
Information Processing Letters 23 (1986) 305-310 3 December 1986
North-Holland

A BIT-STRING L O N G E S T - C O M M O N - S U B S E Q U E N C E ALGORITHM

Lloyd ALLISON and Trevor I. DIX

Department of Computer Science, University of Western Australia. Nedlands, Western Australia 6000

Communicated by M.A. Harrison
Received 7 October 1985
Revised 17 December 1985

A longest-common-subsequence algorithm is described which operates in terms of bit or bit-string operations. It offers a
speedup of the order of the word-length on a conventional computer.

Keywords: Longest common subsequence, edit distance, bit string

1. Introduction

The longest-common-subsequence (LCS) problem is to find the maximum possible length of a common
subsequence of two strings, " a " of length l a l and " b " of length I b l . Usually, an actual LCS is also
required. For example, using the alphabet A, C, G, and T of genetic bases, an LCS of " G C T A T " and
" C G A T T A " is " G T T " of length three.

Here, an algorithm which requires O(l a l x I b l) operations on single bits or O([l a I /w] x I b I)
operat ions on w-bit compute r words or O(I b I) operat ions on l a I-bit bit-strings, for a fixed finite
alphabet, is presented. Al though falling into the same complexity class as simple LCS algorithms, if w is
greater than any addit ional multiplicative cost, this algori thm will be faster. If l a l ~< w, the algori thm is
effectively linear in I b l . (An alphabet larger than I b I can effectively be reduced to I bl by sorting " b " in
O(I b I x log I b I) time and using index positions in the sorted string.)

The LCS problem is related to the edit-distance [11] or evolutionary-distance problem [9,10], where the
min imum cost of editing string " a " to string " b " must be found. The elementary edit operations are to
insert or delete one character or to change one character. There is a cost function, d(-, .), which can be
extended to strings in the obvious way. A common choice for the e lementary edit costs is

d(et, et) = O,
d(a , 13) -- 2
d(tx, -) = 1
d (- , et) = 1

if ot :~ 13 (cost of changing character o~ to 13),
(cost of deleting et),
(cost of inserting et),

and then d(a, b) = l a t + I b l - 2 x I LCS(a, b) l.
The LCS problem and the edit-distance problem find applications in computer science and molecular

biology [8,9,10,11,12]. An LCS algorithm can compare two files and, by finding what they have in
common, compute their differences. It can be used to correct spelling errors and to compare two genetic
sequences for homology (similarity).

U n d e r plausible assumptions [1,13], the worst-case complexity of an LCS or edit-distance algorithm on
strings over an infinite a lphabet must be O(l a I x I b l) time. Masek and Paterson [5] give an O(l a I × I b l /

0020-0190/86/$3.50 © 1986, Elsevier Science Publishers B.V. (North-Holland) 305

Volume 23, Number 6 INFORMATION PROCESSING LETTERS 3 December 1986

log(rain{ l a l , I b l})) edit-dlstance algori thm for strings over a finite alphabet with modest restrictions on
d(. , .). However, this is faster than simple algorithms only for strings longer than about 200000
characters. For special cases there are faster algorithms: for similar strings [3,6], and for strings with few
matching characters [4], but their worst-case running time is at least O (l a l × I b l) .

The algorithm presented here certainly has complexity O([a I × I b I) for a finite alphabet, but asymptot-
ically the improvement in speed is close to w. The algorithm is insensitive to the number of matches
between strings and to their similarity.

1.1. M a t r i x L ,.

Conventionally a matrix Lij is defined as follows:

i']" 1£3 __ r°w3

b 2 - - r o w 2 s t r ing b

j bl - - row 1
<

• .. a 1 a 3 a 2 matrix Lij
string a

Lij equals the length of an LCS of a 1 j and b 1 i,

1 + Li_l~_ 1 if aj = b i ,

Lij = max{Li_l , i , Lid_l} otherwise.

This leads to simple dynamic-programming algorithms [8] upon which this offe is based. A reflected
representation of matrix L is typically used; the above representation is chosen to make the reading of
certain bit-strings easier.

