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Simple, polynomial-time, heuristic algorithms for finding approximate solutions to 
various polynomial complete optimization problems are analyzed with respect to their 
worst case behavior, measured by the ratio of the worst solution value that can be 
chosen by the algorithm to the optimal value. For certain problems, such as a simple 
form of the knapsack problem and an optimization problem based on satisfiability 
testing, there are algorithms for which this ratio is bounded by a constant, independent 
of the problem size. For a number of set covering problems, simple algorithms yield 
worst case ratios which can grow with the log of the problem size. And for the problem 
of finding the maximum clique in a graph, no algorithm has been found for which the 
ratio does not grow at least as fast as n s, where n is the problem size and c > 0 
depends on the algorithm. 

1. INTRODUCTION 

Cook and Karp  in [1, 6] have shown the existence of a class of combinatorial  
problems, the "polynomial  complete" problems, such that if any of these problems can 
be solved in polynomial time, then they all can. Many  of these problems, such as 
tautology testing and the traveling salesman problem, have become notorious for their  
computat ional  intractability, and it is widely conjectured that none of them can be 
done in polynomial time. Many problems of this class can be viewed as optimization 
problems. Some examples of such optimization problems are: 

S U B S E T - S U M :  Given a finite set of positive numbers and another positive 

number  called the "goal," find that  subset whose sum is closest to, without 

exceeding, the goal. 
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BIN-PACKING: Given a finite list of numbers between 0 and 1 and a 
sequence of unit-capacity bins, find a packing of the numbers into the bins such 
that no bin contains a total exceeding 1 and the number of nonempty bins is 
minimized. 

MAXIMUM SATISFIABILITY: Given a set S of disjunctive form clauses, 
all of whose disjuncts are either literals or their negations, find a truth assignment 
to the literals which satisfies (makes true) the most clauses. 

SET COVERING I: Given a finite cover of a finite set, find that subcover 
which uses the fewest sets. 

SET COVERING II: Given a finite cover of a finite set, find that subcover 
which has the least overlapping. 

GRAPH COLORING: Given a graph, find a coloring of the nodes so that 
no two adjacent nodes have the same color, and the total number of colors used 
is minimized. 

MAXIMUM CLIQUE: Given a graph, find the maximum subgraph all of 
whose points are mutually adjacent. 

Work on the above-mentioned BIN-PACKING problem [2, 4, 5] has suggested 
an approach that may be applied to the others. Since no fast algorithm for finding an 
optimal solution could be found, simple heuristic algorithms that seemed likely 
to generate fairly good packings were studied. It was found that certain of these simple 
algorithms could guarantee near-optimal results. For instance, the FIRST FIT  
DECREASING algorithm guarantees that, asymptotically, no more than 11/9 times 
the optimal number of bins will be used. This type of result also has appeared in 
earlier work on a dual problem having to do with multiprocessor scheduling, for which 
an extensive bibliography is given in [3]. 

This paper examines polynomial-time heuristic "approximation algorithms" for the 
other optimization problems listed above, in an attempt to get further results of this 
type. We discover that a wide variety of worst case behaviors are possible. 

Some algorithms, such as the ones we present for SUBSET-SUM and MAXIMUM 
BATISFIABILITY, have the same type of behavior as FIRST FIT  DECREASING 
in that they guarantee that the solution they generate will be no worse than a constant 
times the optimal, and indeed that constant can be quite close to 1. 

For other algorithms, such as the ones we present for the two SET COVERING 
problems, there is no fixed bound on the ratio of the worst case results to the optimal, 
but that ratio can grow no faster than the log of the problem size. 

For still others, such as some of the coloring algorithms we give and all of the 
algorithms for MAXIMUM CLIQUE that have been suggested, the ratio grows at 
least as fast as O(n~), where n is the problem size and e > 0 depends on the algorithm. 
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We also consider the possibility of using the reductions which show that problems 
are polynomial equivalent to translate our results from one optimization problem to 
another. Karp's reductions in [6] are all between language recognition problems, but 
we can often extend them directly to the associated optimization problems. Difficulties 
arise, however, since a "good" approximate solution for one problem may map to a 
solution for the other which is not at all good according to the measure for the second 
problem. 

In Section 2 we introduce a formal framework within which to discuss the above 
problems, defining what we mean by "optimization problem," "approximation 
algorithm," "worst case behavior," etc. Each of the next six sections is devoted to one 
of the problems, and finally Section 9 presents some general observations and con- 
clusions. 

2. APPROXIMATION ALGORITHMS 

An optimization problem P consists of 

1. a set INPUTv of possible inputs, 

2. a map SOL;, which maps each u ~ INPUT e to a finite set approximate 
solutions, 

3. a measure me: SOLe(INPUTp) --> Q+ defined for all possible approximate 
solutions. 

In addition, the problem P is specified as a maximization problem or a minimization 
problem, depending on whether the goal is to find an approximate solution with 
maximal or minimal measure. For each u ~ INPUTv,  the optimal measure up* is 
defined by 

up* = BEST{me(x): x ~ SOLe(u)}, 

where BEST stands for MAX or MIN depending on whether P is a maximization or 
minimization problem. Since SOLe(u) is finite, there must be at least one solution 
x e SOLe(u ) such that me(x ) = up*, and such a solution will be called an optimal 
solution. 

An approximation algorithm for problem P, or simply an algorithm, is any method 
for choosing approximate solutions, given u ~ INPUT e . (Since the algorithms we 
will study are not always completely determined, more than one solution may be 
choosable for a given input). If A is an approximation algorithm for problem P, then 
the performance A(u)e of A for input u is defined 

A(u)e = WORST{me(x): x e SOLe(u ) and x is choosable by A on input u}, 
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where WORST is MIN if BEST is MAX, and vice versa. As a measure of the relative 
worst case behavior of algorithm A on input u, we shall use the ratio 

re(A,  u) = tue*/A(u)e ' 
I A ( u ) . / . . * ,  

if P is a maximization problem, 
if P is a minimization problem. 

Note that this ratio has been defined so as to always be greater than or equal to 1. 
For a given input u, the problem size [u ] is the number of symbols required to 

describe u in some standard notation. Our measure of the overall worst case behavior 
of algorithm A with respect to problem P will be a function R[A, P]: N + ~ R defined 
by 

R[A, P](n) = MAX{rp(A, u): u ~ INPUTp and I u I ~ n}. 

