
Purdue University
Purdue e-Pubs

Computer Science Technical Reports Department of Computer Science

1983

The String-to-String Correction Problem with
Block Moves
Walter F. Tichy

Report Number:
83-459

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Tichy, Walter F., "The String-to-String Correction Problem with Block Moves" (1983). Computer Science Technical Reports. Paper 378.
http://docs.lib.purdue.edu/cstech/378

http://docs.lib.purdue.edu
http://docs.lib.purdue.edu/cstech
http://docs.lib.purdue.edu/comp_sci

The String-to-String Correction Problem with Block
Moves

Waller F. Tichy

Purdue Universily
Department of Computer Science

West Lafayette, IN ,n907

,CSD-TR 459

ABSTRACT

The string-la-string correction problem is to find a minimal
sequence of edit operalions for changing a given string into
another given string. Extant algorithms compute a Longest Com­
mon Subsequence (LeS) of the twa strings and then regard the
characters not included in the LCS as the differences. However, an
LeS does nat necessarily include all possible matches. and there­
fore does not produce the shortest edit sequence.

We present an algoriltun which produces the shortest edit
sequence transforming one string into another. The algorithm is
optimal in the sense that it generates a minimal, covering set of
common subsLrings of one string with respecllo the oLher.

Two runtime improvements of Lhe basic algorithm are also
pr-csented. Hunlimc and space requirements of the improved alga­
l'ILhms are comparable to LCS algorithms.

Categories and Subject Descriptors: D.2.2 [Sollware Engineering]:
Tools and Techniques-progTam.mer workbench. software libraries;
D,2.6 [Sofll1arc Engineering]: Programming EnVironments; D.2.7
[Sortware Engineering]: Distribution and Maintenance- vers-Wn
conlrol

GeneraL Terms: Algorithms

Ailtliliorml Ke,Y Word~ und Phrases: String·to-s"lrin~ correction,
block rnovc~. dcILa~, differences. source control. revision control

October 26,1983

The Smng-to-String Correction Problem with Block
Moves

Walter F. Tichy

Purdue University
Department of Computer Sctence

West Lafayette, IN 47907

CSD-TR 459

Introduction

The string-lo-string correction problem is to find a minimal sequence of

edit operations for changing a given string inlo another given string. The length

of the edit sequence is a measure of the differences between the two strings,

Programs for determining differences in this manner are useful in the following

situalions.

(1) Difference programs help determine how versions of text files differ. For

inslance, computing the differences between revisions of a software module

helps a programmer trace the evolution of the module during mainte­

nance[6]. or helps create test cases for exercising changed portioos of the

module. Another appllcation is the automatic generation of change bars for

new editions of manuals and ather documents.

(2) Frequently revised documents like programs and graphics are stored most

economically as a set of differences relatiye to a base yersion[lO,12]. Since

the changes are usually small and typically occupy less that 10% of the

space needed for a complete copy[10], ditIerence techniques can store the

equivalent of about 11 revisions in less space than would be required tor

saying 2 revisions (one original and Doe backup copy) in cleartext.

(3) Changes to programs and other data are most economically distributed as

"updale decks" or "dclLus", whIch are edit sequences that transform the old

version of a data object into the new one. This approach is used in software

distribution. A related application can be found in screen editors and

This work WIlS 9~pport(:d in pUTt by the Nationnl Science ~ound8l.ion under grant MeS·
6109513.

- 2 -

graphics packages. These programs update display screens efficiently by

computing the difference belween the old and new screen contents, and

then transmitting only the changes to the display[2].

(4) In genetics, difference algorithms compare long molecules consisting of

nuclcotides or amino acids. The ditrcrcnc-es provide a measure of the re[a~

Lionship between types of organlsms[11].

