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A longest-common-subsequence algorithm is described which operates in terms of bit or bit-string operations. It offers a 
speedup of the order of the word-length on a conventional computer. 
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1. Introduction 

The longest-common-subsequence (LCS) problem is to find the maximum possible length of a common  
subsequence of two strings, " a "  of length l a l  and " b "  of length I b l .  Usually, an actual LCS is also 
required. For  example, using the alphabet A, C, G, and  T of genetic bases, an LCS of " G C T A T "  and 
" C G A T T A "  is " G T T "  of length three. 

Here,  an algorithm which requires O( l a l x  I b l )  operations on single bits or O([  l a I /w]  x I b I) 
operat ions on w-bit compute r  words or O( I b I) operat ions on l a I-bit bit-strings, for a fixed finite 
alphabet,  is presented. Al though falling into the same complexity class as simple LCS algorithms, if w is 
greater than any addit ional  multiplicative cost, this algori thm will be faster. If l a l  ~< w, the algori thm is 
effectively linear in I b l .  (An alphabet  larger than I b I can effectively be reduced to I bl  by sorting " b "  in 
O( I b I x log I b I) time and using index positions in the sorted string.) 

The LCS problem is related to the edit-distance [11] or evolutionary-distance problem [9,10], where the 
min imum cost of editing string " a "  to string " b "  must  be found. The elementary edit operations are to 
insert or  delete one character  or to change one character. There is a cost function, d(-,  .), which can be 
extended to strings in the obvious way. A common choice for the e lementary edit costs is 

d(et, et) = O, 
d(a ,  13) -- 2 
d(tx, - )  = 1 
d ( - ,  et) = 1 

if ot :~ 13 (cost of changing character o~ to 13), 
(cost of deleting et), 
(cost of inserting et), 

and then d(a, b) = l a t + I b l  - 2  x I LCS(a, b) l. 
The LCS problem and  the edit-distance problem find applications in computer  science and molecular  

biology [8,9,10,11,12]. An  LCS algorithm can compare  two files and, by finding what  they have in 
common,  compute  their differences. It can be used to correct spelling errors and to compare two genetic 
sequences for homology (similarity). 

U n d e r  plausible assumptions [1,13], the worst-case complexity of an LCS or edit-distance algorithm on 
strings over an infinite a lphabet  must  be O( l a I x I b l) time. Masek and Paterson [5] give an O( l a I × I b l /  
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log(rain{ l a l ,  I b l}) )  edit-dlstance algori thm for strings over a finite alphabet with modest  restrictions on 
d( . ,  .). However,  this is faster than simple algorithms only for strings longer than about 200000 
characters. For  special cases there are faster algorithms: for similar strings [3,6], and for strings with few 
matching characters [4], but their worst-case running time is at least O ( l a l  × I b l ) .  

The algorithm presented here certainly has complexity O( [a I × I b I) for a finite alphabet,  but asymptot-  
ically the improvement  in speed is close to w. The algorithm is insensitive to the number  of matches 
between strings and to their similarity. 

1.1. M a t r i x  L ,. 

Conventionally a matrix Lij is defined as follows: 

i']" 1£3 __ r°w3 

b 2 - -  r o w  2 s t r ing  b 

j bl - -  row 1 
< 

• .. a 1 a 3 a 2 matrix Lij 
string a 

Lij equals the length of an LCS of a 1 ..... j and b 1 ..... i, 

1 + Li_l~_ 1 if aj  = b i ,  

Lij = max{Li_l , i ,  Lid_l}  otherwise. 

This leads to simple dynamic-programming algorithms [8] upon which this offe is based. A reflected 
representation of matrix L is typically used; the above representation is chosen to make the reading of 
certain bit-strings easier. 

L has many  interesting properties: 

Li_ ld_l ~< Lid_l ,  Li- l , j  ~< Lij, ILij - L i_ ld_ l ]  ~< 1. 

The rows and columns of Lij contain ascending values for increasing i and j. This prompted  Hunt  and 
Szymanski [41 and Hirschberg [31 to 'contour '  L and develop fast algorithms for special cases. 