As defined, R[A, P] is an increasing function of n. 
When there is no possibility of confusion, we will often delete the subscripts P from 

our notation, and let R[A] stand for R[A, P]. Of particular interest are algorithms A 
for which R[A] has a fixed upper bound independent of n. Examples of these are given 
in the next two sections. 

3. SUBSET-SUM 

This maximization problem is a simple form of the well-known "knapsack problem." 
We shall denote it by SS, and restate it in terms of our formal definitions: 

INPUTss  = {(T, s, b): T is a finite set, s : T -*  Q+ is a map 

which assigns to each x ~ T a "size" s(x), 

and b > 0 is a single rational number}. 

SOLss((r,  s, b>) = IT'_C T: s(x)<b I. 
xET" 

mss(r') = 
~ T  ' 

The optimal measure for input (T, s, b) is (with subscripts omitted) 

(T, s, b)* = MAX{m(T'): T '  _C T and m(r') ~ b}. 

We shall study a series of approximation algorithms {Ak: k >~ 1}, where algorithm 
A~ is defined as follows. 



260 DAVID S. JOHNSON 

1. Let SUB be that subset of {x ~ T: s(x) > b/(k + 1)} whose measure is 
closest to, without exceeding b. Let SUM be this measure, and set L E F T  -=- 
T -  SUB. 

2. If for all x ~ LEFT,  s(x) + SUM > b, halt and return SUB. 

3. Let y be an element of L E F T  for which s(y) + SUM is closest to, without 
exceeding, b. 

4. Set LEFT  = L E F T  -- {y}. SUB = SUB t3 {y}, SUM = SUM + s(y). 

5. Go to 2. 

Remark. Algorithm A 1 is closely related to the FIRST FIT  DECREASING 
algorithm for BIN-PACKING [5], since the set chosen by it consists of those elements 
which would be assigned to the first bin if T were being packed into bins of size b by 
that algorithm. However, the BIN-PACKING results are apparently of no use to us 
here, since they dealt with the number of bins used, not the sum of the pieces in the 
first bin. 

The majority of the effort in these algorithms, at least for k ~ 2, is concentrated in 
the first step. Since the set found in this step has [ SUB [ ~ k, the step can be accom- 
plished using at most O(n k) comparisons and additions, where n ----- [ T ], and we do 
not know how to do any better. The A~, thus, are a series of seemingly increasingly 
expensive algorithms. However, they yield increasingly better results as follows. 

THEOREM 1. For k ~ 1 and n > 0, 

R[A,](n) ~ (k + 1)/k, 

lim R[A~](n) = (k + 1)/k. 

Proof. For the upper bound, suppose we are given an input (T,  s, b) and T 1 C T 
is choosable by algorithm At on this input. We actually prove the somewhat stronger 
result that either m(T 0 = (T, s, b)* or else m(T1) >/[k/(k + 1)] �9 b. Let T o be an 
optimal solution for the given input. We now partition T~ for i e {0, 1} as follows. 

T i --~ T~ BIG U T/sMALL, 

where T Bm = {x a Ti: s(x) > b/(k + 1)}, and --,T'SMALL ---- Ti --  --Tm~i . We thus have, 

for i~{0, 1}, 

m(Ti) = rn(T~ m) + rn(TSMALL). 

By Step 1 of algorithm A , ,  m(T~ IG) ~ Y'/(ToBIG), If T sMALL D_D_ T0 sMALL, we would 
also have m(T sMALL) >/ m(T0SMALL), and so T 1 would be optimal. 
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On the other hand, if some x ~ T0 SMALL were excluded from T1 SMALL, then by Step 2 

of A k ,  s(x) + re(T1) > b, and so 

re(T1) > b -- s(x) ~ b -- b/(k 4- 1) = kb/(k 4- 1) ~ [k/(k 4- 1)](T, s, b}*. 

Thus in all cases we have r(Ak,  
proven. 

For the lower bound on the limit, 

T 

s(a,) = l 

b = k  

(T, s, b)) ~< (k + 1)/k, and the upper bound is 

consider the input (T, s, b) where 

= {al ,..., ak+2} ,  

14-e ,  for i = l ,  
1, otherwise. 

4-1. 

Clearly (T,  s, b)* = k + 1 and Ak((T,  s, b)) = k 4- E. Thus, r(Ak,  (T ,  s, b)) = 
(k 4- 1)/(k + e). Since e can be made arbitrarily small by making the problem size n 
large enough, we thus have limn_~oo R[Ak](n) >~ (k 4- 1)/k and the theorem follows. 

The above result shows that the SUBSET-SUM optimization problem has the 
desirable property: For any ~ > 0, there is a polynomial-time algorithm X, such that 
R[X,] ~< 1 + ~ .  

Sahni [8] has extended our results to show that a more complicated version of 
SUBSET-SUM also has this property. In the ONE-DIMENSIONAL KNAPSACK 
problem, each x E T, in addition to having a size s(x), has a utility u(x). The goal is 
then to maximize ~xeT' U(X) over the same set of approximate solutions as in SUBSET- 
SUM. Sahni essentially proves that Theorem 1 holds for the new problem when A k 
is replaced by a slightly more expensive algorithm Ak'. Unfortunately, these problems 
and some minor variants are the only such problems we have found. 

In the next section we present a problem from which we can obtain in a natural way 
a sequence of subproblems which are all polynomial complete. We exhibit approxima- 
tion algorithms B1 and B2 for this problem with the property that for any E > 0 and 
i ~ {1, 2}, there exists a subproblem Pi,~ with R[Bi, Pi,~] <~ 1 4- E. 

4. MAXIMUM SATISFIABILITY 

This maximization problem is not a naturally occurring optimization problem, 
but instead was derived from the language recognition problem called SATISFIA- 
BILITY in Karp's paper [6]. Although such derived problems often seem to have no 
practical applications, it is hoped that their analysis can help us learn more about the 
nature of polynomial complete problems in general. MAXIMUM SATISFIABILITY 

57x/9/3-3 
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has been chosen as an example because our resuks illustrate another type of behavior 
for approximation algorithms. 

Let L = Ui>0 {xi, xi} be a set of literals. A clause will be any finite subset C _C L. 
A truth assignment will be any subset T _C L such that for no i > 0 is {xi, xi} _C T. 
Truth assignment T satisfies clause C if C n T 4: ~ .  The MAXIMUM SATIS- 
F IABILITY problem, denoted by MS, is given by 

INPUTMs = {S: S is a finite set {C1, C 2 ,..., C~} of clauses}, 

SOLMs(T ) = {S' _C S: there exists a truth assignment T 
which satisfies every clause C e S'}, 

mMs(S') = IS'  I. 