Most of the existing programs for computing differences are based on algo­

rithms that determine a Longest Common Subsequence (LCS). An LCS has a

simple and elegant definition, and algorithms for computing an LCS have

received some attention in the literaturc[13. 4·, 6, 7, 5, 9J. An LCS of two strings is

one of the longasl subsequences that can be obtained by deleting :tero or more

symbols from c;;l,ch of the two givcn strings. I,'or example, the longest common

subsequcnce of shanghai and sakhalin is sahai. Once an LCS has been obtained,

all symbols that are not included in it are considered differences. A simultane­

ous scan of the two strings and the LCS isolates those symbols quickly. For

example, the follOWing edit script, based on the LCS sakai. would construct the

target slring sakhali:n from shanghai.

M 0,1
M 2.1
A "k"
M 5,2
A "I"
M 7,1
A "n"

An edit"command of the form M p.l. called a move, appends the substring

S[p•pH-I] of source string S to the target string, and an add command

of the form A w appends the string w to the target string. In the above example.

the edit script takes up much more space than the target string, and none of

the savings mentioned earher are realized. In practical cases, however. the com­

mon subsequence is not as fragmented. and a single move command covers a

long substring. In addition, if this technique is applied to text, one usually

chooses full text lines rather than single characters as the atomic symbols.

ComwqucnLly, Lhe :::Lorage space required for a'TTlove is negligible compared to

the Lhul of an add command, and it is worLh minimi:ting the occurrence of the

add commands. NoLe lhaL in the above example, Lhe last a.dd command could be

replaced wILh a 'TTlD1Je, "ince Lhe symbol n appears in both sLrings.

- 3 -

Unfortunately, the definition of an LCS is such that the n cannot be included in

the LCS. The algorithm presented below does nol omit such matches.

Problem Statement

Given 2 strings 3=8[0.... . 71.], 7'1.<:!:O and T=T[O..... m], m2!::O, a block

:mOVE is a triple (p,q,l) such that S[p, ... ,p+l-l] = T[q, ... ,q+l-l]

(O==p =::71. -l +1. OSq =::11L -l + 1, l >0). Thus, a block move represents a non-empty.

common subslring of.S and T with length l, sLarting at position pin Sand posi­

lion q in T. A covering set of T wilh respect to S, denoted by 0s(T), is a sel of

block moves, such that every symbol T(i] that also appears in S is included in

exactly one block move. For example. a covering set of T=abcl1b with respect to

S=l1bda IS 1(0,0,2),(0,3.2)1. A trlvial covering set consists of block moves of

length 1. one for each symbol T[i] that appears in S.

The problem ls to find a minimal covering set, ~s(T), such Lhat

l~s(T)I:o:;los(T)1 for aU covering sets os(T). The coverage property of ~s(T)

assures Lhat all possible matches are included, and the minimality constraint

makes the set of block moves (and therefore the edit script) as small as possi­

ble.

Because of the coverage property, it is apparent that ~s(T) includes the

LCS of Sand T. (Consider the concatenation of the substrings

T(qj' ... qj+Lj-l], where (Pj.qj,lj) is a block move of ~s(T), and the substrings

are concatenated in order of increasing qj') The minimality constraint assures

that the LCS cannot prOVide a better "parcelHng" of the block moves.

Jo'aIse ~"tarls

Before presenting the solution, it is useful to consider several more or less

obviom; aPPI'oaches. uU of which fail. The firsL approach is to use lhe LCS. As we

ll<lve Sloel]. ,.HI LCS h<l.s the proper·Ly of noL necessarily generating a covering seL

oj hlol.:l(moves. For example, the follOWing two pairs of strings have the LCS abc,

which does nol include the (moved) common substring de nor the (repeated)

-1-

common substring abc. The LCS match is shown on the left, h.s(T) on the right.

s=

T=

s=

T=

~
deabo

abc

X
abcabc

s= abcde

XT= deabc

s= abc

~T= abcabc

Heckel[3] pointed out similar problems with LCS techniques and proposed a

linear-lime algorithm to detect block mOV!;ls. The algorithm performs adequately

if there are few duplicate symbols in the strings. However, the algorithm gives

poor results otherwise. !"or example. given the two strings aabb and bbaa.

