given gesture type g. Each g consists
of Sg samples, indexed s = 1, 2, . . . , Sg . In the notation as
follows, tsg is a trajectory sample number s, of gesture type g.
Gesture samples in the database were performed in 3-D space in
free style, without restrictions on speed, resulting in a different
number of points (different length of tsg).

Step 1) Resample the trajectories {t1g · · · tsg · · · t
Sg
g } of the

gesture type g, such that each tsg has an equal number
Lg of equidistant points.

Step 2) Convert each sample tsg into a vector of ordered tan-

gent angles asg = [αs
g,1 · · ·αs

g,m · · ·αs
g,Lg−1]

T. The
length of each asg is (Lg − 1). Let the index m
represents the mth tangent angle, ordered from the
start of the trajectory.

Step 3) (Construct data matrix) Denote by Mg a matrix of
sample tangent angles for gestures of type g, where
asg is a tangent angle column vector for the sth
sample

Mg =
[
a1g · · · asg · · · aSg

g

]
.

The size of Mg is (Lg − 1)× Sg . Designate αg,m as
a random variable (RV) of the mth tangent angle of
gesture g. The sample data for the RV αg,m appear
in row m of Mg , which contains the set of samples
{αs

g,m}.
Step 4) (Gaussian Mixture Model) The distribution of each

RV αg,m may be approximated by a GMM (see
Fig. 4).

Unsupervised clustering of the data into
components of the GMM is obtained by the
expectation maximization algorithm [30]. The
decision about correct number of components would



FROLOVA et al.: MPLCS FOR RECOGNITION OF GESTURE CHARACTER INPUT 875

require comparing models with different numbers
of components. Bayesian information criteria,
which penalize the complexity of the GMM,
were used to detect the number of components
(the model with 1, 2, and 3 components was
tested).

The parameters of the GMM for the RV ag,m are
the number of Gaussian probability density func-
tions (pdfs) Km, their weighting factors πk

m, and the
mean μk

m and the standard deviation (STD) σk
m of

each Gaussian function k = 1 : Km (here and below
the subscript g have been dropped for simplicity).
For x = ag,m

p(x) =

Km∑

k=1

πk
mN

(
x|μk

m,σk
m

)
∀k : πl

m � 0;

Km∑

k=1

πk
m = 1.

The data in row m, which represents the mth tan-
gent angle, may be approximated by more than one
Gaussian component, and therefore, more than one
mean and STD per row will be computed. For a
given g, combine the GMM components for all the
RVs ag,m and reindex them as k = 1 : Kg , where
Kg ≥ (Lg − 1). Denote by θkg the parameters of
the kth component of the gesture type g(k = 1 :
Kg, g = 1 : G)

θkg =
{
μk
g , σ

k
g

}
Θg =

{
θkg
}
k = 1 : Kg.

Step 5) For each element asg,m of the tangent vector asg =

[asg,1 · · · asg,m · · · asg,Lg−1]
T, compute the probability

psg(k,m) that the sth sample of the mth tangent
angle belongs to the Gaussian component k. Denote
this probability as p(k,m) = psg(k,m), for m = 1 :
(Lg − 1), k = 1 : Kg . For x = asg,m

x ∼ N
(
μk
g , σ

k
g

)
p(x) = N

(
x : μk

g , σ
k
g

)
p(k,m) = p(x).

Denote P s
g as a matrix of size Kg × (Lg − 1),

whose (k,m) entry is p(k,m) denoted earlier.
Step 6) Compute pointwise average of matrices P s

g over s
samples, and denote it by Tg . Tg is a template that
represents gesture number g.

VI. DESCRIPTION OF THE MPLCS
RECOGNITION ALGORITHM

The general flow of the MPLCS algorithm is shown in Fig. 5.

A. Step 1

A test input trajectory tinput of length Linput is converted
into a vector ainput of tangent angles. The length of ainput is
(Linput − 1). Note that the input trajectory is not resampled and
Linput may not be equal to any of Lg , g = 1 : G.

Fig. 5. The input trajectory is converted into a feature vector, which is then
clustered to create a number of probabilistic patterns. Each pattern is compared
to its corresponding template and two outputs—the length and the probability
of the MPLCS are produced and sent to the classification unit of the algorithm.

B. Step 2

For a given tinput, G different matrices Qg , g = 1 : G, are
computed (see Fig. 5). For each g, elements of a pattern matrix
Qg are

Qg(k,m)=N(x : μk
g , σ

k
g ),where x is mth element of ainput.