MS(k) will denote the subproblem with inputs restricted to sets of clauses, each 
clause of which contains at least k distinct elements. MS(k) is polynomial complete 
for all k ~ 1. 

Each of our algorithms will work by generating a truth assignment TRUE, while 
keeping track of the associated set SUB of satisfied clauses. The first, B1, is a simple 
heuristic that can be implemented in time O(n log n). 

1. Set SUB = ~ ,  T R U E  = ~ ,  L E F T  = S, L I T  = L .  

2. If  no literal in L I T  is contained in any clause of LEFT,  halt and return SUB. 

3. Let y be the literal in L I T  which is contained in the most clauses of LEFT,  
and YT be the set of clauses in LEFT which contain y. 

4. Set SUB = SUB u YT, L E F T  = L E F T  --  YT, T R U E  = TRUE k9 {y}, 
and L I T  = L I T  --  {y, .~}, (where xl = xl). 

5. Go to 2. 

THEOREM 2. For all k ~ 1 and n > 0, 

RIB1, MS(k)](n) ~ (k + 1)/k, 

with equality for all sufficiently large n. 

Proof. Suppose Algorithm B1 is being applied to a set S of clauses, all of which 
contain at least k literals. Each time a literal is added to TRUE, the number of clauses 
saved, i.e., added to SUB, is by Step 3 at least as large as the number of clauses 
remaining in L E F T  which are wounded, i.e., have one of their literals removed from 
L I T  without being added to TRUE. When the algorithm halts, the only clauses left 
in L E F T  are those which have been wounded as many times as they contain literals, 
and hence are dead. This means that when the algorithm halts there are at least 
k �9 [ L E F T [  wounds, and hence I SUB I >~ k �9 I L E F T  1. Thus, S* ~< [ S[ = 
I SUB I § [ L E F T  I ~ [(k + 1)/k] �9 [SUB 1. The upper bound follows. 
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For the lower bound, we give an example when k = 3. Similar examples can be 
constructed for any other k > 0. Consider the input 

S = {{Xl, x2, x3) , {'~1, x4,  xs}, 

{e3, x. ,  x,}}. 

Clearly S* = 4 since the truth assignment T = {x 1 , x4, x n , x8} will satisfy all four 
clauses. However, each of the literals occurs exactly once, so that B1 might choose 
T R U E  = {gl,  xz, 23}, thus killing the clause {x 1 , x2, x3}. Hence BI (S)  • 3 and so 
r(B1, S) = 4/3 = (k + 1)/k. 

Obviously this algorithm leaves much room for improvement.  Since the worst case 
examples require that all the wounded clauses eventually die, it apparently could 
be to our advantage to have our algorithm save as many of the wounded as possible. 
Algorithm B2 incorporates this idea and still only requires t ime O(n log n): 

1 Assign to each clause C e S a weight w(C) = 2-1cl. Set SUB = T R U E  ~ ~ ,  
L I T  ----L, and L E F T  = S. 

2. I f  no literal in any clause of L E F T  is in L I T ,  halt and return SUB. 

3. Let  y be any literal occurring in both L I T  and a clause of L E F T .  Let  Y T  
be the set of clauses in L E F T  and containingy, YF the set of clauses in L E F T  
containing ~. 

4. IfY'~CeYT w(C) ~ ~ceYF w(C),set T R U E  ~ T R U E  U {y}, SUB = SUB k9 Y T  
L E F T  = L E F T  --  YT,  and for each C e YF, set w(C) = 2w(C). Otherwise, 
set T R U E  = T R U E  k9 { ~}, SUB = SUB k) YF, L E F T  ~ L E F T  - -  YF, 
and for each C e YT,  set w(C) = 2w(C). 

5. Set L I T  ~ L I T - -  {y,y},  and go to 2. 

Note that since the choice of which literal to consider at Step 3 is left largely un- 
determined, there is room in this algorithm for the insertion of heuristics which might 
improve its average case behavior. Its worst case behavior is already perhaps a sur- 
prising improvement  on that of algorithm B1 as follows. 

THEOREM 3. For k >~ 1 and n > O, R[B2, MS(h)](n) ~< 2k/(2 k - -  1), with equality 
for all suOiciently large n. 

Proof. Suppose algorithm B2 is applied to a set S, all of whose clauses contain at 
least k literals. Initially, the total weight of all the clauses in L E F T  cannot exceed 
[ S [/2 k. During each iteration, the weight of the clauses removed from L E F T  is, 
by Step 4 of algorithm B2, at least as large as the weight added to those remaining 
clauses which receive new wounds. Thus  the total weight of the clauses in L E F T  can 
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never increase, and so, when the algorithm halts, it still cannot exceed [ S 1/2 k. But 
each of the dead clauses in L E F T  when the algorithm halts must  have been wounded 
as many times as it had literals, hence must have had its weight doubled that many 
times, and so must have a final weight of 1. Therefore I L E F T  ] ~< t S]/2~, and so 
] SUB ] >/- ] S 1(1 - -  1/2 k) and the upper  bound follows. 

We again give a lower bound example for k ---- 3 which can be generalized for 
arbitrary k. Consider the input 

s = {{xl, x=, x.}, {s x, ,  xs}, 
{Xl, s x3}, {s x . ,  x,}, 
{Xl, x2, s {s x8, x9}, 
{x~, x~, s {s X~o, x~d}, 

where x 1 occurs in clauses with all possible combinations of a literal from {x2,2~} and 
one from {xa, 23}, and 21 occurs in an equal number  of clauses, each filled out with 
new literals. S* ~ 8 since the truth assignment T ~ {x I , x4, x 6 , x s , xl0 } satisfies 
all eight clauses. However, if algorithm B2 chose literal s first, we would have 
~.CeYTg0(C) ~-1/2 >~ ~C~yFW(C)= 1/2, and so s would have been added to 
T R U E ,  with the consequence that one of the four clauses containing x 1 must eventually 
die. Thus  B2(S) = 7, and so r(B2, S) = 8/7 = 2k/(2 k - -  1). 

An interesting fact about the proofs of Theorems 2 and 3 is that they are independent 
of the value of S*, and hence actually prove stronger results than are given by the 
statements of the theorems. The  proof of Theorem 3, for instance, guarantees that B2 
will yield a set of size at least [I S I(2 ~ - -  1)/2k], no matter  what S* is, and the reader 
may verify that S* can be as small as [I S 1(2 k - -  1)/2k]. 

5. S E T  C O V E R I N G  I 

This  section deals with a minimization problem, denoted by SC, from which we can 
again obtain a natural sequence of polynomial complete subproblems. However for 
this problem the restriction on the input is relaxed as the index k of the subproblem 
SC(k) increases, and although we have an algorithm C1 such that, for each k, 
R[C1, SC(k)] is bounded by a constant independent of the size of the input, this 
constant can grow arbitrarily large as k increases. 

In  our format, the problem is described as follows. 

I N P U T s c  = {F: F is a finite family {St ,  S~ ,..., S~} of finite sets}. 

msc(F' ) = [ F' [. 
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If we consider the inputF to be a finite cover of the set T = 0s~r S, then an optimal 
solution to the problem is a minimum cardinality subcover. This problem has practical 
applications in areas such as logic design and fault testing. 

SC(k) will denote the subproblem with inputs restricted to families, no set of which 
has more than k elements. For k ) 3, each of these subproblems is itself polynomial 
complete. Our algorithm C1 is again a straightforward heuristic, implementable 
in time O(n log n) and given by the following. 

1. Set SUB = ~ , U N C O V =  Us~FS, N =  F [ , S E T [ i ]  = S i , 1  <~i<~N. 

2. If UNCOV = ~,  halt and return SUB. 

3. Choosej ~ N such that [ SET[j]1 is maximized. 

4. Set SUB = SUB u {Sj}, UNCOV = UNCOV --  SET[j],  SET[i] = 
SET[i] -- SET[j],  1 ~< i ~< N. 

5. Go to 2. 

/z 
THEOREM 4. For all k ~ 1 and n > O, R[C1, SC(k)](n) ~< ~j=l (l/j), with 

equality for all sufficiently large n. 

Proof. First we show that the bound is attainable for sufficiently large n. Let the set 
to be covered, T, consist of k �9 k] points, as shown in Fig. 1. F will consist of k! sets 
making up the optimal subcover F 0 ~ " , and k[(~j= t (l/j)) additional sets which will make 
up a subcover F x that algorithm C1 might choose. Divide T into k segments of kl 
points each, labeled from 1 to k, as shown. 

FO: kt msaomT k-ELEMENT SETS, EACH WiTH ONE POINT 
PER SEGMENT 

/ 

T: SEGMENT SEGMENTk_ 1 SEGMENTk 

k POINTS k POINTS k[ POINTS 

, / \ i / ~  
k [  DISJOINT k I k I 

I 

Ft: 1- ELEMENT ~DISJOINT ~ -  DISJOINT 

SETS (k- 1) ELEMENT k-  ELEMENT 
SETS SETS 

FIO. 1. SET COVERING I inputF for which r(C1,F) >~ ~2~= 1 (l/j). 

The optimal subcover F o consists of k ! disjoint sets, each containing one point from 
each of the k segments. The choosable subcoverF 1 is made up of k !/k disjoint k-element 
sets forming a cover of segment k, k!/(h -- 1) disjoint (k -- 1)-element sets forming a 
cover of segment k -  1 ..... and k! disjoint single element sets forming a 
cover of segment 1. C1 could choose the k!/k sets covering segment k first, since each 
will cover k new points. After these have been chosen, no remaining set covers more 
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than k - -  1 new points, so C1 could next choose the k!/(k -- 1) sets covering segment 
k - -  1. This  process could continue until C1 had chosen the entire subcover F 1 with 
its k!(llk + ll(k -- 1) + "'" -}- 1) sets, and so r(C1,F) >~ ~-~jL1 (l/j). 

For the upper  bound, let us consider the operation of the algorithm. The  only 
internal variables which are interrogated when decisions are made are N, UNCOV,  
and SET[/],  1 ~ i ~ N. We shall thus define a configuration K of the algorithm to be 
a triple 

<NK, U N C O V ~ ,  (SETx[1],. . . ,  SETx[NK]>), 

NK where NK is a value for N, etc., and 0 i=1SETr[ i ]  = UNCOV1c. 
A run R from a configuration K will be a sequence 

R = (K(1), j (1) ,  K(2),j(2),..., K(t -- 1),j(t  - -  1), K(t))  

of alternating configurations and integers such that K(1) = K,  UNCOVK(~) # ~ ,  
i < t, UNCOV~c(0 = ;~, and such that if the algorithm enters Step 2 in configuration 
K(i), i < t, it can choosej(i)  at Step 3, and the resulting configuration, after choosing 
j(i) and updating at Step 4, is K(i + 1). We may think of a run as a possible pass 
through the algorithm, and say for instance that when j(i) was chosen, the value of 
SET[k] was SETK(o[k ], I ~< k ~ N K . 

Note that all t he j ' s  in the sequence must  be distinct, since once j  is chosen, S E T ( j )  
is set to ~ ,  and so j cannot be chosen again. Let  Numbers(R) be the set of the j 's 
in the run R. We say that a set M of integers is selectable from configuration K if there 
is a run R from K such that M = Numbers(R).  The  following lemma is an obvious 
consequence of these definitions. 

LEMMA 1. Suppose F 1C_F is a subcover and M1 = {i: SieFx}. Let K be the 
configuration of algorithm C1 after it has been given input F and initialized itself via 
Step 1. Then F1 is choosable by C1 given F if and only if M1 is selectable from K. 

T h e  desired upper bound will be a consequence of a second, less trivial, Iemma. 

LEMMA 2. Let K be any configuration, and write n(K, i) for ] SETK[i][. I f  M1 is 
selectable from K and MO is any set such that O~MO SET~[i] = UNCOVtc ,  then 

In(K,i) )) 
i M l l  ( z ( l i i  . 

i 0 j=l 

Proof of Lemma. We proceed by induction on h = MAX{n(K, i): i e M0}. The  
lemma holds trivially for h = 0, because if ] SETK[i]I : 0, i ~ M0, and yet UNCOVIc : 
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Ui~MO SETr[i] ,  we must have U N C O V r  = ~ ,  and hence for any M1 selectable from K, 

I M I [  = 0 =  ~2 ( I / j ) ,  
ieMO 

since the inner sums on the right are sums of 0 terms. 
Suppose now the lemma holds for h = k --  1. We shall show it also holds for h = k. 

So let K be a configuration, M0  be a set such that M A X { n ( K ,  i): i ~ M0} = k and 
(Ji~uo SETK[i] = U N C O V x ,  and suppose the set M1 is selectahle from K. Since M1 
is selectable, there is a run R -- (K(1) , j (1 ) , . . . , j ( t  --  1), K ( t ) )  with g(1)  ----- K and 
such that M1 = Numbers(R). Let  r be the least i such that I SET~:(i)[j(i)] ] < k, 
that is, the index of the first j  in the run R for which I SET[j]I  was less than k when j  
was chosen, (if none exists, let r = t). 

If we let M ~ {j(i): i < r} and COV = UNCOVx(1) - -  UNCOV~(r),  then, since 
eve ry j  chosen prior to j(r)  had ] SET(j)]  > / k  at the time was chosen, we must have 

[ M I ~< [ COV Ilk. (5.1) 

Now let us turn to configuration K ' =  K(r).  The  set M I ' =  {j(i): i > / r}  = 
M1 --  M is selectable from K' ,  since R' = (K(r ) , j ( r ) , . . . , j ( t  - -  I), K( t ) )  is a run from 
K' ,  inheriting this property from R. Furthermore, consider the sets SETn,[i], i ~ M0. 
None of these sets can have more than k --  1 elements, since j (r )  can be chosen from 
K '  = K(r )  at Step 3, and I SET/c,[j(r)] I < k by definition (unless r = t, in which 
case I SET/~'[i]I ---- 0 for all i). Moreover, since SETK.[i ] = SETK[i ] - -  COV, we have 
that 

U SETg,[i] = (J SETg[i] --  COV = UNCOV~, .  
iEMO i~MO 

Thus  the induction hypothesis for k --  1 applies to K' ,  M l ' ,  and M0, and we have 

i n ( K  ",i) \ 

I M I ' I  • Z ~ s (t/j)}. (5.2) 
ieMO \ j ~ l  / 

Now for each i e M0, 

n(K,i)  n(K' , i )  n(k,i)  

Z ( 1 / j ) =  2 ( 1 / j ) +  ~ (1/.1"/. 
j = l  1 n(K' , i )+l  

Since SETr, [ i  ] C SETK[i], and ] SET~[i][ ~< k for i e M0  by assumption, and since 
(l/j) >~ (l/k) for 1 ~< j ~< k, the above quantity thus exceeds 

n(K'i)  

(l/j) + ] SETr[ i ]  - -  SETx,[i]]" (l/k). 
)=1 
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Then,  since 2~,~/o [ SET~[i]  - -  SETr,[i]I  ~> I {3,~MO (SETK[i] - -  SETK.[i])I 
I UNCOV~ -- U N C O r k ,  I = I COV I, we have 

X ( X  (1/j > t2  (1/j +ICOVI/k 
i~MO j=l  i~MO \ j=l 

> / I M I ' I  + I M I  = IM11,  

by (5.1) and (5.2). Thus  the lemma holds for h = k and, by induction, is proved. 
T o  conclude the upper  bound proof, let F be any family, no set of which contains 

more than k elements, F o an opt imum subcover, and F 1 a choosable subcover with 
CI (F)  = ] F 1 {. Let  K be the configuration of C1 after it has been given input F and 
initialized itself via Step 1. Let  M 0  = {i: Si sFo} and M1 = {i: Si ~F1}. Since t7' 1 is 
choosable given F, M1 must be selectable from K, by Lemma  1. Moreover, since F o 
is a subeover, Ui~Mo SETr[ i ]  = UNCOVK.  Thus  Lemma  2 applies and we have 

CI (F)  = I F l l  = I M1 1 

~ t j~ 1 ( l / j ) ) =  2 (I/j) 
iEMO So~F j= 

(l/j) = I F o l 2  (l/j), 
So~F ~j=l j=l 

and the upper  bound follows. 
As a consequence of Theorem 4, we can conclude that, for the general problem SC 

with no restriction on inputs, R[CI, SC](n) ~ In(n) + 1, where n is the size of the 
input. This  is because if it takes n symbols to describe the family F, surely no set in F 
can have more than n elements, and 

K K 
(l / j)  < 1 + In(k) < ~ (l/j) + 1/2. 

j=l j=l 

Tha t  R[C1, SC] actually is O(ln(n)) can be seen from the generic example given in 
Fig. 2 [9]. 

Here T consists of 3 �9 2 k points. The  optimal cove rF  0 consists of three disjoint sets 
of 2 e points each, so F*  = 3. The  subcover F 1 found by algorithm C1 however 
consists of k + 1 sets of size 3 �9 2 k-l, 3 �9 2k-~,..., 3 �9 4, 3 �9 2, 3, and 3, respectively. 
Since F can be described by giving a bit vector of length [ T 1 for each element of F, 
we may say n ~ [F  [ �9 [ T [ = (k + 4)3 �9 2 k, and so logs(n ) ,~  k + logs(k) ,-~ k. Thus  

r(C1,F) = (k + 1)/3 ,~  (log S n)/3 ~-~ (.48)(In(n)). 



FIG. 2. 

ALGORITHMS FOR COMBINATORIAL PROBLEMS 

T: 3.2k POINTS 

ONE SET ONE SET ONE'SET 
Ft : ,  o �9 3.2 k-3 3,2k-z 3,2k-1 

POINTS POINTS POINTS 

FO: 
\ 

bONE SET 

J 2 k POINTS 

I ONE SET 
2 k FOINTS 

).  ONE SET 
t f 2k POINTS 

SET COVERING I input F for which r(CI,F) ,~ O(log~ n). 

269 

Since k can be taken to be arbitrarily large, it follows that R[C1, SC] must be at least 
O(ln(n)). 

As an example of how results from one polynomial complete optimization problem 
can be directly applied to another if the reduction between the two is simple enough, 
we now briefly consider the problem NC of finding a minimal node cover. This 
minimization problem has inputs which are graphs G = (N, A), and approximate 
solutions are subsets N'  C N of the nodes such that for each arc in A, one of its 
endpoints is in N'. The measure is m(N') = IN'  t. NC(k) refers to the subproblem 
with inputs restricted to graphs, no node of which is connected to more than k other 
nodes. 

NC is equivalent to SC with inputs F restricted so that every point in User S is in 
precisely two sets of F, for in this case the points may be made to correspond to arcs 
of a graph and the sets to nodes. Since our examples in Figs. 1 and 2 obeyed this 
restriction, all our lower bound results for SC and SC(k) apply to NC and NC(k). 
(The upper bounds apply because NC is a subproblem of SC.) 

However, if we still further restrict the inputs, and let SC'(k) and NC'(k) be the 
problems where exactly k elements are in each set of the input family F, then although 
the lower bound results for SC(k) can still be shown to hold for SC'(k), we have for 
NC'(k) an entirely different (and stronger) result as follows. 

THEOREM 5. For all k >/ 1 and n > O, R[C1, NC'(k)](n) ~ 2, and for all sufficiently 
large n, R[C1, NC'(k)](n) ~ (2k -- 1)/k. 

The upper bound given here is better than the one guaranteed by the SC(k) result 
for all k >/4.  However, note that if all points of T occur in precisely two sets o fF  and 
all sets have precisely k elements, IF [ = (2 [ T Ilk) ~ 2F*. Akhough this constitutes 
a short proof of the theorem's upper bound, its major significance is that it shows 
that the algorithm which simply says, "Given input F, return F," can guarantee this 
same upper bound without doing any work at all! 
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6. SET COVERING II 

The following set covering problem differs from SC only in the measure chosen. 
It is a minimization problem based on the EXACT COVER recognition problem 
presented in [6], which asks whether an input family F has a disjoint subcover. Our 
optimization problem will hence be denoted by EC: 

INPUTEc = { F :  F is a finite family {S 1 , $2 ,.. .  , S~} of finite sets}. 

SOLEc(F) = IF 'CF :  U S = U St 
- -  S ~ F '  S ~ F  I " 

mEc( F ' ) =  ~ I SI.  
S e F "  

An optimal solution is a subcover of the set T = !,isle S with the least possible 
overlapping. EC(k) will be the subproblem with inputs restricted to families, no set of 
which contains more than k points. For k >~ 3, each of these subproblems is again 
polynomial complete. 

Now if all the sets in the family F had exactly k elements, then for each subcover F'  
we would have mEc(F' ) = k - msc(F'), and the optimal solutions for both SC and EC 
would be the same. However, for less restricted inputs, the two problems diverge, 
and optimal solutions for one can be bad for the other. For instance, if OSC is an 
algorithm which always chooses an optimal solution for the SC problem, then (proof 
omitted), 

lim R[OSC, EC(k)](n) = k. 

R [ o s c ,  EC] = O(n). 

Conversely, an algorithm OEC which always chooses an optimal solution to the EC 
problem will have reciprocal inapplicability: 

lim R[OEC, SC(k)](n) = k. 
n--> oo 

R[OEC, SC] = O(n). 

Surprisingly, however, there exists an algorithm C2 which, when applied to problem 
EC, will have behavior quite similar to that of C1 applied to SC. C2 also can be imple- 
mented in time O(n log n) and is described as follows. 

1. Set SUB = ~,  LEFT = F ,  UNCOV = ()s~vS. 

2. If UNCOV = ~,  halt and return SUB. 

3. Let S' E LEFT be that set S which minimizes 

Ratio(S) = I S -- UNCOV I/1 S n UNCOV I. 
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4. Set SUB = SUB w {S'}, U N C O V  = U N C O V  --  S' ,  L E F T  = L E F T  --  {S'}. 

5. Go to 2. 

THEOREM 6. For all k >~ 1 and n > O, 

k 

R[C2, EC(k)](n) ~ 1 + In(k) ~< ~ (l/j)  + 1/2, 
j = l  

k 
and for all sufficiently large n, R[C2, EC(k)](n)/> Zj=I  (l/j). 

Proof. The  lower bound follows from an example much like that given in Fig. 1, 
except that all the sets in F 1 are filled out with points from segment k so that each has 
exactly k elements. 

For the upper  bound, let F be any input, all of whose sets have k or fewer elements, 
and let F 0 be an optimal subcover. I f  we set T = Us~F S, we then have m(Fo) : 
F* = a l T I ,  f o r s o m e a ,  1 ~ a  ~ k .  

Now suppose F 1 is choosable by C2 on input F, and let us restrict our attention to 
some particular run of C2 during which F 1 is chosen. For each S E F  1 , let the overlap 
ov(S) be the value of [ S - U N C O V  [ when S was added to SUB by C2. The  cumulative 
overlap OV(F1) is defined to be ~S~F 1 ov(S), and we have 

m(F1) = I T I + OV(F1). 

Now let us consider the action of C2 onF,  and its relation to the sets of the opt imum 
cover F 0 . I f  at a given time a set S '  is chosen with Ratio(S') = ] S '  - -  U N C O V  I/ 
[ S '  n U N C O V  [ ) y, then at this time each S ~ F  0 can have at most 1/(y 4- 1) of its 
points in UNCOV.  For if S ~ F  0 n SUB, S has no points in UNCOV;  otherwise we 
must have Ratio(S) ) Ratio(S') ) y, so [ S ~ U N C O V  1/[ S [ ~ 1/(y 4- 1). Thus  

] U N C O V i  ~< ~ ] S t ~ U N C O V I  
FcS o 

F*/(y  4- 1) = a [ T I/(Y 4- 1). 

And therefore, at least ] T [(1 - -  a/(y 4- 1)) points, and quite possibly more, must be 
outside of UNCOV,  i.e., already covered. Thus  we cannot choose an S '  with 
Ratio(S') ~ y until 1 - -  a/(y 4- 1) of the points of T have been covered. Conversely, 
if x = [ T - -  U N C O V  [/[ T [, then Ratio(S') for the next set S '  chosen cannot exceed 
a/(1 -- x) -- 1. 

Ratio(S') gives, for each new point covered by the set S' ,  the number  of points in 
the set which overlap points already covered. This  fact leads to interpretation of 
OV(F1) as the area under a curve. See Fig. 3. 

We divide the X-axis into a sequence of intervals of length 1/] T[  corresponding 
to the points of T, laid out along the X-axis in the order that the points were covered 
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a- t  

o 
t - a / k  t.o 

FIG. 3. 

~X 

OV(F1) as the area under a curve. 

by the algorithm. The Y-value for each interval is the number of overlaps contributed 
by the corresponding point, as measured by Ratio(S') for the first set S '  that covered it. 
The  function f so defined is an increasing step function on the interval (0, 1], with 
maximum value k - -  1, and 

o v ( F 1 ) t =  I T I f (x)  dx. 

Now an X-value x in the graph can be thought of as representing the value of 
[ T - -  U N C O V  t/l T I at the time the point was chosen which corresponds to the 
interval containing x. Thus  by our reasoning a few paragraphs above, f (x)  <~ 
a/(1 - -  x) - -  1, for all x ~ (0, 1]. Thus  an upper bound on OV(F1) will be [ T [ times 

( 1-~1~ 1 dx + [k - -  1] dx, 

where we have replaced g(x) = a/(1 - -  x) - -  1 by k - -  1 for x > 1 - -  a/k, since we 
have g(x) > k - -  1 for such x, even though f (x)  never can be. Transforming and 
evaluating, we find that the above equals 

= a[O - -  ln(a) + ln(k)] - -  1 + a/k + a -- a/k 

a[ln(k) + 1] - -  1. 

Thus  OV(F1) ~< [ T [(a[ln(k) + 1] - -  1), and so 

m(F1) <~ ] T ] + [ T ](a[ln(k) + 1] - -  1) 

= a [ T [[In(k) + 1] = F*[ln(k) + 1]. 

The  upper bound follows. 
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Thus, despite the differences in measures and the differences in algorithms, our 
results for R[C2, EC(k)] are practically the same as the results for R[C1, SC(k)]. 
Continuing the parallel, we also have R[C2, EC] ~ O(In(n)). The lower bound 
example is a modification of that given in Fig. 2, where F o is as before, and each of the 
smaller sets o fF  1 has points added to it from the largest one to bring its total cardinality 
up to 3 - 2  ~-1. Thus C 2 ( F ) = ( k  q-1)(3.2k-1),  and so r(C2,F)= (k + 1)/2 = 
O(ln(n)), where the problem size n is the same as in the original example. 

7. GRAPH COLORING 

The results of the next two sections are negative in character, as we can show only 
lower bounds on the worst case behavior of the approximation algorithms we study. 
However, these lower bounds will be sufficiently large to serve as a warning that such 
simple heuristics may well have drawbacks. In our format, GRAPH COLORING,  
denoted by GC, is a minimization problem given by the following. 

INPUToc  = {G = (N, A): G is a finite undirected graph with nodes N and arcs A). 

SOLoc(G ) = {h: N--~ {1, 2,..., I N 1}: if there is an arc between nodes x andy, 
h(x) h(y)}. 

mcc(h) = [{z: z = h(x), for some x ~ N)I. 

An approximate solution can be interpreted as a coloring of the nodes of the graph, 
such that no two adjacent nodes have the same color. An optimal solution is a coloring 
with the minimum possible number of colors. If  k > /G* ,  we say that G is k-colorable. 
This problem is often called the "timetabling problem," and occurs in practical 
situations such as scheduling exams. Welsh and Powell [10], Wood [11], and Matula, 
Marble, and Isaacson [7] have described what are essentially approximation algorithms 
for the problem, although they did not analyze their worst case behavior. The Welsh 
and Powell algorithm, which we shall call D 1, is the same sort of simple heuristic we 
have studied above: 

1. Set UNCOLORED = N, COLORED[i] = ~ ,  1 ~< i ~< [ Nf ,  I : 1. 

2. If  UNCOLORED = ~ ,  halt and return COLORED[/], 1 ~< i ~ I. 

3. I f  each node in UNCOLORED is connected to some node in COLORED[/],  
s e t / = [ q -  1. 

4. Let x be a node in UNCOLORED with maximum degree among those not 
connected to any node in COLORED[/].  

5. Set COLORED[I]  : COLORED[I]  w {x}, UNCOLORED : UN-  
COLORED --  {x}, and go to 2. 
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FIG. 4. 

Ol Q2 03 

63: 

bl bz b3 

Two-colorable graph Ga with DI(Ga) = 3. 

This algorithm behaved reasonably for Welsh and Powell on the small examples 
they considered; however, there is a sequence {G~} of two-colorable graphs such that 
graph Gk has only 2k nodes but DI(Gk) = k. Figure 4 shows G a . Graph Gk = 
(Ark, Ak) has nodes and arcs: 

Nk : {az ,..., as ,  bl ,..., bk}, 

A~ : {(ai, b3: i :~j}. 

Gk has two-coloring h(ai) = 1, h(bi) = 2, 1 <~ i <~ k. Algorithm D1, since all 
nodes have the same degree, could color the nodes in the order a 1 , b 1 , a 2 , b 2 .... , ak,  
bk, and so set h(al) = h(bl) = 1, h(a2) = b(h2) ~-- 2,..., and h(ak) = h(b~) = k, 
thus using k colors. Hence r(D1, Gk) k/2. Since the number of arcs in Gk is propor- 
tional to k 2, and we can describe a graph by listing its nodes and arcs, we thus can 
conclude that RID1] ~ 0(nl/2). 

One way to try to improve this algorithm is to use a different rule for choosing x 
in Step 4. For instance, consider algorithm D2 which replaces Step 4 in the above by 
the following. 

. Let POSS be that subset of U N C O L O R E D  made up of all the points not 
connected to any member of COLORED[I ] .  Let x be the node in POSS 
connected to the fewest other nodes in POSS. 

It  is easy to see that R[D2] ~ O(log n): There is a sequence {Hk} of two-colorable 
graphs such that H k has 2 k points and D2(Hk) = k + 1. Figure 5 shows H 1 - H  4 . 
H~+x is obtained from H k by adding 2 k new points and arcs, each new point connected 
by a new arc to a different one of the 2 k points of Hk.  The new points are the circled 
points in the figure. Algorithm D2 applied to Hk+l would choose these new points 
first, coloring them all the same color, and then would have to start with a second color 

HI H2 H3 H 4 

FIo. 5. Graphs H~, 1 < k < 4. 
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on the remaining graph, which is just H k . Since H 1 requires two colors, we thus can 
conclude that D2(Hk) = k -~- 1, r(D2, Hk) ~ (k + 1)/2, and R[D2] ~ O(log n). 

In fact, these examples can be improved upon, so that the size of the graph requiring 
k + 1 colors grows more slowly than a k for any a > 1 (but faster than any polynomial 
in k), and so the above inequality is a strict one. We can also show that the Wood 
algorithm [11], and even the most sophisticated of the algorithms in [7], are at least 
O(log n). Since we have no upper bound proofs, all these algorithms may be con- 
siderably worse. 

However, one algorithm, which we shall call D3, has been proposed for which 
R[D3] definitely is O(log n). Let an independent subset of the nodes of G be any 
subset, no two nodes of which are adjacent in G. D3 can be described as follows. 