2. Bit-string algorithm 

The values in the rows of L increase by at most  one. This makes it possible to represent  the information 
in L by a bit-matrix, as shown in Fig. 1, 

L 0 = ~ Ma,. 
k = l , . . . , j  

Row i has either the same number  of  bits set or one more bit set than the previous row, row i_ 1- New bits 
are set towards the left of a row. The length of an LCS of " a "  and " b "  is the n u m b e r  of bits in the top 
row. Let l ' s  in a particular row tend to drift the right as we look (up) at the next row. This is because when 
more of "b'" is used, an LCS of a given length can be found using no more of, and  possibly less of, "a" .  
The l ' s  mark  the contour  lines of  matrix L. 
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# b i t s  
10 0 1 0 1 1 0 0 0 1 0 1 1 1 1 1 1  
10 1 0 0 1 1 0 0 0 1 0 1 1 1 1 1 1  

9 0 0 0 1 1 0 0 0 1 0 1 1 1 1 1 1  
9 0 1 0 0 1 0 0 0 1 0 1 1 1 1 1 1  
8 0 0 1 0 0 0 1 0 0 0 1 1 1 1 1 1  
7 0 0 0 0 1 0 0 0 1 0 0 1 1 1 1 1  
7 1 0 0 0 0 0 0 1 0 0 0 1 1 1 1 1  
7 1 0 0 0 0 1 0 0 0 0 0 1 1 1 1 1  
6 0 0 0 0 0 1 0 1 0 0 0 0 1 1 1 1  
5 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 1  
5 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 1  
4 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1  
3 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1  
3 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1  
2 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0  
1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0  

G T C T T A C A T C C G T T C G  
string a 

Fig. 1. 
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2.1. Alphabet-strings 

E a c h  letter in the alphabet defines a bit-string when it is compared with the elements of "a"" 

a" G T C T T A  C A T C  C G T T C  G 

A-string: 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 
C-string: 0 0 1 0 0 0 1 0 0 1 1 0 0 0 1 0 
G-str ing:  1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 
T-str ing:  0 1 0 1 1 0 0 0 1 0 0 0 1 1 0 0 

Precomputing these alphabet-strings contributes O( Jalphabet [ × [ l a ] / w ]  + [a[) to the time complexity. 
For  a fixed alphabet,  this is O( [a [); for a nonfixed alphabet, this could be O( lal × Ib l) at worst. If the 
alphabet is small ( [alphabet [ << [b]) , the contribution to the total time can be ignored. 

2.2. Matrix M 

To calculate rowi, we use the ith character in string "b" ,  bi, to select the bi-string from the set of 
alphabet-strings. The l ' s  in rowi_ 1 'cut '  the bi-string into segments: 

rowl0 • 1 0 0 0 0 0 0  1 0 0 0  1 1 1 1 1 
T-string: 0 1 0 1 1 0 0  0 1 0 0  0 1 1 0 0 

Each segment extends from the posit ion of a I in row i_ a rightward to the position to the left of the next 1. 
If the left-hand bit of row i_ 1 is zero, the left-most segment extends from the left of the bi-string to the 
position left of the first 1. Row i is formed by setting only the rightmost 1 bits in each segment of the 
b~-string. If a segment is all zero, the bit defining the left end of the segment should be set in row i (that is 
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the segmenting bit in row i_ 1)- This can be ensured by first or-ing row i_ 1 into the bi-string. 

T-string v row10: 
1 1 0 1 1 "  0 0 1 1" 0 0 1" 1" 1" 1" 1" 

rowl~: 0 0 0 0 1  0 0 0 1  0 0 1 1 1 1 1 
* indicates a right-most 1. 

It may  be convenient  to imagine an invisible 1 at position l a I + 1 for a lef tmost  segment which is zero, but 
this is unnecessary for the algorithm. 

A 1 in row i_ 1 marks the shortest piece of  " a "  that can be used to make  an LCS of a certain length with 
bl ..... i-~. Bringing b i into use, the best that can be done to extend that  LCS is to use the first b i in " a "  to 
the left of  the 1, if possible• This is marked  by  the rightmost 1 bit in the next segment to the left. 

In more  detail, let x = rowi_ 1 v bi-string , for example, x = row10 v T-string: 

x" 1 1 0 1 1 0 0  1 1 0 0  1 1 1 1 1 

Each segment of x can be read as a binary number• There  is a ' folk- technique '  that decrement ing a binary 
number  changes the low-order bits [7] up to and including the least-significant 1. The co~ec t  decrement  
for each segment can be found by a logical left-shift of  rowi_ 1 with a 1 carry-in: 

x" 1 1 0 1 1 0 0  1 1 0 0  1 1 1 1 1 
- 0 0 0  0 0 0 1  0 0 0 1  1 1 1 1 1 

1 1 0 1 0 1 1  1 0 1 1  0 0 0 0 0 

A nonequivalence of the result and x sets the changed bits: 

0 0 0 0 1 1 1  0 1 1 1  1 1 1 1 1 

And- ing  this with x gives the r ightmost  bits in each segment:  

0 0 0 0 1 0 0  0 1  0 0  1 1 1 1 1 

This is rowi, rowll in this example. 
In summary:  

with 

row i = x A ( ( x -  (rowi_ 1 << 1)) ~ x),  

V A : ~  

where x = row i_ x v bi-string 

• bit-string operations, 
" logical left-shift bit-string; r ight-hand bit set, 
• l a l -b i t  integer subtraction• 

The  bit-string operat ions can be done in units of  a word-length.  The shift and  subtract ion can also be done 
one  word at a time, taking care that the carry-out-bi t  and  the borrow-bi t  are propagated.  

The number  of bits set in a word can be counted  in O(log 2 w) t ime; this is at tr ibuted to D. Muller  in 
1954 in [7]• The n u m b e r  of  l ' s  in the final row can therefore be calculated in O([  la I / w ]  × log 2 w) time. 

2.3. An L C S  

An LCS, as opposed to just  its length, can be obtained in at least two ways. Hirschberg's  recursive 
technique [2] can be used to find an LCS in linear space at the cost of  slowing the algorithm by a factor of  
two. 
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Fig. 2. 
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Alternatively, all rows of M can be kept, the space required is [a I x I bl  bits, [ l a l / w ]  x I bl  words. 
This is quite practical for strings of the order of 1000 characters. Then, an LCS can be recovered by 
finding the 'corners' of  the contours in L which stand out as patterns in M (see Fig. 2). This takes 
O( I a I + I b I) time. The emboldened characters in Fig. 2 indicate an LCS. 

3. Simulation results 

Both the simple O( l a I × I b l )  algorithm [2,8] and the bit-string algorithm to calculate the length of an 
LCS have been implemented in C and run on a VAX 11 /750  with a 32-bit word. For random strings and 
an alphabet of size 4 the resulting speedups were 

lal x l b l  Time ratio (s imple/bit)  

32 x 32 6 
64 x 64 10 

100 x 100 11 
500 × 500 25 

1000 x 1000 26 
4000 x 4000 27 
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For comparison, an alphabet of size 256 resulted in 

l a I x I b I Time ratio (simple/bit)  

32 x 32 2 
64 x 64 5 

100 x 100 6 
500 x 500 19 

1000 x 1000 21 
4000 × 4000 27 

A similar number of operations are in the inner loop of each algorithm. The bit-string algorithm is well 
suited to optimization since it works across rows of matrix M and alphabet-strings. For small alphabets, 
the bit-string algorithm clearly provides a considerable speedup. 

4. Conc lus ions  

The time complexity of the bit-string LCS algorithm on a computer with w-bit words for a fixed finite 
alphabet is O([ la I /w] x Jb I)- This gives a speedup over simple O( la I x Jb I) algorithms. The time does 
not depend on properties of "a"  and "b".  For random strings and moderate alphabets, the bit-string LCS 
algorithm will be faster than the special case algorithms. 

The algorithm might also be programmed, on a vector computer if carry-out and borrow bits can be 
propagated from word to word in a vector-shift and a vector-subtract operation. It could be 'pipelined'  in 
a diagonal fashion on a vector or parallel machine because the least significant bit (or word) of row i +1 can 
be calculated as soon as the least significant bit (or word) of row i has been calculated. 
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