Heckel's algorithm fails to discover any common substring.

An improvement of the LCS approach is to apply the LCS extraction itera­

tively. For instance, after finding the initial LCS in the above examples. one

could remove it from the target string T and recompute the LCS. This process is

repealed unlit only an LCS of length 0 remains. The iterative LGS strategy

succeeds in finding a covering set, but not nccessarily the minimal one. The fol­

lowing example illustrates.

s=

T=

abcdea
y ~

.1/
cdab

s=

'1'=

~ea

cdab

Assuming again that S is the source string and T is the target string, the left

diagram shows the match obtained via an iterative LCS algorithm. The first LCS

is (;du., lhc second one is b. Since cda. is nat a substring of S. we oblain a total of

:J block moves. The minimal covering sel, shown to the right, consists of 2 block

moves.

AnoLher tack is Lo search for the longest common substring rather than the
•longest common subsequence . Computing the longest common substring itera-

LIVuly results In a covering sel, buL again noL nectlssarily a mlnima! one. Con-

• Reculllh'lt a subsequence may have gaps, a 9ubstring may not.

- 5 -

sider the following example.

s=

T=

ahcdefdeab

~
cdc abc

s=

T=

ahcdefdeab

y>----
cdeabc

The left diagram shows the block moves obtained by searching repeatedly

for the longest common substring of Sand T. The result is a set of 3 block

moves, allhough 2 arc minimal. Searching COT the longest common substring is

loo "greedy" a method, since it may mask better matches.

Basic Algorithm

A surprisingly simple algorithm does the job. Start at the left end of the

target string T. and try to find prefixes of T in S. If no prefix of T occurs in S,

remove the tirst symbol from T and start over. If there are prefixes. choose the

longest one and record it as a block move. Then remove the matched prefix

from T and lry Lo malch a longest prefix of the remaining lail of 1', again sLart­

ing at the beginning of S. This process continues until T is exhausted. The

recorded block moves constitute a As(T), a minimal covering set of block moves

of T with respect to S, as will be shown later. The follOWing example illustrates

several steps in the execution of the algorithm. The string to the right of the

verlical bar is the unprocessed tail of T.

Step 1:

s= uvwuvwxy

T=jzuvwxwu

Slep 2:

longest block move starting with T[O]: none

s=

T=

Step 3:

s=

'1':.:

uvwuvwxy

~
zluvwxwu

uvwuvwxy
'--~

I::uvwxlwu

longest block move starting with T[I]: (3,1,4)

longest block move starting with T[5]: (2,5,2)

- 6 -

In step 1, we searcb for a prefix of T[O, ... ,6] in S[O, ... ,7]. Since there

is none, we search for a prefix of T[l, 6] in the next step. This time we find

2 matches, and choose the longer one, starting with S[4]. In step 3. we search

for a prefix of T[5. ... ,6] in S[O, 7], and find the longest one at S[2],

length 2. Now T is exhausted and the algorithm stops. Note that in each step we

~li'lrl. at Lhe tcft end of S in order La consider all possible matches,

The algorithm (s presented below. Let us assume that the source string is

slored in an array 5[0, ... ,m], and the target string in T[O,n]. T[qJ is

the first symbol of the unmatched tail of T; q is initially zero. The first

refinement of the algorithm is now as follows.

q:= 0;
while q<=n do
begin

1.: find p and 1 such that (p.q.J) is a maximal block move
if 1>0 then print(p,q,l):
q:= q+Max(l,J)

end

Implementing the statement labelled L is simple. Search S from left to right for

a longest possible prefix of T[q, ... ,11.]. Note that the search can terminate as

soon as there are fewer than l +1 symbols left in S, assuming that l is the length

of the maximal block move found in the current iteration. Similarly, there is no

possibility of anding a longer block move if the last one included T[n]. (We use

and lhen as the conditional logical AND operator.)