L has many interesting properties:

Li_ ld_l ~< Lid_l , Li- l , j ~< Lij, ILij - L i_ ld_ l] ~< 1.

The rows and columns of Lij contain ascending values for increasing i and j. This prompted Hunt and
Szymanski [41 and Hirschberg [31 to 'contour ' L and develop fast algorithms for special cases.

2. Bit-string algorithm

The values in the rows of L increase by at most one. This makes it possible to represent the information
in L by a bit-matrix, as shown in Fig. 1,

L 0 = ~ Ma,.
k = l , . . . , j

Row i has either the same number of bits set or one more bit set than the previous row, row i_ 1- New bits
are set towards the left of a row. The length of an LCS of " a " and " b " is the n u m b e r of bits in the top
row. Let l ' s in a particular row tend to drift the right as we look (up) at the next row. This is because when
more of "b'" is used, an LCS of a given length can be found using no more of, and possibly less of, "a" .
The l ' s mark the contour lines of matrix L.

306

Volume 23, Number 6

b i t s
10 0 1 0 1 1 0 0 0 1 0 1 1 1 1 1 1
10 1 0 0 1 1 0 0 0 1 0 1 1 1 1 1 1

9 0 0 0 1 1 0 0 0 1 0 1 1 1 1 1 1
9 0 1 0 0 1 0 0 0 1 0 1 1 1 1 1 1
8 0 0 1 0 0 0 1 0 0 0 1 1 1 1 1 1
7 0 0 0 0 1 0 0 0 1 0 0 1 1 1 1 1
7 1 0 0 0 0 0 0 1 0 0 0 1 1 1 1 1
7 1 0 0 0 0 1 0 0 0 0 0 1 1 1 1 1
6 0 0 0 0 0 1 0 1 0 0 0 0 1 1 1 1
5 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 1
5 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 1
4 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1
3 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1
3 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1
2 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

G T C T T A C A T C C G T T C G
string a

Fig. 1.

INFORMATION PROCESSING LETTERS

T
G
T
T
C
T
A
G
A
A
T
T
C
G
A
T

string b

- - r o w l l

- - FOWl0

matr ix M ij

3 December 1986

2.1. Alphabet-strings

E a c h letter in the alphabet defines a bit-string when it is compared with the elements of "a""

a" G T C T T A C A T C C G T T C G

A-string: 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0
C-string: 0 0 1 0 0 0 1 0 0 1 1 0 0 0 1 0
G-str ing: 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1
T-str ing: 0 1 0 1 1 0 0 0 1 0 0 0 1 1 0 0

Precomputing these alphabet-strings contributes O(Jalphabet [× [l a] / w] + [a[) to the time complexity.
For a fixed alphabet, this is O([a [); for a nonfixed alphabet, this could be O(lal × Ib l) at worst. If the
alphabet is small ([alphabet [<< [b]) , the contribution to the total time can be ignored.

2.2. Matrix M

To calculate rowi, we use the ith character in string "b" , bi, to select the bi-string from the set of
alphabet-strings. The l ' s in rowi_ 1 'cut ' the bi-string into segments:

rowl0 • 1 0 0 0 0 0 0 1 0 0 0 1 1 1 1 1
T-string: 0 1 0 1 1 0 0 0 1 0 0 0 1 1 0 0

Each segment extends from the posit ion of a I in row i_ a rightward to the position to the left of the next 1.
If the left-hand bit of row i_ 1 is zero, the left-most segment extends from the left of the bi-string to the
position left of the first 1. Row i is formed by setting only the rightmost 1 bits in each segment of the
b~-string. If a segment is all zero, the bit defining the left end of the segment should be set in row i (that is

307

Volume 23, Number 6 INFORMATION PROCESSING LETTERS 3 December 1986

the segmenting bit in row i_ 1)- This can be ensured by first or-ing row i_ 1 into the bi-string.

T-string v row10:
1 1 0 1 1 " 0 0 1 1" 0 0 1" 1" 1" 1" 1"

rowl~: 0 0 0 0 1 0 0 0 1 0 0 1 1 1 1 1
* indicates a right-most 1.