Each Qg is a matrix, whose (k,m) entry is the Gaussian
posterior probability that an observation of the tangent angle
ainputg,m came from a Gaussian component with parameters θkg
(i.e., the kth group of tangent angles of gesture g). The size of
Qg is Kg × (Linput − 1).

C. Step 3

The algorithm compares, for each g, Qg with its corre-
sponding template Tg . The number of rows in both matrices
is the same and corresponds to the number of clusters Kg that
characterizes a gesture g. The number of columns of Tg and Qg

denote the number of tangent angles in the template (Lg − 1)
and the test input trajectory (Linput − 1). These two numbers
may be different, since the length of the test trajectory may
be different than the length of the prototype trajectory in the
template.

Fig. 6 shows a scheme of comparison of matrices T3 and
Q3. The goal of this comparison is to find the longest subse-
quence of common numbers of Gaussian components of feature
angles for T3 and Q3. The algorithm can be explained by
the following. Numbers of Gaussian components are used to
quantize trajectory tangent angles. Gaussians may intersect;
that is why every angle may be quantized by two or more
numbers with different probabilities. A template can also be
described as certain “average” trajectory quantized according to
the same Gaussian component numbers (and every angle of the
template can also be associated with more than one quantization
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Fig. 6. (Top left) Template matrix for digit “3” is compared to (bottom left
image) the input pattern. Image intensities (from 0—black to 1—white) encode
the probabilities of the points to belong to the Gaussians. (Right) Longest
common path with maximal probability between T3 and Q3.

number). The goal of the algorithm is to find the LCS of
quantization numbers between input trajectory and template.
Probabilities that correspond to these numbers are multiplied
pairwise. The procedure can return an LCS that contains two
(or more) quantization numbers that correspond to the same
feature angle of the input trajectory (or template). In this case, a
quantization number that provides maximal probability (which
is a product of corresponding probabilities of the input and
template) is selected.

Algorithm Procedure

Matrix Qg is converted into three vectors (the length of these
vectors is equal to the number of nonzero entries of Qg): Since
the matrix contains a large number of zeros, this converts the
matrix entries into a vector to be associated with the columns
of the LCS table. In addition, two vectors record the column
and row indices of each nonzero entry. These three vectors are
as follows.

1) V Q
pr—the vector of nonzero entries. Remember that

(k,m) entry of Qg is Gaussian pdf of mth compo-
nent of ainput to be associated with the sample cluster
number k.

2) V Q
c —the vector of row numbers of nonzero entries of Qg .

These row numbers correspond to the Gaussian compo-
nent indices k with parameters θkg .

3) V Q
a —the vector of column numbers of nonzero entries

of Qg . These column numbers correspond to the vector
ainput of tangent angles.

Similarly, matrix Tg is decomposed into three vectors V T
pr ,

V T
c , and V T

a .
Dynamic programming is used to create a classical LCS table

for vectors of cluster numbers V T
c and V Q

c . Traceback pro-
cedures return all tied M LCSs {LCS1 · · ·LCSm · · ·LCSM}
with length, for example, L′, together with the vectors of
column numbers and vectors of elementwise products of their
probabilities (Fig. 7).

The LCSs found may contain elements with duplicated col-
umn numbers. For these elements, the choice of one component
number per column is made by selecting the number of the
Gaussian component with maximal common probability.

Fig. 7. The LCS table is constructed by dynamic programming. One of the
LCSs is plotted by gray curve. Then, tracing back the algorithm keeps not
only the common cluster numbers but also their corresponding elements from
vectors V T

a and V Q
a and vectors V T

pr and V Q
pr .

1) If there exists a set of column numbers {k1, . . . , kN},
such that

V T
a (k1) = · · · = V T

a (kN ) or V Q
a (k1) = · · · = V Q

a (kN )

2) Then select a number k′ from {k1, . . . , kN} such that

k′=ki, where i=argmaxj {V T
pr (kj)

∗ V Q
pr (kj)}, j=1 : N.

3) Replace (k1, . . . , kN ) with k′.

When all the longest common sequences are found and
elements with duplicated column numbers {k1, . . . , kN} in
Tg and Qg are rejected, the MPLCS chooses the final LCS
from the set {LCS1, . . . ,LCSM} as the LCS with the maximal
probability {V T

pr(kj) ∗ V Q
pr (kj)}. The result of the template

matching procedure is a pair of numbers, length and probability
of the LCS, denoted as L(Tg, Qg) and P (Tg, Qg).