1:= 0: p := 0; pCur := 0;
while pCur+1 <= m and q+1 <= n do
begin! Determine length of match between S[pCur....] and T[q, ...] I

ICur := 0;
while (pCur+ICur <= m) and (q+lCur<=n)

and then (S[pCur+ICur] :::: T[q+lCur])
do lCur:= ICur+l:

if ICur > Ilhcn
begin I new maximum found I

1 := lCur; p := pCur
end;
pCur::::: pCur+l

end

The runtime of this algorithm is bounded by mn, and the space require~

ments are m+n. We now show that this algorithm finds a I1s (T). Clearly, the set

of block moves printed is a covering set, because each symbol in T that is not

- 7 -

included in some block move is (unsuccessfully) matched against each symbol in

S. 'I'D sec thaL the covering set is minimal, consider T below, with the matching

produced by our algorithm denoted as follows. Substrings included in a block

move are bracketed by "(" and ")". Substrings of symbols excluded from any

block move are denoted by X .

. X (...) X (...)(...) X (...)(...)(...) X ..

Suppose there is a B's(T) with fewer block moves than the set generated by

our algorithm. Clearly, the substrings denoted by X cannot be part of o·s(T),

because our algorilhm does produce a covering seL We can therefore exclude aU

unmalched ~ubstrings from consideration. and concentrate on indIvidual

sequences of conllguous block moves.

Now cOIl!:iider black moves that are contiguous in T. The only way to obtain

a smaller covering set is to find a sequence of k>l contiguous block moves and

Lo "reporcel" them in La a covering set of fewer moves. We will show by induction

on Lhe number of contiguous block moves that the set produced by our algo­

riLhm is minimal.

Suppose we have k~l contiguous block moves generated by our algorithm.

This means that we have k triples (P,.Qt,4), (l~ig) satisfying the following con­

ditions.

Ai:l:5i~k T[q,; •... • l],+L,;-1) = S[pi •... ,p,+li-1] (.)

Ai:l:5i~k, Ap:Q::;p~m-4, T[q{, qi+l,;] '# S[p, ... ,pHd (--)

Ai:l~i<k T(q,+4] = T[qi+d (.._)

The fU'sl condition is just the definition of a block move. The second condi­

tion assures thal each block move starling at T[q,:J is maximaL The third condi­

tion means thatlhe block moves are contiguous in T.

We need to show that for any set of of k block moves satisfying (.) to (n_),

any equivalent seL has at least k block moves. Actually, Lt is convenient to prove

somethillg slighLJy more general: For any set of k block moves satisfying (-) to

(.... 0). Any sct which covers Lhe first k-l bock moves and a non-empty prefix of

block move k has at least k block moves. First. assume k=1. Clearly, we cannot

split any non-emply prefix of a singll3 block move into less than 1 covering block

rT!OVC_ Now assume that k>l. i.md Lhat all sets coverihg Lhe firsL k-2 bLock

-8-

movc~ and any non-empty prolix of block movr~ k -1 consist of nllcD.sl k -1 block

moves. Consider what we can do with non-empty prefixes of the k'th block

move. There are two cases. The first case applies to sets that cover the original

btock move k -1 with a singte move B. In this case, let B = (Pb ,gb ,ill), where

PbS-Pk_l. and Pb+l/>=Pk_l+lk_!. By the induction hypothesis, B is at least the

k -1st move in the equivalent set. It is impossible to append a non-empty prefix

of move k to B since that would contradict ("). Thus we need at least k moves

ror covering the original k -] moves and a non-empty prefix of original move k.

The second case applies to sels that split the original block move k-l into at

least 2 non-emply moves (sec the diagram below).

orig. block move no. k-2 k-l k

orig. set) (... .) (... G
5'sO') covering k-1 ...) (...)
lj"sO') covering k ..) (... .) (...)