It may be convenient to imagine an invisible 1 at position l a I + 1 for a lef tmost segment which is zero, but
this is unnecessary for the algorithm.

A 1 in row i_ 1 marks the shortest piece of " a " that can be used to make an LCS of a certain length with
bl i-~. Bringing b i into use, the best that can be done to extend that LCS is to use the first b i in " a " to
the left of the 1, if possible• This is marked by the rightmost 1 bit in the next segment to the left.

In more detail, let x = rowi_ 1 v bi-string , for example, x = row10 v T-string:

x" 1 1 0 1 1 0 0 1 1 0 0 1 1 1 1 1

Each segment of x can be read as a binary number• There is a ' folk- technique ' that decrement ing a binary
number changes the low-order bits [7] up to and including the least-significant 1. The co~ec t decrement
for each segment can be found by a logical left-shift of rowi_ 1 with a 1 carry-in:

x" 1 1 0 1 1 0 0 1 1 0 0 1 1 1 1 1
- 0 0 0 0 0 0 1 0 0 0 1 1 1 1 1 1

1 1 0 1 0 1 1 1 0 1 1 0 0 0 0 0

A nonequivalence of the result and x sets the changed bits:

0 0 0 0 1 1 1 0 1 1 1 1 1 1 1 1

And- ing this with x gives the r ightmost bits in each segment:

0 0 0 0 1 0 0 0 1 0 0 1 1 1 1 1

This is rowi, rowll in this example.
In summary:

with

row i = x A ((x - (rowi_ 1 << 1)) ~ x),

V A : ~

where x = row i_ x v bi-string

• bit-string operations,
" logical left-shift bit-string; r ight-hand bit set,
• l a l -b i t integer subtraction•

The bit-string operat ions can be done in units of a word-length. The shift and subtract ion can also be done
one word at a time, taking care that the carry-out-bi t and the borrow-bi t are propagated.

The number of bits set in a word can be counted in O(log 2 w) t ime; this is at tr ibuted to D. Muller in
1954 in [7]• The n u m b e r of l ' s in the final row can therefore be calculated in O([la I / w] × log 2 w) time.

2.3. An L C S

An LCS, as opposed to just its length, can be obtained in at least two ways. Hirschberg's recursive
technique [2] can be used to find an LCS in linear space at the cost of slowing the algorithm by a factor of
two.

308

Volume 23, Number 6 INFORMATION PROCESSING LETTERS 3 December 1986

b i t s
10 0 1

10 1 t 0
v

9 0 0

9 0 1

0 1

0 1

0 1

0 0

8 0 0 1 0 0

0 0 0 1 [
I

0 0 0 0

0 0 0 0

0 0 0 0

7 0

7 1

7 1

5 0 0 0 0 0 0

5 0 0 0 0 1 I 0
I

4 0 0 0 0 0 0

3 0 0 0 0 0 0

0 0

0 0

0 0

0 0

I I 0 0
I

0 0

0 1 [0
$

0 0

o I
o 1 I
0 0

0 0

0 0

1 0 1

1 0 1

1 0 1

1 0 1

0 1

1 0 0

0 0

0 0 0

0 0 0

0 0 0

0 0 0

1 I 0 0
I

0 0 1 /
J

1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 I 0 0 0 0]
0 0 0 0 0 0 0 0 0 0 0

G T C T T A C A T C C
string a

Fig. 2.

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

0 1 1

0 1 1

0 1 1

0 0 1

0 0 0

1 0 0

0 0 1

0 0 1

G T T

1

1

1

1

1

1

1

1

1

1

1

1

1

0

0

0

C

1

1

1

1

1

1

0

0

G

T string b

G

T

T

C

T

A

G

A

A

T

T

C

G

A

T

matrix M q

Alternatively, all rows of M can be kept, the space required is [a I x I bl bits, [l a l / w] x I bl words.
This is quite practical for strings of the order of 1000 characters. Then, an LCS can be recovered by
finding the 'corners' of the contours in L which stand out as patterns in M (see Fig. 2). This takes
O(I a I + I b I) time. The emboldened characters in Fig. 2 indicate an LCS.

3. Simulation results

Both the simple O(l a I × I b l) algorithm [2,8] and the bit-string algorithm to calculate the length of an
LCS have been implemented in C and run on a VAX 11 /750 with a 32-bit word. For random strings and
an alphabet of size 4 the resulting speedups were

lal x l b l Time ratio (s imple/bit)

32 x 32 6
64 x 64 10

100 x 100 11
500 × 500 25

1000 x 1000 26
4000 x 4000 27

309

Volume 23, Number 6 INFORMATION PROCESSING LETTERS 3 December 1986

For comparison, an alphabet of size 256 resulted in

l a I x I b I Time ratio (simple/bit)

32 x 32 2
64 x 64 5

100 x 100 6
500 x 500 19

1000 x 1000 21
4000 × 4000 27

A similar number of operations are in the inner loop of each algorithm. The bit-string algorithm is well
suited to optimization since it works across rows of matrix M and alphabet-strings. For small alphabets,
the bit-string algorithm clearly provides a considerable speedup.

4. Conc lus ions

The time complexity of the bit-string LCS algorithm on a computer with w-bit words for a fixed finite
alphabet is O([la I /w] x Jb I)- This gives a speedup over simple O(la I x Jb I) algorithms. The time does
not depend on properties of "a" and "b". For random strings and moderate alphabets, the bit-string LCS
algorithm will be faster than the special case algorithms.

The algorithm might also be programmed, on a vector computer if carry-out and borrow bits can be
propagated from word to word in a vector-shift and a vector-subtract operation. It could be 'pipelined' in
a diagonal fashion on a vector or parallel machine because the least significant bit (or word) of row i +1 can
be calculated as soon as the least significant bit (or word) of row i has been calculated.

R e f e r e n c e s

[1] A.V. Aho, D.S. Hirschberg and J.D. Ullman, Bounds on
the complexity of the longest common subsequence prob-
lem, J. ACM 23 (1) (1976) 1-12.

[2] D.S. Hirschberg, A linear space algorithm for computing
maximal common subsequences, Comm. ACM 18 (6)
(1975) 431-433.

[3] D.S. Hirschberg, Algorithms for the longest common sub-
sequence problem, J. ACM 24 (4) (1977) 664-675.

[4] J.W. Hunt and T.G. Szymanski, A fast algorithm for
computing longest common subsequences, Comm. ACM
20 (5) (1977) 350-353.

[5] W.J. Masek and M.S. Paterson, How to computer string-
edit distances quickly, in: D. Sankoff and J.B. Kruskal,
eds., Time Warps, String Edits and Macromolecules: The
Theory and Practice of Sequence Comparison (Addison-
Wesley, Reading, MA, 1983).

[6] N. Nakatsu, Y. Kambayashi and S. Yajima, A longest
common subsequence algorithm suitable for similar text

strings, Acta Informatica 18 (1982) 171-179.
[7] E.M. Reingold, J. Nievergelt and N. Deo, Combinatorial

Algorithms: Theory and Practice (Prentice-Hall, En-
glewood Cliffs, N J, 1977).

[8] D. Sankoff and J.B. Kruskal, eds., Time Warps, String
Edits and Macromolecules:. The Theory and Practice of
Sequence Comparison (Addison-Wesley, Reading, MA,
1983).

[9] P.H. Sellers, On the theory and computation of evolution-
ary distances, SIAM J. Math. 26 (4) (1974) 787-793.

[10] P.H. Sellers, The theory and computation of evolutionary
distances: Pattern recognition, J. Algorithms 1 (4) (1980)
359-373.

[11] R.A. Wagner and M.J. Fischer, The string-to-string cor-
rection problem, J. ACM 21 (1) (1974) 168-173.

[12] M.S. Waterman, General methods of sequence compari-
son, Bull. Math. Biology 46 (4) (1984) 473-500.

[13] C.K. Wong and A.K. Chandra, Bounds for the string
editing problem, J. ACM 23 (1) (1976) 13-16.

310

