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ABSTRACT
Shapelets are discriminative patterns in time series, that
best predict the target variable when their distances to the
respective time series are used as features for a classifier.
Since the shapelet is simply any time series of some length
less than or equal to the length of the shortest time series
in our data set, there is an enormous amount of possible
shapelets present in the data. Initially, shapelets were found
by extracting numerous candidates and evaluating them for
their prediction quality. Then, Grabocka et al. [2] proposed
a novel approach of learning time series shapelets called
LTS. A new mathematical formalization of the task via a
classification objective function was proposed and a tailored
stochastic gradient learning was applied. It enabled learn-
ing near-to-optimal shapelets without the overhead of trying
out lots of candidates. The Euclidean distance measure was
used as distance metric in the proposed approach. As a lim-
itation, it is not able to learn a single shapelet, that can
be representative of different subsequences of time series,
which are just warped along time axis. To consider these
cases, we propose to use Dynamic Time Warping (DTW)
as a distance measure in the framework of LTS. The pro-
posed approach was evaluated on 11 real world data sets
from the UCR repository and a synthetic data set created
by ourselves. The experimental results show that the pro-
posed approach outperforms the existing methods on these
data sets.

1. INTRODUCTION
Applicability in broad range of real life domains makes

time series classification an interesting topic for the research
community. Time-series data often exhibits inter-class dif-
ferences in terms of small sub-sequences rather than the
full series structure [15]. A recently introduced concept,
named shapelet, represents a maximally discriminative sub-
sequence of time series data. Stated more directly, shapelets
identify short discriminative series segments [15, 9]. Apart
from their high prediction accuracy, shapelets also offer in-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CODS ’16, March 13-16, 2016, Pune, India
c© 2016 ACM. ISBN 978-1-4503-4217-9/16/03. . . $15.00

DOI: http://dx.doi.org/10.1145/2888451.2888456

terpretable features to domain experts. Out of these reasons,
discovering shapelets has been a hot topic in the time-series
domain during the last five years [15, 9, 8, 16, 6, 11, 7].

Previously, state-of-the-art methods discovered shapelets
by trying a pool of candidate sub-sequences from all possible
series segments [15, 8] and then sorting the top performing
segments according to their prediction qualities. Minimal
distances between series and shapelets represent shapelet-
transformed [8] classification features for a series of segrega-
tion metrics, such as information gain [15, 9], F-Stat [6] or
Kruskall-Wallis [7]. The brute-force candidates search ap-
proach, which is simply based on an exhaustive search of
candidates suffers from a high runtime complexity, there-
fore several speed-up techniques have aimed at reducing the
discovery time of shapelets [9, 11, 1]. In terms of classifica-
tion performance, the shapelet-transformation method con-
structs qualitative predictors for standard classifiers and has
shown improvements with respect to prediction accuracy [8,
6].

Grabocka et al. [2] proposed an approach that learns
these shapelets, by optimizing a classification loss as ob-
jective function, which is known as the LTS approach. They
learned shapelets whose minimal distances to the time se-
ries instances can be used as features for a logistic regres-
sion model. The distance function they employed was the
Euclidean distance. As a result, LTS is not able to learn a
single shapelet, that can be representative of different sub-
sequences of time series, which are simply just warped along
the time axis. To overcome this issue, we propose to use
Dynamic Time Warping (DTW) as a distance measure and
call the resulting approach LTSD (Learning Time-Series
Shapelets using DTW). Additionally, DTW itself is used
as a complete method for time series classification, where a
test instance is assigned to the class of the nearest training
instance using DTW as the distance measure.

We evaluate our proposed approach against LTS and DTW
on 11 real world data sets and a synthetic data set created
by ourselves. It was designed such that the class of a time
series just depends on the sequence of the events and not
on the temporal distance between these events. On the one
hand, LTS was not performing well for the synthetic data
set, whereas it’s accuracy was up to the mark for the real
world data sets. On the other hand, accuracies obtained by
DTW were not good for the real world data sets, whereas it
was up to the mark for the synthetic data set. For both the
synthetic and the real-world data set, our approach LTSD
shows good performance, meaning that it makes use of the
best out of both the LTS and DTW approaches and works



well in both the scenarios.

2. RELATED WORK
Shapelets were first proposed by [15] as time series seg-

ments that maximally predict the target variable. All possi-
ble segments were considered as potential candidates, while
the minimum distances of a candidate to all training series
were used as a predictor feature for ranking the informa-
tion gain accuracy of that candidate on the target variable.
Other quality metrics have been proposed for evaluating
the prediction accuracy of a shapelet candidate such as F-
Stats [8], Kruskall-Wallis or Mood’s median [6]. In addition,
the minimum distance of a set of shapelets to time series
can be perceived as a data transformation [8] and standard
classifiers have achieved high accuracy over the shapelet-
transformed representation [6].

Due to the high number of candidates, the runtime of
brute-force shapelet discovery is not feasible. Therefore, a
series of speed-up techniques such as early abandoning of dis-
tance computations and entropy pruning of the information
gain metric have been proposed [15]. Other speed-ups rely
on the reuse of computations and pruning of the search space
[9], as well as exploiting projections on the SAX representa-
tion [11]. Alternatively, the training time has been reduced
by elaborating the usage of infrequent shapelet candidates
[5]. Moreover, hardware-based optimization have assisted
the discovery of shapelets using GPUs [1]. Shapelets have
been applied in a series of real-life applications. Unsuper-
vised shapelets have also been utilized for clustering time
series [16]. Shapelets have been found useful for identifying
humans through their gait data [12]. Gesture recognition
is another application domain that has benefited from the
discovery of shapelets [3, 4]. In the domain of medical and
health informatics, interpretable shapelets have been used
to enable efficient early classification of time series [14, 13].

Grabocka et al. [2] proposed learning (and not searching)
time series shapelets using the Euclidean distance as a dis-
tance measure, which we improve by using Dynamic Time
Warping (DTW) as a distance measure.

3. PROPOSED METHOD
For calculating the distance between two time series, DTW

is the most commonly used distance measure. Unlike the Eu-
clidean distance, it can create a perfect mapping between the
points in two time series, if they are warped along the time
axis. As a simple example, consider Figure 1 which shows
two time series consisting of a common subsequence that
appears at differing time-stamps. It is clear that Euclidean
distance always maps the points in two time series accord-
ing to their time-stamps, which is not the case for DTW
distance, hence the DTW distance is much smaller. With
this in mind, we propose a method to learn the shapelets
using DTW as a distance measure for the time series classi-
fication task.

3.1 Background
Before we present the model for learning DTW-Shapelets,

let us define time series, shapelet and DTW distance.
1. Time Series: It is an ordered set of Q real-valued

variables. We denote it by T . Data points T1, . . . , TQ are
typically arranged by temporal order, spaced at equal time
intervals. For a particular time series data set, let us denote

Figure 1: Illustrating DTW

Figure 2: Calculation of DTW matrix using Dynamic Pro-
gramming (DTW path is highlighted in blue)

the number of instances of time series in it by I.
2. Shapelets: Informally, shapelets are time series sub-

sequences which are in some sense maximally representative
of a class. We will denote a shapelet by S and denote the
length of a shapelet by L and the total number of shapelets
to be learned by K.

3. DTW Distance: In time series analysis, dynamic
time warping (DTW) is an algorithm for measuring similar-
ity between two temporal sequences which may vary in time
or speed. The sequences are ”warped” non-linearly in the
time dimension. As mentioned above, figure 1 illustrates the
idea behind DTW. Details and boundary conditions about
the algorithm can be found in [10]. Here, we directly pro-
ceed to explain the estimation of the DTW distance using
dynamic programming. The DTW value between two time
series T and T ′ of lengths q and q′ respectively, can be cal-
culated recursively using Equation 1. Here, in the first term
of the Equation 1, we have used Squared Distance as a dis-
tance measure between two points Ti and T ′j , whereas one
can use any other distance measure. The value DTWTq,T

′
q′

will be the final DTW distance between Tq and T ′q′ , we will

denote it by DTW (T, T ′) as defined in Equation 2.

DTWTi,T
′
j

= (Ti − T ′j)2 + min[DTWTi−1,T
′
j−1

,

DTWTi−1,T
′
j
, DTWTi,T

′
j−1

]
(1)

DTW
(
T, T ′

)
= DTWTq,T

′
q′

(2)

An example for calculating DTW distance is shown in
Figure 2. It presents two time series Ti = [1, 2, 3, 5, 6,
7] and T ′j = [5, 2, 6, 7, 9, 11]. Initially, a blank matrix is
created with dimensions as (q+ 1)× (q′ + 1), which for this
case results in a 7×7 matrix. The first cell (0,0) is filled
as 0. Other cells from the first row and the first column



are filled with ∞. Values in the remaining cells of the from
(i, j) are then calculated as the Squared Distance between
corresponding points in time series plus the minimum of
values in the adjacent cells (i − 1, j), (i, j − 1) and (i −
1, j − 1). For example, the value in the cell (2,3) will be
(2 − 6)2 + min[16, 42, 17] = 32. The DTW path can be
traced backwards by starting from the last cell (q, q′) and
at each cell, moving to the minimum of previous 3 cells. In
Figure 2, the resulting DTW path is highlighted in blue.

3.2 Calculating Distance Between Time Series
and Shapelets

For calculating the distance between, the ith time series
T i and the kth shapelet Sk, the concept of Sliding Win-
dows is used. All possible segments of T i can be extracted
by sliding a window of size L (which is also the length of
shapelet) across T i. Concretely, the segment of time se-
ries T i starting at time-stamp j is defined as Tj , . . . , Tj+L−1

and will be denoted by T i,j . If the starting index of the
sliding window is incremented by one, then there are total
J = Q − L + 1 segments. For all of these segments we use
Dynamic Time Warping (DTW) to calculate the distance
between the shapelet Sk and every segment of the time se-
ries T i.

The distance between the ith time series T i and the kth

shapelet Sk is defined as the minimum distance among all
the DTW distances between the shapelet and each of the
segments of the time series, as shown in Equation 3.

Mi,k = min
j=1,...,J

1

L
DTW

(
T i,j , Sk

)
(3)

We use these minimum distances to a finite number of
shapelets as features for classifying the time series instances
with relatively simple models such as a logistic regression.

3.3 Learning Time Series Shapelets with DTW
(LTSD)

In this section we will show the linear classification model
that we employ and discuss how its parameters as well as the
shapelets can be learned using stochastic gradient descent.

3.3.1 Model
Having computed minimum distances as the new predic-

tors, a linear model can predict target values Ŷ ∈ RI via
the predictors M and the linear weights W ∈ RK as shown
in Equation 4.

Ŷi = W0 +

K∑
k=1

Mi,kWk, ∀i ∈ {1, . . . , I} (4)

Our model learns R different scales of shapelet lengths
starting at a minimum Lmin as {Lmin, 2Lmin, . . . , RLmin}.
The shapelets therefore can be defined as S ∈ RR×K×∗,
which means that for each scale we will learnK-many shapelets,
i.e. in total KR shapelets. The length of a shapelet at scale
r ∈ {1, . . . , R} is r ·Lmin. Consequently, the number of seg-
ments in a time series depends on the scale of the shapelet’s
length to be matched against and is J(r) = Q− r ·Lmin+ 1.
We slightly reformulate Equation 4 to account for the R dif-
ferent length scales, the final prediction is then computed as
shown in Equation 5.

Ŷi = W0 +

R∑
r=1

K∑
k=1

Mr,i,kWr,k (5)

In order to learn from multi-class targets Y ∈ {1, . . . , C}I
with C categories, we will convert the problem into C-many
one-vs-all sub-problems. Each sub-problem will discriminate
one class against all the others. The one-vs-all binary targets
Y b ∈ {0, 1}I×C are defined in Equation 6.

Y bi,c =

{
1 Yi = c

0 Yi 6= c
, ∀i ∈ {1, . . . , N}, ∀c ∈ {1, . . . , C} (6)

So, the target value will be as shown in Equation 7.

Ŷ bi,c = Wc,0 +

R∑
r=1

K∑
k=1

Mr,i,kWc,r,k (7)

We then use logistic regression classification model so we
can interpret the predicted targets as probabilistic confi-
dence. It operates by minimizing the logistic loss between
the true targets Y and the predicted ones Ŷ as shown in
Equation 8.

L(Y, Ŷ ) = −Y lnσ(Ŷ )− (1− Y ) ln
(

1− σ(Ŷ )
)

(8)

where, σ(Y ) =
(
1 + e−Y

)−1

The logistic loss function together with regularization terms
represent the regularized objective function, denoted as F
in Equation 9. We aim to jointly learn the optimal shapelets
S and the optimal linear hyper-plane W that minimizes the
classification objective F .

argmin
S,W

F(S,W ) =

I∑
i=1

L(Yi, Ŷi) + λW ||W ||2 (9)

In case of multi-class labels we minimize the following
Equation 10,

argmin
S,W

F(S,W ) =

I∑
i=1

C∑
c=1

L(Y bi,c, Ŷ
b
i,c) + λW ||W ||2 (10)

3.3.2 Classification of Test Instances
Classification of test instances is obvious in case when

classes are binary. For multi-class classification, once the
model is learned, a test instance indexed t is classified using
the one-vs-all classifier which yields maximum confidence,
as presented in Equation 11.

Ŷt ← argmax
c∈{1,...,C}

σ
(
Ŷ bt,c

)
, ∀t ∈ {1, . . . , ITest} (11)

3.3.3 Differentiable Soft-Minimum Function
In order to compute the derivative of the objective func-

tion, all the involved functions of the model need to be dif-
ferentiable. Unfortunately, the minimum function of Equa-
tion 3 is not differentiable and the partial derivative ∂M

∂S
is

not defined. A differentiable approximation to the minimum
function is introduced in this section. For the sake of orga-
nizational clarity, let us call the distance between the j-th
segment of the series i and the k-th shapelet at scale r as
Dr,i,k,j and define it as in Equation 12.

A differentiable approximation of the minimum function
is the popular Soft Minimum function that is depicted in



Equation 13. A parameter α < 0 controls the precision
of the function and the soft minimum approaches the true
minimum for α→ −∞.

Dr,i,k,j =
1

r · Lmin
DTW

(
T i,j , Sr,k

)
(12)

Mr,i,k ≈ M̂r,i,k =

∑J(r)
j=1 Dr,i,k,j e

αDr,i,k,j∑J(r)

j′=1 e
αDr,i,k,j′

(13)

3.3.4 Per-Instance Objective
We use stochastic gradient descent approach that reme-

dies the classification error caused by one instance at a time.
Equation 14 demonstrates the decomposed objective func-
tion Fi, which corresponds to a decomposition of the ob-
jective of Equation 9 into per-instance losses for each time
series.

Fi = L(Yi, Ŷi) +
λW
I

R∑
r=1

K∑
k=1

Wr,k
2 (14)

In case of multi-class labels, it will be as shown in Equa-
tion 15

Fi,c = L(Y bi,c, Ŷ
b
i,c) +

λW
IC

R∑
r=1

K∑
k=1

Wc,r,k
2 (15)

3.3.5 Gradients for Shapelets
To update the shapelets, we need to compute gradients

of the objective function with respect to the shapelets. The
gradient at the lth point in the kth shapelet with respect to
the objective of the ith time series is defined in Equation 16.

∂Fi
∂Sr,k,l

=
∂L(Yi, Ŷi)

∂Ŷi

∂Ŷi

∂M̂r,i,k

J∑
j=1

∂M̂r,i,k

∂Dr,i,k,j

∂Dr,i,k,j
∂Sr,k,l

(16)

Also, the gradient of the loss with respect to the predicted
target and the gradient of the predicted target with respect
to the minimum distances is shown in Equations 17- 18.

∂L(Yi, Ŷi)

∂Ŷi
= −

(
Yi − σ

(
Ŷi
))

(17)

∂Ŷi

∂M̂r,i,k

= Wr,k (18)

The gradient of the overall minimum distance with respect
to a segment distance is presented in Equation 19.

∂M̂r,i,k

∂Dr,i,k,j
=

eαDr,i,k,j

(
1 + α

(
Dr,i,k,j − M̂r,i,k

))
∑J(r)

j′=1 e
αDr,i,k,j′

(19)

Now, what remains is to calculate the gradient of a seg-
ment distance with respect to a shapelet point, which is
covered in the following. We need to the find the gradi-
ent of Dr,i,k,j with respect to each point l in the shapelet
Sr,k in order to update each of the shapelet’s entries. From
Equation 1, the resulting gradient can be derived easily. Dif-
ferentiation of the first term is straightforward. The second
term is the minimum of three previously calculated distance
terms, where we could also use the differentiable Soft Min-
imum, but it is not needed. As we have already computed
the DTW path, we know which of these three terms is the
minimum and therefore is contributing to the current term.
Then we can just check, whether that term includes the

Figure 3: Calculating DTW Gradient(Values that are high-
lighted in yellow are taken as Gradients for the L points of
the shapelet)

same point on the shapelet as the current term. If this is
the case, we need to add its gradient into the current calcu-
lation. If it is otherwise, we do not need to add anything,
as the previous term consists of a different shapelet point
and does not count here, as we are calculating the gradient
with respect to the current shapelet point. The resulting
recursion is shown in Equation 20.

δl,j+l1 = 2 (Sl − Tj+l1) +


δl,j+l1−1 if the minimum term

is [l, j + l1 − 1]

0 Otherwise

(20)

where 0 ≤ l, l1 ≤ L− 1.

An example calculation is shown in Figure 3, by taking [1, 2,
3, 5, 6, 7] as the shapelet S and [5, 2, 6, 7, 9, 11] as the time
series segment Tj . The DTW matrix for the same shapelet
and time series is already shown in Figure 2. Again, a ma-
trix of size q×q′ is created in order to compute the gradient
values. For the first column, the second term of Equation 20
is always set to 0. Out of this reason, it is just filled with
first term. Consider for example cell (0,0), it’s value resorts
to simply 2× (1− 5) = −8. All remaining cells are filled as
given in Equation 20. For example, cell (1,1) will contain
the value 2×(2−2)+0 = 0, because in the DTW matrix cal-
culation the minimum term comes from the cell [l−1, l1−1].
On the other hand, cell (5,5) is 2× (7− 11) + (−4) = −12,
because in the DTW matrix calculation the minimum term
stems from the cell [l, l1 − 1].

Now, we need to compute the final gradient correspond-
ing to each point in the shapelet. Points on the shapelets
correspond to rows in the gradient matrix. The rightmost
value on the DTW path in each row is the most updated
gradient value, which shows how particular points (associ-
ated with row) on the shapelet should change. Thus, we use
it as the gradient for that point on the shapelet. For this
example, gradient values of the six points on the shapelet
are [-8,0,2,-2,0,-12]. They are highlighted in yellow in the
Figure 3.

We can also compute the same values by simply applying
Equation 20 on the DTW path only and not calculating the
other terms in the gradient matrix, which involves less time.
For multi-class classification, the derivative of the per-cell
objective Fi,c with respect to each shapelet Sr,k,l is shown
in Equation 21.

∂Fi,c
∂Sr,k,l

= −
(
Y bi,c − σ

(
Ŷ bi,c

))
Wc,r,k

∂M̂r,i,k

∂Sr,k,l
(21)



Algorithm 1 Learning Time-Series Shapelets

Require: Time series T ∈ RI×Q, Binary labels Y b ∈ RI×C ,
Number of Shapelets K, Scales of shapelet lengths R ∈
N, Minimum Shapelet Length Lmin, Regularization λW ,
Learning Rate η, Number of iterations: maxIter

Ensure: Shapelets S ∈ RR×K×∗, Classification weights
W ∈ RR×K×C ,W0 ∈ RC

1: Initialize S,W,W0

2: for iteration=NmaxIter
1 do

3: for i = 1, . . . , I do
4: for c = {1, . . . , C} do
5: for r = {1, . . . , R}, k = {1, . . . ,K} do
6: Wc,r,k ←Wc,r,k − η ∂Fi,c

∂Wc,r,k

7: for l = 1, . . . , L do

8: Sr,k,l ← Sr,k,l − η ∂Fi,c

∂Sr,k,l

9: end for
10: end for
11: Wc,0 ←Wc,0 − η ∂Fi,c

∂Wc,0

12: end for
13: end for
14: end for
15: return S,W,W0

3.3.6 Gradients for Classification Weights
The hyper-plane weights W are also learned to minimize

the classification objective via stochastic gradient descent.
The partial gradient for updating each weightWr,k is defined
in Equation 22 and the partial gradient for the bias term W0

is defined in Equation 23.

∂Fi
∂Wr,k

= −
(
Yi − σ

(
Ŷi
))

M̂r,i,k +
2λW
I

Wr,k (22)

∂Fi
∂W0

= −
(
Yi − σ

(
Ŷi
))

(23)

For multi-class classification, the gradients of the per-cell
objective with respect to the generalized weights and the
bias terms are presented in Equations 24-25.

∂Fi,c
∂Wc,r,k

= −
(
Y bi,c − σ

(
Ŷ bi,c

))
M̂r,i,k +

λWWc,r,k

IC
(24)

∂Fi,c
∂Wc,0

= −
(
Y bi,c − σ

(
Ŷ bi,c

))
(25)

3.3.7 Learning Algorithm
As we have derived the gradients of the shapelets and

the weights, we can now introduce the overall learning al-
gorithm. It iterates in a series of epochs and updates the
values of the shapelets and weights in the negative direction
of the derivative with respect to the classification objective
of each training instance and class pair. The steps of the
learning process are shown in Algorithm 1. Shapelets and
weights are initialized by random values. The algorithm it-
erates over all training instances I, classes C and updates all
RK shapelets S and the weights W,W0 by a learning rate
η.

3.3.8 Convergence
The convergence of the algorithm depends on two param-

eters, the learning rate η and the maximum number of iter-

ations. High values for the learning rate can minimize the
objective in less iterations, but pose the risk of divergence,
while small learning rates require more iterations and there-
fore more time. Subsequently, the learning rate and the
number of iterations should be estimated via cross-validation
from the training data.

4. EXPERIMENTAL RESULTS

4.1 Datasets
We evaluated our method LSTD on 11 real world data set

from the UCR1 repository using the default train and test
splits and on a synthetic data set created by us. Table 1
summarizes the details about all the data sets. In the next
section we explain the creation of the synthetic data set.

4.1.1 Constructing Synthetic Dataset
Consider a classification task, where the class of a time

series instance depends on a particular sequence of events
in time series, and does not depend on the temporal dis-
tance between these events. Additionally, let the shape of
the events be same across all the classes. By the shape of
an event, we mean the plot of the event against time axis.
Thus, the shape of any of the events can not be used as a
discriminative factor between the classes. Here, the LTS ap-
proach will fail, as Euclidean distance will fail to take care
of the varying distances between events. For LTS to work,
it will need a very large training data set to learn many
shapelets for each of the class, corresponding to all the pos-
sible positions of the events in a particular sequence. This
will neither lead to interpretable shapelets nor is it feasible.
Out of this reason, we need an approach that can learn just
a few shapelets instead of infinitely many of them to perform
the classification task. If we use DTW as the distance mea-
sure for learning shapelets, it can warp the portion of time
axis in a training instance where there is no event, and learn
a very few number of shapelets, representative of the overall
sequence of events in a class. While, this may be achieved by
using DTW, when there is no noise at all in the time series;
DTW can’t work well if the amount of the noise is increased,
simply because as soon as noise is sufficient enough, DTW
will mix up the noise with the actual events.

We have constructed the synthetic data set having two
classes C1 and C2, which defers in the order of two events.
Let these events be a low peak and a high peak. Denote
them by E1 and E2 respectively. The average height of the
E1 is kept at 50% of the average height of the E2. For class
C1, let the order of the events be first E1 and then E2. For
class C2, it is first E2 and then E1. Also, we constructed
two data sets based on the amount of the background noise
added. Noise was added by selecting a random value in the
range [0, 1] and then scaling it with an appropriate integer,
to keep the average noise level at a fixed value. For the first
data set, average noise level was kept at 25% of the average
height of the E1. For the second one, it was kept at 40%
of the average height of the E1. Denote these data sets by
LNLD (Low Noise Level Dataset) and HNLD (High Noise
Level Dataset) respectively. Both of them had 50 training
instances and 100 test instances. Lengths of the time series
instances were kept at 300.

1http://www.cs.ucr.edu/˜eamonn/time series data/
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Figure 4: Samples from Synthetic Dataset
(a)(b) Instances of class C1 having low noise level
(c)(d) Instances of class C1 of having high noise level
(e)(f) Instances of class C2 of having low noise level
(g)(h) Instances of class C2 having high noise level



Table 1: Dataset Information and Parameter Search Results

Dataset Information Parameter Values

Dataset Train/Test Length Classes Lmin K R λW maxIter
Coffee 28/28 286 2 0.2 0.05 3 0.01 600
Diatom 16/306 345 4 0.1 0.15 3 0.1 1000
ECGFiveDays 23/861 136 2 0.2 0.05 3 0.1 2400
GunPoint 50/150 150 2 0.15 0.05 4 0.1 1600
ItalyPowerDemand 67/1029 24 2 0.2 0.3 4 0.01 1800
MoteStrain 20/1252 84 2 0.1 0.3 3 0.01 800
SonyAIBO 20/601 70 2 0.1 0.1 2 0.1 1600
Symbols 25/995 398 6 0.2 0.05 2 0.01 200
SyntheticControl 300/300 60 6 0.1 0.05 4 0.01 200
Trace 100/100 275 4 0.1 0.1 2 0.1 200
TwoLeadECG 23/1139 82 2 0.1 0.3 3 0.01 1000
LNLD 50/100 300 2 0.15 0.05 4 0.1 200
HNLD 50/100 300 2 0.15 0.05 4 0.1 200

Some instances of the synthetic data sets are given in the
Figure 4.

4.2 Hyper-parameter Search
Similar to LTS, LTSD also requires tuning of some hyper-

parameters. They were found through using a grid search
approach using cross-validation over the training data. The
number of shapelets was searched in a range of K ∈ {0.05,
0.1, 0.15, 0.3}, as a fraction of the series length, e.g. K = 0.3
means 30% of Q. Similarly, Lmin ∈ {0.1, 0.15, 0.2} × 100%
of Q, while three scales of shapelet lengths were searched
from R ∈ {2, 3, 4}. The regularization parameter was one
of λW ∈ {0.01, 0.1} . The learning rate was kept fixed at
a small value of η = 0.01, while the number of iterations
can be maximum 4000, at intervals of 200; i.e., 200, 400,
..., 3800, 4000. The hyper-parameters chosen are shown in
Table 1.

4.3 Competing Methods
We compare LTSD to two competing methods, LTS and

DTW. LTS was already shown to be better than other tech-
niques such as Shapelet Tree Method, Classifiers and other
related methods like Fast Shapelets on real world data sets
in [2]. To avoid the redundancy we do not compare against
them again. Our proposed approach is compared against
DTW, so that it can reflect, how usage of DTW in LTSD
affects the final results.

4.4 Algorithmic Complexity
For extracting the most discriminating shapelet of a par-

ticular length L in a binary-class classification, LTS requires
O(IL2×maxIter) running time, while LTSD requiresO(IL3×
maxIter). The resulting increase in time complexity is due
to the usage of DTW as a distance measure instead of the
Euclidean distance.

4.5 Accuracy
LTSD is compared against the baselines mentioned in the

section above. Accuracy is used as a measure for the com-
parison, which is the fraction of the test instances that are
truly classified. Tables 2 and 3 summarizes the results for
the real world data sets and the synthetic data set respec-
tively.

Classification of time series in all the real world data sets

Table 2: Accuracies for the 11 real world data sets

Dataset LTS DTW
Proposed
Approach
- LTSD

Coffee 1.00 0.464 1.00
Diatom 0.951 0.925 0.984
ECGFiveDays 1.00 0.828 1.00
GunPoint 1.00 0.913 1.00
ItalyPowerDemand 0.962 0.961 0.962
MoteStrain 0.913 0.816 0.91
SonyAIBO 0.952 0.699 0.959
Symbols 0.959 0.934 0.981
SyntheticControl 1.00 0.973 1.00
Trace 1.00 0.990 1.00
TwoLeadECG 1.00 0.795 1.00

Table 3: Accuracies for the synthetic data sets

Dataset LTS DTW
Proposed
Approach
- LTSD

SNLD 0.66 1.00 1.00
HNLD 0.60 0.82 0.85

is based on the different shapes present in it. None of these
data sets have classification based on the order of the events
(as explained in Section 4.1.1). As we can see in the table 2,
LTS works well on them by learning the shapelets, with al-
most no scope of improvement. But DTW fails to perform
well, as it just assigns the class of the nearest training in-
stance to the test instances. Out of these 11 data sets, LTS
and LTSD give same accuracy in 7 of them. Among the re-
maining 4 data sets, LTSD perform better in 3 of them. In
summary, it shows a little improvement over LTS.

For the synthetic data sets, from table 3 we can see that LTS
fails to work properly, as expected. Relatively, DTW and
LTSD work much better than it, for the reasons explained
in Section 4.1.1. Although for SNLD, both DTW and LTSD
gives the same accuracy, for HNLD, LTSD performs better
than DTW.



Results on these data sets show that the proposed ap-
proach works well in both the types of data sets, when the
classification is based on the discriminative shapes present
in the time series instances, as well as when it is based on
the order of events.

5. CONCLUSION
In this paper, we have extended the LTS method by using

Dynamic Time Warping as the distance measure. It proved
to be more accurate in both the real world data sets and
the synthetic data set over LTS and DTW. It outperformed
LTS significantly in the synthetic data sets and DTW sig-
nificantly in the real world data sets. Thus, it is suitable for
both the types of the classification tasks, either it is based
on the discriminative shapes present in the time series in-
stances, or it is the order of the events that matter. So,
it combines the good characteristics of both the LTS and
DTW approaches and therefore yields the best results.
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