The only chotce to reduce the number of block moves below k is to coalesce

the suffix of the original move k -1 with a non-empty prefix of move k. This new

parcelling leaves us with (a) a set covering the original k -2 block moves and a

non-empty prefix of block move k -1, (b) a new coalesced move covering a sutrix

of move k -) and a prefix of k, and (e) another block move if the suffix of move k

i:; not empty. By the induction hypothesis, we know that (a) has at least k-1

moves. Add Lo that Lhe (non-empty) coalesced move, and we end up with at least

k moves for covering the firsL k -1 block moves and any non~cmpty prefix of

move k. 'l'hu~, any set equivalent to the block moves generated by our algo­

rilhm has at least k elements. QED.

First Improvement of the Basic !IJgorilbm

l:omddcr a :;ituulion whcre the source string S has few rcplicaLed symbols.

That is, ex, the size ot' the alphabet of S, IS approximately equal to m. In Lhis

case. a significant improvement of the basic algorithm is pOSSible. During a sin­

gle scan of S, we prepare an index that. for each symbol s in the alphabet. lisls

the positions of all occurrences of s in S. In Lhe basic algorithm, we replace the

:;latcmcnl labelled F wiLh the following. Assullll' T[q] = s is the l1.rst symbol of

the unmatched tail of T. Look up the list L of occurrences of symbol s in S.

- 9 -

using the above index. If thE:: list is empty, no match is possible. Otherwise. fmd

Lhe maxLmal block move among those starting with the elements of L in S.

The performance of this algorithm is as foHows. Assume the average length

of a block move is l. Then the maximal block move must be selected among

771./ a alternatives. at a cost of not more than l +1 comparisons each. Thus. the

runtime of the algorithm is O(l"'(m/alpha)"(n/l» = O(mn/a). If mRla, we

obtain a nearly linear algorithm.

Program text and prose have the property or few repeated lines. In pro­

grdm text, the only repeated lines should be empty or consist of bracketing

sym bois like begin and end; for all other repetitions one would normally wrile a

subproAram. In prose text, the only repeated lines should be emply or contain

formatting commands. In applying our algorilhm to prose or program text, it is

therefore appropriate to choose lines as the atomic symbols. To speed up com­

parisons, the program should use hashcodes for lines of text rather than per­

forming character-by-character comparisons.

We implemented a program incorporating these ideas, called bdiff, and

compared it with difflGJ, which uses an LCS algorithm. We executed both pro­

grams on 1400 pairs of fIles. Each pair consisted of 2 successive revisions of

texl, deposited in a data bases maintained by the Revision Control System[12].

This syslem slores multiple revisions of texl files a!:; differences. Almost all of

Ute sumpic files contained program text. We observed that riiff and bdiff exe­

eule wilh slnllldr speeds, but lhat bdiff produces deltas that are, on the average,

only aboul '1% smaller. Apparcnlly, block moves and duplicate lines in program

lext are not frequent enough to obtain significant space savings over LCS algo­

rithms. We expect that the situation is more advantageous for block moves in

lhe other applications mentioned in the introduction.

Second Improvement of the Basic Algorithm

A dLfIcrcnl improvement speeds up our basic algorithm even if the source

slrlng contains numerous duplicated symbols. The improvement involves an

.ldilpll.lllOll 01' HI(: I\nulh-Morl'is-Prall slring malching algorilhrn[OJ, which allow~

<l pi.J.Llcf"l1 of [ellgUll to be found in a ~lring of lenglh rn in O(rn+l) steps. Thus,

if S is of length rn, 'J' is of length n, ..nd the average block move is of length l,

our al!::orithm sbould opel'ate in O((m+l)"(n/l» = O(mn/l) steps. Note that

the ratio m / l [s a measure of the "difference" of Sand T. and that the runtime

• 10-

of the algorithm is proportional to that ratio. Note also that this measure is

independent of the permutation of the common subBtrings in T with respect to

s.