1. Set UNCOLORED = N, I = 1, COLORED[i] = ~,  1 ~ i ~< [ N I. 

2. If UNCOLORED ---- ~,  halt and return COLORED[i], 1 ~ i < L 

3. Let IND be the maximum sized independent subset of UNCOLORED. 

4. Set C O L O R E D [ I ] -  IND, UNCOLORED = UNCOLORED -- IND, 
I = 1 + 1, and go to 2. 

D3 is really only our set covering algorithm C1 in disguise, applied to the cover 
of N by the family of its independent subsets, and since an optimal coloring corre- 
sponds to a minimum cardinality subcover of this family, our upper bound results for 
SC apply, and tell us that R[D3, GC] ~ O(log n). The graphs Hk given in Fig. 5 can 
be used to show that equality holds. 

Unfortunately, it is unlikely that D3 can be implemented in polynomial time. Step 3 
is equivalent to the problem of finding the maximum sized clique in a graph, and 
hence is itself a polynomial complete problem. And note the results of the following 
section. 

8. MAXIMUM CLIQUE 

For this maximization problem, we have not found any polynomial-time algorithms 
which even might be as good as O(log n). Denoting the problem by MC, we have 

INPUTMc = {G = (N, A): G is a finite undirected graph with nodes N and ares A}, 

SOLMc(G) = {N' C N: there is an arc in A between each pair of nodes in N'}, 

mMc(U') = iN '  1. 

The approximate solutions are the cliques of the graph. An optimal solution is a 
maximum sized clique. A straightforward heuristic for this problem, implementable 
in time O(n log n), is algorithm E1 given below: 
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1. Set SUB = ~ ,  REST = N. 

2. I f  REST = ~ ,  halt and return SUB. 

3. Let y E REST be that element connected to the most other elements of REST. 

4. Set SUB = SUB u {y}. REST = REST - -  {points not connected to y}. 

5. Go to 2. 

L /J 
P0 �9 Pk 

FIG. 6. Graph G with r(E1,  G)  = k /2  ~ O(nl/~). 

Figure 6 shows an example of a graph wkh 2k + 1 points, k of which form a clique 
of size k, for which algorithm E1 will find only cliques of size two. P would be chosen 
first as it is the only point connected to k other points, but this foredooms the eventual 
clique found to have just two points. Thus r(E1, G) = k/2. Since the graph has 
proportional to k 2 arcs, we thus have R[EI] ~ O(nX/~). 

The alternative approach of starting with N and deleting nodes until a clique 
remains is just as bad. Consider algorithm E2: 

1. Set SUB = N. 

2. If  SUB is a clique, halt and return SUB. 

3. Let y e SUB be the node connected to the fewest other nodes in SUB. 

4. Set SUB = SUB --  {y} and go to 2. 

o t G z Ok 

bt b2 bk 

FIG. 7. Graph G with r(E2, G) = k/2 ~ O(nll~). 

Figure 7 shows a graph with 3k points, k of which form a clique of size k, for which 
E2 will choose a clique of size two. The right-hand component is much like the graph G 
we presented in the previous section; each of the k points in the top line is conneeted 
to each of the k points in the bottom line, but no two points in the same line are con- 
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nected. Since each of the points in the k clique is connected to only k -- 1 other points, 
the first k points deleted by E2 will be the points of the k clique, leaving a graph 
whose largest clique is of size two. Thus r(E2, G) = k/2, and again R[E2] ~ 0(nl/2). 

Minor attempts at modifying E1 and E2 may avoid the pitfalls of the particular 
examples we have given, but to date every proposed n2-time algorithm E based on 
such a modifications has been shown to also have R[E] ~ O(nl/~). 

The only way (apparently) to improve on this lower bound is to use algorithms 
requiring more than n ~ time. For instance, we might try to improve algorithm E1 by 
adding backtracking on a large scale, much as we improved algorithm A1 in Section 3. 
Let Fj be the algorithm which enumerates all the cliques of size j in the graph G, and 
then runs algorithm E1 once for each one, each time initializing SUB to the clique in 
question. Fj then returns the largest of the cliques found by E1 in this process. 

PJ,I 

/ANY SUBCLIQUE 
OF SIZE d 

Fro. 8. Graph G with r(Fj, G) = k/(j § 2) ~ O(nX/~J+1~). 

Our best lower bound on R[Fj] is O(na/(~+a)). Figure 8 shows a graph with ~ k  j+l 
points (k >~j), k of which form a clique of size k, for which Fj will only find a clique 
of size j -F 2. For each subclique J of size j in the k clique, there are k additional 
points Pja-Pj.~. PJ.a and the nodes of the clique J are mutually connected to the 
k -- 1 other Pj.i's. Since each point Pi outside of J but still in the k clique is only 
mutually connected with the nodes of J to k - - j -  1 other points, algorithm E1 
started on SUB = J will next choose PI.I and thus have to settle for a clique of size 
j + 2. Thus r(Fj, G) = k/( j  + 2). Since there are ~k~ subcliques of size j in a 
clique of size k, our graph has Nk j+l points, thus our example yields the lower bound 
R[Fj] >/0(nl/O+1)). 

The cost for this apparent improvement in worst case behavior is a running time 
proportional to n j+2. If we wish to further increase our expense, we could modify E1 
so that in Step 3 it looked for a clique of sizej instead of a single point. This however, 
would only lower the constant of proportionality in the lower bound, as can be seen 
by substituting a clique of sizej for each of the points PJ.i in the above example. 

We have found no polynomial-time algorithm E for this problem for which there 
does not exist an E > 0 such that R[E] > O(n'), and no way to reduce the ~ without 
significantly increasing the algorithm's cost. 

571/913-4 
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9. CONCLUSION 

The results described in this paper indicate a possible classification of optimization 
problems as to the behavior of their approximation algorithms. Such a classification 
must remain tentative, at least until the existence of polynomial-time algorithms for 
finding optimal solutions has been proved or disproved. In the meantime, many 
questions can be asked. Are there indeed O(log n) coloring algorithms ? Are there any 
clique finding algorithms better than O(n 0 for all E > 0 ? Where do other optimization 
problems fit into the scheme of things ? What is it that makes algorithms for different 
problems behave in the same way ? Is there some stronger kind of reducibility than 
the simple polynomial reducibility that will explain these results, or are they due to 
some structural similarity between the problems as we define them ? And what other 
types of behavior and ways of analyzing and measuring it are possible ? 

Note Added in Proof. Substantial improvements on the results of Section 7 have been made 
and are to appear. 
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