D. Step 4

The bottom part of Fig. 5 shows that the length and probabil-
ity for the LCSs for each gesture g(L(Tg, Qg), P (Tg, Qg), g =
1 : G) is compared with a multiclass (g = 1 : G) classifier
to determine whether the input trajectory is recognized as a
particular gesture g∗.

For classification of a gesture g, define the length and proba-
bility L(TgQg) and P (Tg, Qg) as the pair (Lg, Pg). Acceptance
thresholds are set for Lg and Pg as τ(Lg) and τ(Pg), respec-
tively. For an input trajectory, values of numbers (Lg, Pg) are
compared to the thresholds (τ(Lg), τ(Pg)) for each gesture g.
If both (Lg, Pg) are greater than (τ(Lg), τ(Pg)), for only one
unique gesture g∗, then the trajectory is classified as gesture
g∗. If two or more thresholds are exceeded, then there are two
cases.

a) Recognized gesture is g∗ if g∗ = argmax(Lg), for all g
such that Lg > τ(Lg).

b) If all Lg such that Lg > τ(Lg) are equal, then recognized
gesture is g∗ if g∗ = argmax(Pg) for all g such that
Pg > τ(Pg).
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Fig. 8. (Top row) Samples of digit “2” simulated as performed with different
velocities. All the samples were correctly classified as “2.” (Bottom row)
Corresponding velocity profiles.

VII. TESTING EXPERIMENTAL RESULTS

A set of experiments was conducted for recognition of both
isolated and video-streamed input digits.1 Also stability of the
algorithm to Gaussian noise was examined.

Eight subjects (four males and four females, aged 23–35,
right and left handed) participated in all the experiments.
Each subject executed 15–20 repetitions of each of ten gesture
digits. The repetitions were performed with pauses of a few
days between the experiments. Approximately 100 samples of
each gesture were used for the training. Data were collected
using the PrimeSense 3-D camera.2 The frame rate was set to
30 fps. Users were asked to draw characters on the air with
no constraints on speed or style, except that the start point and
trace of the digit are consistent (see Fig. 2). No postprocessing
noise reduction was applied. Fifty nondigit (N/D) gestures were
included in the testing set. Several were designed to be similar
to the numerical digits.

A. Preisolated Digits

A 5 × 2 cross-validation method was used to test recognition
accuracy for the preisolated data set. A confusion matrix is
presented in Table I of the Appendix. Fig. 8 shows some of the
gesture trajectories. The input trajectories are neither resampled
nor aligned in advance and are performed with different veloc-
ities (Fig. 8).

An overall recognition accuracy of 98.7% for digits was
obtained. Visual analysis show that confusion between the
digits 0 and 6 occurred mainly because of the inaccurate closure
of the digit by the user. In some cases, a 3 was misrecognized
as a 2 because the bottom part of the 3 was not completed.
Fig. 9(c) shows a few examples of digits that were rejected
by the algorithm, because their LCS probabilities (in the case
of digits “1,” “2,” and “6”) or MPLCS lengths (in the case of
“3” and “5”) were less than predefined threshold. A set of
trajectories that do not represent digits (but some of them
were very close to digit shapes, see Fig. 9(b)–(d)) was also
tested. The algorithm correctly rejected 45 out of 50 nondigit
trajectories (90%).

To test user dependence, 120 gesture digits were performed
by two subjects that did not participate in the database collec-
tion. The recognition accuracy on this data set was 98.3%.

1Researchers who would like to use the database are welcome to contact
Sigal Berman (sigalbe@bgu.ac.il).

2www.primesense.com

Fig. 9. Recognition results for preisolated digit data set. (a) True positive
examples. (b) True negative examples. (c) False negative examples. (d) False
positive examples: Nondigits that were recognized as (from left to right) “2,”
“6,” “8,” and “6.”

Fig. 10. Example of three correctly classified digits from a stream input
trajectory that corresponds to a sequence “889,” from 3-D camera.

We implemented HMM and linear CRF3-based classification
methods in order to provide a comparison to the aforementioned
results. For both methods, trajectories were similarly repre-
sented by tangent angles, yet they were resampled to a constant
length. Training was done with a subset of gesture sequences
selected according to a 5 × 2 cross-validation method. For the
HMM, the Baum–Welch algorithm was used for training. Each
HMM is a simple left–right model with two hidden states and
eight Markov transition states. The states correspond to equally
spaced angle segments from 0 to 360. The average recognition
rate for HMM was 89.5% (19% of “2” were misclassified as
“3,” and 10% of “0” were misclassified as “6”). The average
recognition rate for CRF was 99.1% (3% of “5” were misclas-
sified as “8,” 3% of “0” were misclassified as “6,” and 2% of
“6” were misclassified as “0”).

B. Stream Input Data

In a second experiment, streams of digits were extracted
from the 3-D camera output. An example of the sequence
“889” is shown in Fig. 10 with the correct classification. A
classifier was run in a sliding window of 40–50 frames (the size
of the sliding window was changed dynamically to overcome
a subdigit problem, which is described in the following). A
confusion matrix for nonisolated data set appears as Table II
in the Appendix. The algorithm correctly recognized 200 digits
out of 213 (94%). The most problematic digit was “0” (14
correct matches out of 17), which was misclassified in several
instances with the digit “6.”

3Source code can be found at: http://www.cs.ubc.ca/~murphyk/Software/
CRF/crf.html
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Fig. 11. Example of recognition results for stream input trajectory that
corresponds to a sequence “222” obtained from 2-D Web camera.

Fig. 12. Few samples of gesture database digits with additive white Gaussian
noise applied. (Bottom row) SNR equals 30.

C. Noisy Data

A set of experiments was conducted to test recognition of
noisy data obtained from the usual 2-D Web-camera (with
image resolution of 640 × 480 and frame rate of 25 fps) and
of preisolated digits with white Gaussian noise added.

Trajectories were extracted using a modified Camshift algo-
rithm [21]. Fig. 11 shows an example of sequence of three digits
“2” extracted from a video stream.

A Gaussian white noise with signal-to-noise ratio (SNR) of
40 and 30 was added to the database digit data set (Fig. 12).
The clustering rules and templates remain the same, but the
acceptance thresholds were decreased when more noise was ap-
plied. For the moderate noise level with SNR = 40, the average
recognition accuracy was 97%; then, the accuracy decreases to
85% for the higher noise with SNR = 30.

The lower recognition rates for “1,” “4,” and “7” with noisy
data (versus the higher recognition accuracy for clean data)
may be explained by the fact that these digits have very simple
shapes and, when performed in a natural way (without any
noise added), they have very low variation. This is why the
templates learned from nonnoisy data handle only a limited
number of variations. At the same time, templates learned
for more complex digits, like “5” or “8,” are more robust to
noise because the training data contain samples performed in
different ways.

VIII. DISCUSSION

Our experimental results showed better accuracies for precut
gestures (98.7%) than those extracted from streaming video
data (94%). This is a higher accuracy than that obtained
(89.5%) from the HMM using precut gestures. We did not
perform actual tests of the HMM with streaming gestures as
the accuracy would be lower since the gesture input has more
noise in it. That is to say, the HMM with video-streamed
gestures will be less than or equal to 89.5%, which would

Fig. 13. Without a subdigit problem consideration, two of three digits “3”
were classified as “2.”

be worse than the 94% obtained by the MPLCS algorithm
for video-streamed gestures. For linear CRF, the classification
accuracies obtained for precut resampled gestures (99.1%) are
a bit higher than those of the MPLCS (98.7%) for gestures of
varying lengths (not resampled). Training of CRFs for large
vocabularies can become very computationally expensive [32].
In contrast, training computation cost of MPLCS is affected by
the length of the gesture trajectory rather than by the size of
the vocabulary. Thus, for large vocabularies, MPLCS may be
preferable.

In the absence of pauses between digit gestures, digit spotting
is problematic, as all the information in a sliding window
is analyzed which leads to higher misclassification rates. To
improve recognition rates, the problem of subdigits should be
considered. This problem arises when a part of a digit is similar
to another digit, e.g., “3” and “2,” “2” and “7,” “9” and “0,” etc.
Fig. 13 shows the problem of subdigit recognition.

In the sequence “333,” only the middle “3” was recognized
correctly, because a sliding window of the fixed size captured
only a part of the digit. The initial size of the sliding window
was equal to the mean trajectory length plus three STDs. When
a digit that can be a part of another digit was detected, the
sliding window was expanded by 1.5 to try and detect the
larger digit. For the case shown in Fig. 13, after digit “2”
was recognized, the window size was increased, and the larger
trajectory portion was analyzed to correctly detect digit “3.”

To overcome the problems of streaming input data, we
suggest a procedure as follows. For a real-time recognition
system, the input stream will not be segmented a priori. In
streaming gestures, motion naturally slows down at the begin-
ning and at the end of each gesture character and at places
with high curvature. A velocity profile can be used to segment
the input trajectory into motion primitives, known as strokes.
Fig. 14 shows a segmentation of the sequence “123” into
strokes according to local velocity minima. The uncertainty in
the choice of sliding window size for continuous streams can
thus be avoided. In the following, we describe a procedure for
streaming video gestures using the idea of stroke segmentation.

Database trajectories are automatically segmented into
strokes, which are trajectory parts between velocity minima.
Short strokes should be excluded from analysis. The use of the
absolute value of tangent angle rather than the tangent angle
itself as a trajectory feature gives a user more freedom in char-
acter performance (for example, it allows the user to perform
a digit “0” both clockwise and counterclockwise without using
an additional template).
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Fig. 14. (a) Velocity profile of the sequence “123” with vertical lines indicat-
ing rough segmentation according to local minima; (b) input “123” trajectory
with marks indicated segments corresponding to segments in (a).

Fig. 15. Sequence “123” followed with the set of strokes extracted.

Each type of each stroke is converted into a template as
described in Section V. Each digit may consist of one to three
strokes, with some common to a few digits. Since strokes are
shorter than digits, templates are smaller.

After the input stream is segmented into strokes according to
local velocity minima (see Fig. 15 for an example) each stroke
is converted into set of probabilistic matrices, as described in
Section V. Then, the MPLCS algorithm is used to compare
probabilistic matrices and corresponding templates. Classified
strokes are then combined into characters.

IX. CONCLUSION

The MPLCS method is a supervised learning algorithm,
which combines learning techniques and a modified LCS al-
gorithm. It allows recognition of free-space hand gestures:
digits, characters, etc. The gesture may be performed in any
plane with respect to the camera’s image plane, for users
standing, sitting, or lying within the camera field of view. The
experimental results show good recognition rates for gesture
digits and low false positive rates. These rates were 98.7% and
94% for preisolated and video-streamed gestures, respectively.
This is higher than the recognition accuracy of 89.5% with
HMM for preisolated digits. We did not perform actual tests
of the HMM procedure with streaming gestures as it can be
inferred that the accuracies would be lower since the gesture
input has more noise in it. For resampled preisolated gestures,
the recognition accuracy of linear CRF was 99.1%, a bit higher
than that obtained by the MPLCS for gesture of varying lengths.
The computation cost of training the MPLCS is less affected by
vocabulary size; thus, it is expected to have an advantage over
CRF for large gesture vocabularies.

Tests for preisolated gestures with random noise show the
degree of degradation as the SNR is decreased. One of the short-
comings of the approach is the requirement on the user to pro-
vide consistent character start points and path directions. This
shortcoming is easily avoided by designing multiple templates
(a future work task). We also offer a procedure for possible
improvement of the recognition accuracy of the MPLCS from
streaming video using the idea of gesture primitives.

APPENDIX

TABLE I
CONFUSION MATRIX FOR PREISOLATED DIGIT DATA SET (IN PERCENT).
ROWS CORRESPOND TO THE GROUND TRUTH LABELS, AND COLUMNS

CORRESPOND TO THE ESTIMATED CLASS LABELS. THE “NOT A DIGIT”
(“N/D”) ROW SHOWS THE RESULT OF TESTING OF NONDIGIT GESTURE

TRAJECTORIES. RECOGNITION RATE FOR DIGITS IS 98.7%

TABLE II
CONFUSION MATRIX FOR NONISOLATED DIGIT STREAM INPUT DATA

SET. ROWS CORRESPOND TO THE GROUND TRUTH LABELS, AND

COLUMNS CORRESPOND TO THE ESTIMATED CLASS LABELS. THE LAST

ROW INDICATES THE TOTAL AMOUNT OF GESTURES USED IN THE TEST.
THE “N/D” COLUMN INDICATES THE NUMBER OF TRAJECTORIES

CLASSIFIED AS NONGESTURES. RECOGNITION RATE FOR DIGITS IS 94%.
NONDIGIT GESTURE TRAJECTORIES WERE NOT TESTED HERE
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