An important element in the Knuth-Morris-Pratt algorithm is an auxiliary

array N which indicaLes how far to shift a partially matched pattern or block

move after a mismatch. The array N is as long as the pattern, and is precom­

puted before the match. Precomputing N poses a problem for our algorithm.

Since we do not know how long a block move is going to be, we would have to

precompute N for the entire unprocessed tail of T, although we would normally

use only a small portion of it. Fortl.mately, N can also be computed incremen­

tally. The outline of the adapted pattern matching algorithm is as follows.

Assume the next unmalched symbol is T[q). Start by initialiZing N[qJ and

apply the Knuth-Marris-Pratt algorithm to find the first occurrence of T[q).

(NoLe that this is a paLtern of length 1.) If this pattern cannot be found, there is

no block move including T[q]. Otherwise, expand the pattern by I, compute the

nexL entry in N, and reapply the Knuth~Morris·Prattalgorithm to find the first

occurrence of the expanded pattern. Start the search with the previous match.

Continue this process, until the pattern reaches a length for which there is no

match. At that point. the previous match is the maximal block move.

Suppose the maximal common block move starting with T[q] is l. The last

aLtcmpted paLtern match is Lherefore of length l+1, and fails. The incremenla!

computation of the entries N(g, ... , q+l+lj at a lotal cost proportional to l

ilssures Lhat the cost of the average match remains O(m.+l).

The detailed program is given in the appendix. It is useful for applications

(3) and (4) mentioned in the introduction. The idea of incrementally computing

aUXiliary data structures can also be applied to the Boyer·Moore pattern match­

ing algorithm[1], resulting in a program that runs even faster on the average.

Reconstructing the Target String

An cdit scripl thaL reconstructs targcl string T from source strtng S is a

~equcnee of move and add commands. Thc commands build a string 'I' left:Lo.

I"I/..:ht. I';ach block move (p,q,l) in As('J'} is reprcscntEld by a command of the

fO('(11 AI p,l, which copies Lhu string S[p ,p+l-lj to the end of the string

1'. Fot" any substring T[u, . .. ,v] consisting entirely of symbols that do not

occur in S, the edit script contains the command A T[u, ... ,'U], which simply

· 11 -

appends the unmatchable substring to T, After completion of all edit com­

mands, T = r.
In general, T cannol be constructed in a single pass over S, because block

moves may cross (cr. examples in Sect. 3). If S is a sequential file. one can

minimize the number of rewind operations caused by crossing block moves as

follows. During the generation of the edit script, it does not matter which one of

2 or more equivalent block moves is chosen. For example, suppose we have the

following equivalent, maximal block mO\7es starting wilh T[q]: 81 = (p I,q .l) and

82 = (P2,Q ,l), with PI<P2' If the previous block move emitted had its S­

endpoint between S[PI] and 5[P2], choosing the block move B2 saves one

rewind operation for S. Our algorithms are easily modified to accommodate this

idea. Rather than starting at the left end of S while searching for the longest

possible match, they must start with the endpoint of the previous match and

"wrap around" at the end of S.

So far, we have presented our edit scripls as constructing T separately

from S. It is also possible to transform 5 "in place". The following paragraphs

discusses the algorithm in some detail.

Suppose we have a buffer B[O,. ,Ma:z:(m,n)] initialized to 5, Le,.

lJ[i] = 5[iJ for O:=:;i~n. The goal is to transform the contents of B to 7'. The key

to this algorithm is an auxiliary array A[O.... ,n]. which keeps track of the

positions of the original symbols 8(i] in B. Initially. A[i] =i for Ir-=i:=:;n. A

marker h moves through A from left to righl, giving the index of the rightmost

symbol involved in a block move so far. Thus, for the k'Lh move command

M pk,lJ:, h =Max(Pj+lj,O'!f.j:=:;k). There is also a marker t indicating the index of

the last symbol processed in B.

The first step is to remove all symbols from B which are not in T. This step

preprocesses the edit script to isolate the symbols to be deleted. and then actu­

ally removes them from B. It also updates the mapping array A to reflecl the

compression, and marks lhose entries of A as undefined whose counterparts in

13 \Vere deleted. The second sLep processes the edit commands in sequence. An

add cummalld :-;imply InscrLs the given string La Lhe right of t, and resets t to

poinL to the last symbol so inserled. It also updates the array /1 for the symbols

shifted righL by Lhe insertion. For each move of the form M P ,t, compare p and

tile current value of n, If p>h, then the current block move is to the right of

the previous one. The symbols belween hand p, Le., B[A[h+l], ... ,A[P-l]],

~ 12 -

are not included in the current move. but will be moved later. Mark them as

such and set h to p+l-l and t to A[h]. Thus, the characters S[p, ... ,pH-1]

wiH be included in the result. Otherwise, if p:!!.h, the current block move crosses

the previous one, and a substring located before t must be moved or copied for­

ward. All symbols in that string that were marked for moving by an earlier com­

mand are now moved. lhe olhers are simply copied .forward. It is conceivable

that lhe the current block move involves symbols to the left and right of h. In

that case. first handle the string to the left of h by moving or copying elements

of the string B [A[P], A(Min (p H-I,h)]] after B[t]. The remaining (possibly

empty) string A(h+l, ,pH-I] is simply included by setting h to

Max (p +I-I.h). Update A to refiect the moves and shifts. and set t to A[h].

Below is a trace of the algorithm. transforming the string shanghai to

saJchalin by applying the edit script MO,I; M2,1: A"k"; Ml,2; A"I": M7.1; M3,1.

The algorithm can be applied to update display screens efficiently, prOVided the

display orIers operutions for character and line insertion and deletion. as well as

a t:{lPY/7'W"U~ fealure. The lalLer feaLure is needed for copying and moving

character strings forward in the above algorithm. The auxiliary array A is allo­

cated in main memory.

~
t:s I, ,.... '~ ;,. r\

"X X

;... ::,. x ."

s

r
<

,

[)~. t
/:

A,{J.e.r ... (."'" QV':''''J

v.-.". I,...~...uf 5 awo. h (J If.

A{k,.. • ""/1 ,'~j

H 0,1; N :1..,'

A- [" I] "' "" ""...I (.r W> • "" .

A{k". .r('I~'·"l

.L "k"

A {f.... 'f';'/~ ''''}
M 1).2, I ',t"

A(.kr <>"P,),'""

H "I; n 3,'

- 13 -

Conclusions

The original string-to-string correction problem as formulated inC 13J per­

mitted the edIting commands add, delete. and change. Clearly, a change com­

mand can be simulated, with a delete followed by an rzdd. Any sequence of rzdd

and delete commands can be transformed into an equivalent sequence of a.d.d

and move commands. This transformation works since delete and move com-

mands complement each other, provided no block moves cross or overlap. Our

approach of extending the editing commands by permitting crossing btock

moves rcsulLs in shorter cdLt sequences. We developed efficient algorithms for

compuling those sequences. Reconstructing the target string by applying the

ediL sequence is elIicient if the source string can be accessed randomly.

- 14-

Appendix: Using the Knuth-Morris-Pratt Pattern. Matching Algorithm.

S: array[D.. m] of symbol;
T: array[D..n] o[symbol;
N: array[D..n] of symbol:

q:= 0; I start at left end of T I
while q <= n do
begin I Characters left in T: find longest match starting with T[qJ I

k:= 0: I start match at left end of S I
j ;= q; f first symbol of pattern}
last:= q: I last symbol of pattern ,
N[q] ,= q-1; I initialize N[q] I
iN:= q-l; I initialize computation of N[Q+l, ...] J

loop I loop with exit from the middle I
!lry to find a match for T[q]..T[last] I
I T[q]..T(lasl-l] has already been matched I

kOld := k; I save last point of old match, if any J

while (j<=last) and (k<=m) do
begin

while (j>=q) and (S[k] <> T[j])
do j ,= N[j];

k:= k+l: j := j+l;
end

until (j<=lasl) II (last=n); I exit from the middle J

I found match: now increase last and compute N[tast] I
while (iN>=q) and (T[last] <> T[iNj)

do iN ,= N[iN];
last:= last+l: iN:= iN+l:
if T[last]=T[iN]

then N[last] ,= N[iN]
else N[lasl] := iN;

end I end of loop I

[print match J
if j>lasL then
begin I found match for tail of T I

print(k-(n-q+ 1), g. n-q+ 1):
q:= n+l;

end else if q = last then
begin I no match I

q:= q+l:
end else
begin I last mutch failed; take previous one I

print(kOld-(last-q), q, last-g)
q;= last;

end
end

~ 15 -

References

1. BOYER, ROBERT S. AND MOORE, J. STROTHER, "A Fast String Searching Algo­
rithm," Communications of tlw ACM 20(10) p. 762-772 (October 1977).

2. GOSLING, JAMES, "A Redisplay Algorithm." Proc. ACM SIGPLAN SIGDA sympo­
sium on Text Manipulation, p.123-129 (June 1981).

3. HECKEL, PAUL, "A Technique for Isolating Differences Between Files," Com­
municalioru.' of the ACM 21(4) p. 264-268 (April 1978).

4. HIRSCHBERG. DANIEl, S., "A Linear Space Algorithm for Computing Maximal
Common Subsequences," Communications of the ACM 18(6) p. 341-343
(June 1975).

5. HIRSCHBERG, DANIEL S., "Algorithms for the Longest Common Susbsequence
Problem," Journal of the ACM 24(4) p. 664-675 (October 1977).

6. HUNT, JAMES W. AND MCILROY, M. D., "An Algorithm for Differential File Com­
parison," Computing Science Technical Report No. 41, Bell Laboratories
(June 1976).

7. HUNT, JAMES W. AND SZYMANSKI, THOMAS G., "A Fast Algorithm for Computing
Longest Common Subsequences," Communications of the ACM 20(5) p. 350­
353 (May 1977).

8. KNUTH. DONALD E., MORRIS, JAMES H., AND PRATI, VAUGHAN R., "Fast Pattern
Matching in Strings," SIAM Journal of Computing 6(2) p. 323-350 (June
1977).

9. NAKATSU, NARAO, KAMBAYASHr, YAH1KO, AND YAJlMA, SHUZO, "A Longest Common'
Subsequence Algorithm for Similar Text Strings," kta Informatica 18 p.
171-179 (1962).

10. ROCHKLND, MARC J., "The Source Code Control System," IEEE Transactions on
Software Engineering SE-1(4) p. 364-370 (Dec. 1975).

11. SANKOFf', DAVID, "Matching Sequences under Deletioniinsertion Constraints,"
Proe. Nat. Academy of Sciences, USA 69(1) p. 4-6 (January 1972).

12. TICHY, WALTER F., "Design, Implementation, and Evaluation of a Revision Con­
Lrol System," pp. 58-67 in Proceedings of the 6th International Conference
on Software Engineering, IPS, ACM, IEEE, NBS (September 1982).

13. WAGNlm. ROBlmr A. AND Frsm:R, MrC{rAEL J., "The String-lo-String Correction
Problem," Journal of the ACM 21(1) p. 166-1?3 (January 1974).

	Purdue University
	Purdue e-Pubs
	1983

	The String-to-String Correction Problem with Block Moves
	Walter F. Tichy
	Report Number:

