Purdue University

Purdue e-Pubs

Computer Science Technical Reports Department of Computer Science

1983

The String-to-String Correction Problem with
Block Moves

Walter E Tichy

Report Number:
83-459

Tichy, Walter E, "The String-to-String Correction Problem with Block Moves" (1983). Computer Science Technical Reports. Paper 378.
http://docs.lib.purdue.edu/cstech/378

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for

additional information.

http://docs.lib.purdue.edu
http://docs.lib.purdue.edu/cstech
http://docs.lib.purdue.edu/comp_sci

October 26, 1983

The String-to-String Correction Problem with Block
Moves

Waller . Tichy

Purdue University
Department of Compuler Science
West Lafayette, IN 47907

CSD-TR 459

ABSTRACT

The string-to-siring correction problem is to find a minimal
sequence of edit operalions for changing a given string into
another given string. Exiant algorilhms compute a Longest Com-
mon Subsequence (LCS) of the two strings and then regard the
characters nol included in the LCS as the differences. However, an
LCS does not necessarily include all possible malches, and there-
[ore does not preduce the shortest edit sequence.

We present an algorithm which produces the shortest edit
sequence transforming one string into another. The algorithm is
optimal in the sense that it generates a minimal. covering set of
common subslrings of one string with respect to the olher,

Two runlime improvemenls of the basic algorithm are also
presented. Runlime and space requirements of the improved algo-
rilhms are comparable to LCS algorithms.

Categories and Subject Descriptors: D.2.2 [Soltware Engineering]:
Tools and Techniques—progremmer workbench.software lbraries:
D.2.6 [Software Engineering]: Programming Environments; D.2.7
[Soflware Engineering]: Distribution and Maintenance— wersion
control

General Terms: Algerithms

Addilionai Key Words and Phrases: String-to-siring correction,
block moves, dellas, difflerences, source control, revision control

The String-to-String Correction Problem with Block
Moves

Walter F. Tichy

Purduc University
Department of Computer Science
West Lafayette, IN 47907

CSD-TR 459

Introduaction

The string-teo-string correction problem is to find a minimal sequence of

edit operations for changing a given string inte another given string. The length

of the edit sequence is a measure of the differences between the two strings.

Programs for determining differences in this manner are useful in the following

situalions.

(1)

(2

(3)

Difference programs help determine how versions of text flles differ. For
inslance, computing the differences between revisions of a software module
helps a programmer trace the evolution of the medule during mainte-
nance[8], or helps create test cases for exercising changed portions of the
module. Another application is Lhe automatic generation of change bars for

new editions of manuais and other documents.

Frequently revised documents like programs and graphics are siored most
economically as a set of differences relative to a base version[10, 12]. Since
the changes are usually small and typically occupy less that 10% of the
space needed for a complete copy[10], difference techniques can stere the
equivalent of about 11 revisiens in less space than would be required for

saving 2 revisions (one original and one backup copy) in cleartext.

Changes to programs and other data are most economically distributed as
“"updale decks” or "dellas”, which are edit sequences that transform the old
version of a dala object into the new one. This approach is used in software

dislribulion. A related application can be found in screen editors and

This work wus aupported in purt by the Nationnl Science Foundalion under grant MC3-
81085130,

-2

graphics packages. These programs update display screens efficiently by
computing the difference belween the old and new screen contents, and

then transmitting only the changes to the display[2].

(4) In genetics, difference algorithms compare long molecules consisting of
nucleotides or amino acids. The difTerences provide a measure of the rela-

Lionship between Lypes of organisms[11].

Mosl of the existing programs for computing differences are based on algo-
rithrns that determine a Longest Common Subsequence (LCS). An LCS has a
simple and elegant definition, and algorithms for computing an LCS have
received some attention in the literature[13,4,6,7,5,9]. An LCS of two strings is
one of the lengest subsequences that can be obtained by deleting zero or more
symbols [rom cach of the two given strings. l'or example, the lengest common
subscquence of shanghai and sakhalin is sahai, Once an LCS has been obtained,
all symbols that are not inciuded in it are considered differences. A simultane-
ous scan of the two strings and the LCS isolates those symbols quickly. For
example, Lhe following edit script, based on the LCS sahai, would construct the

target siring sakhalin from shonghni.

REEmEER
0%
0D 3=

An edit-command of the form M p.l. called a move, appends the substring
S[p.....p+l~1] of source string S to the target string, and an edd command
of the form A w appends the string w to the target string. In the above example,
the edit script takes up much more space than the target string, and none of
the savings mentioned earlier are realized. In practical cases, however, the com-
mon subsequence is not as fragmented, and a single move command covers a
long substring. In addition, if this technique is applied to text, one usually
chooses [ull text lines rather than single characters as the atomic symbols.
Conscquently, the slorage space required for a move is negligible compared to
Lhe Lhal of an edd comimand, and it is worlh minhimizing the occurrence of the
add commands. Nole thal in the above example, the last aded command could be

replaced with a moue, since Lhe symbol m appears in both sirings.

-3-

Unfortunately, the definition of an LCS is such that the » cannot be included in
the L.CS. The algorithm presented below does not omit such matches.

Problem Statemernt

Given 2 strings §=S[0... .. n], n=0 and T=T[0C,...,. m], m=0, a block
move is a Llriple (p.g.l) such that S[p,....p+i—-1]=Tg.....q+l—1]
(0=p=n—i{+1, 0sg=m —{+1, {>0). Thus, a block move represents a non-empty,
common substring of § and T with length {, slarting at position p in 5 and posi-
tion g in 7. A covering set of T with respect to S, denoted by 63(7). is a set of
biock moves, such that every symbol 7[i] that also appears in S is included in
exactly one block move. For example. a covering set of T=abcabd with respect to
S=abda 1s [(0.0.2).(0,3.2)}. A trivial covering set consists of block moves of
length 1. one for each symbeol 7[i1] that appears in 5.

The problem is to find a minimal covering set, As(7), such that
[As(TY|<|85{T)| ftor all covering sets 8s(T). The coverage property of As(T}
assures Lhal all possible matches are included, and the minimality constraint
makes the set of block moves (and therefore the edit script) as small as possi-

ble.

Because of the coverage property, it is apparent that Ag{T) includes the
LCS of S and T. (Consider the concatenation of Lthe substrings
T{g;.q;+};—1], where (p; g;{;) is a block move of As(T), and the substrings
are concatenated in order of increasing g;.) The minimality constraint assures

thal the LCS cannot provide a better "parcelling” of the block moves.

[False Starts

Belore presenting Lhe solution, it is useful to consider several meore or less
obvions approaches. all of which fait. The firsl approach is te use the LCS. As we
have scoen, an LCS has Lhe properly of nol necessarily generaling a covering sel
of blocl moeves, Mor example, Lhe [ollowing two pairs of strings have the LUS abe,

which does not include the (moved) common substring de nor the (repeated)

-4 -

cormnmeon substring ebe. The LCS match is shown on the left, Ag(7) on the right.

T= deabe T= deabe
3= a7l::/c 3= abe
T= abecabe T = abeabe

Heckel[3] pointed out similar problems with LCS techniques and proposed a
linear-time algorithm to detect block moves. The algorithm performs adequately
if there are few duplicate symbols in the strings. However, the algorithm gives
poor results otherwise. For example, given the two strings eabb and bbea,

Heckel's algorithm fails to discover any common substring,

An improvement of the LCS approach is to apply the LCS extraction itera-
tively. For instance, after finding the initial LCS in the above examples. one
could remove it from the target string T and recompute the LCS. This process is
repealed unlil enly an LC3 of length O remains. The iterative LCS strategy
succeeds in finding a covering set, but not nccessarily Lhe minimal one. The fol-

lowing example illustrates.

3= abcdea 5= abecdea
— -
4
.
T= cdab T = cdab

Assuming again that S is the source string and T is the target string, the left
diagram shows the match obtained via an iterative LCS algorithm. The first LCS
is t:du, the second one is b. Since cda is not a substring of S. we oblain a total of
3 block moves. The minimal covering sel, shown to the right, consists of 2 block

Mmoves.

Anolher Lack is Lo search for the longest common substring rather than the
longest common subsequence‘. Compulting the longest common substring itera-

Lively resulls in a covering sel, bul again nol necessarily a ruinimal one. Con-

* Recall that a subsequence may have gaps, a substring may not.

sider the following exarnple.

S= abedefdeab S= abedefdeab
o >—\
T = cdeabe T= c}d\éabc

The left diagram shows the block moves obtained by searching repeatedly
for the longest common substring of 5 and T. The result is a set of 3 block
moves, allhough 2 are minimal. Searching for the longest common substring is

loc "greedy"” a method, since it may mask better matehes.

Basic Algorithm

A surprisingly simple algorilhm does the job. Start at the left end of the
target string T, and try to find prefixes of T in 5. If no prefix of T occeurs in S,
remove the first symbol from T and start over. If there are prefixes, choose the
longest one and recerd it as a block move. Then remove the matched prefix
[rom T and Lry Lo malch a longest prefix of Lhe remaining tail of 7', again start-
ing at the beginning of §. This process continues until 7 is exhausted. The
recorded block moves constitute a As(7}, a minimal covering set of block moves
of 7 wilh respect to &, as will be shown later. The following example illustrates
several steps in the execution of the algorithm. The string to the right of the

vertical bar is the unprocessed tail of 7.

Slep 1:

B= uvwuvwxy

T=|zuvwxwu longest block move starting with T[0]: none
Step 2

S=uvwuvwxy

s

T=gzGvwxwu longest block move starting with T[1]: (3,1,4)
Step 3:

3= uv wuv lr'-r Xy

P= zuvwxwu longest block move starting with T[5]: (2,5.2)

-8 -

In step 1, we search for a prefix of 7{0,...,8]in S[0, ...,7]. Since there
is none, we search for a prefix of 7{1,6] in the next step. This time we find
2 matches, and choose the longer one, starting with S[4]. In step 3. we search
for a prefix of T[5,...,8] in S[0,..., 7). and find the longest one at S{2].
lenglh 2. Now T is exhausted and the algerithm stops. Note that in each step we

starl at ihe left end of & in order Lo consider all possible matches.

The algorithm is presented below. Let us assume that the source string is
stored in an array S{0. ..., m], and the target string in 7[0,....n»]. T{g]is
the firsl symbol of the unmatched tail of T; g is initially zero. The first

refinement of the algorithm is now as follows.

q:=0;
while q<=n do
begin
I: find p and 1 such Lhal {p.q.l) is a maximal block move
if 1>0 then print(p.q.1):
= q+Max(1,l)
end

Impiementing the statement labelled L is simple. Search S from left to right for
a longcest possible prefix of T[g. ... ,n]. Note that the search can terminate as
soon as there are fewer than ! +1 symbols left in S, assuming that ¢ is the length
of the maximal block meve found in the current iteration. Similarly, there is no
possibility of (inding a longer block move if the last one included T[n]. (We use

and Lhen as the conditional logical AND operator.)

L:
:=0; p:=0: pCur:=0;
while pCur+] <= m and q+! <= n do
begin { Determine length of match between S[pCur....] and T[q....] }
ICur :=0;
while (pCur+1Cur <= m) and (g+ICur<=n)
and then (S[pCur+1Cur] = T[q+ICur]}
do ICur := |Cur+1;
if ICur > 1l then
begin [new maximum found }
I ;= 1Cur; p := pCur
end;
pCur := pCur+1
end

The runtime of this algorithm is bounded by mn, and the space require-
ments are m+n. We now show that this algorithm finds a Ag{T). Clearly, the set

of block moves printed is a covering set, because each symbol in T that is not

-7 -

included in some block move is (unsuccessfully) matehed against each symbol in
5. 'l'o sec thal the covering set is minimal, consider T below, with the matching
produced by our algorithm denoted as follows. Substrings included in a bleck
move are brackeled by "(" and “)". Substrings of symbols excluded from any

block move are dencted by X.
K XN X

Suppose there is a 6'5{7T) with fewer block moves than the set generated by
our algorithm. Clearly, the substrings denoted by X cannot be part of §g(T).
because our algorithm does produce a covering set. We can therefore exclude all
unmalched substrings from consideration, and concentrate on individual

sequences of conbiguous block moves.

Now consider block moves that are contiguous in T. The only way to oblain
a smaller covering sel is to find a sequence ol £>1 contiguous block moves and
Lo "reparcel” them inlo a covering set of fewer moves. We will show by induction
on lhe number of contiguous block moves that the set produced by our aigo-
rithm is minimal.

Suppose we have £=1 contiguous block moves generated by our algorithm.

This means that we have k triples (p;.g..4). (1<i<k) satisfying the following con-

diticns.
Ail=i<k Tlge, q+L=-1]1=S[pi, Betli-1] (*)
Nilsi<k, Ap:0spsm-L, T[q;q;+L] # S[p, - .. . p+4] (**)
Ad:l=i<k T{g;+4] = T(gis] (***)

The first condition is just the definition of a block move. The second condi-
tion assures that each block move starting at T[g;] is maximal. The third condi-

tion means that the block moves are contiguous in 7.

We need to show that for any set of of & block moves satisfying (*) to (***),
any equivalenl sel has at least £ block moves. Actually, it is convenient to prove
somethiug slighlly more general: For any set of & block moves satisfying (*) to
{**°). Any sct which covers Lhe first k—1 bock moves and a non-empty prefix of
block move k has at least & bloek moves. Firsl, assume k=1, Clearly, we cannot
splil any non-ermply prefix of a single block move into less than | covering block

frove. Now assume Lhal &£>1, and that all sets coverihg the firsl & —2 block

-8-

moves and any non-emply prefix of block move k& ~1 consist of al least &£ ~1 block
moves. Consider what we can do with non-cmpty prefixes of the k'th bloek
move. There are two cases. The first case applies to sets that cover the original
block move £ —1 with a single move £. In Lhis case, let 5 = (Py.9s .0), Where
Po=pe-y. and py+i,=p, | +{;_,. By the induction hypothesis, # is at least the
k~1st move in the equivalent set. M is impaossible to append a non-empty prefix
of move k to A since that would contradict {**). Thus we need at least & moves
for covering the original ¥ —1 moves and a non-emptly prefix ol original move k.
The second case applies to sets that split the original block move £—1 into at

leasl 2 non-emply moves (sce the diagram below),

orig. block move no. k-2 k-1 k
orig.set . Y (..] A T ‘)
8's(¥) covering k-1 ..., L)

8"s(7) covering k ... vy (e ey ()

The only cheice to reduce the number of block moves below & is to coalesce
the suflix of Lhe original move & —1 with a nen-emptly prefix of move k. This new
parcelling leaves us with {(a} a set covering the original ¥ —2 block moves and a
non-emplty prefix of block move k& -1, {b) a new coalesced move covering a sufix
of move £ —! and a prefix of k&, and (¢) another block move if the suffix of move &
is nol emply. By the induction hypothesis, we know that (a} has at least & -1
moves. Add Lo Lhat the (non-emply) coalesced move, and we end up with at least
& moves for covering the first &£ -1 block moves and any non-emply prefix of
move £. Thus, any set equivalent to the block moves generated by our algo-
rithm has at least &£ elements. QED.

Firsl Improvement of the Basie Algorithm

Consider a siluation where Lhe source string & has lew replicaled symbols.
Thal is, «, Lhe size of Lhe alphabet of S, s approximately equal to m. In Lhis
case, a significant improvement of the basic algorithm is possible. During a sin-
gle scan ol S, we prepare an index that, for each symbol s in the alphabet, lisis
Lhe positions of all occurrences of s in 5. In Lthe basic algorithm, we replace the
stalement labelled /* with Lhe lollowing. Assunic 7[g] = s is Lhe first symbol of
the unmatched tail of 7. Look up the list L of occurrences of symbol s in S,

-9 -

using the above index. If the list is empty. no match is possible. Otherwise, find

Lhe maximal block move among those starting with the elements of £ in S.

The performance of this algorithm is as follows. Assume the average length
of a block move is {. Then the maximal block move must be selected among
m/ « alternalives, at a cost of not more than I+1 comparisons each. Thus, the
runtime of the algorithm is O(I*(m/alpha)*(n/1)) = O(mn/). If m=a, we

nbtain a nearly linear algorithm.

Program text and prose have Lhe property of {ew repeated lines. In pro-
gram Llext, the only repeated lines should be emplty or consist of bracketing
symbols like begin and end; for all other repetitions one would normally write a
subprogram. In prose text, the only repeated lines should be emply or contain
formatting commands. In applying cur algorilhm to prose or program text, it is
therefore appropriate to choose lines as the atomic symbols. To speed up com-
parisons, the program should use hashcodes for lines of text rather than per-

forming character-by-character comparisons.

¥We implemented a program incorporating these ideas, called bdiff, and
compared it with diff{ 6], which uses an LCS algorithm. We executed both pro-
grams on 1400 pairs of files. BEach pair consisted of 2 successive revisions of
Lext, deposiled in a data bases maintained by the Revision Control System{12].
This syslem slores mulliple revisions of Lext {iles as differences. Almost all of
Lhe sample files conlained program text. We observed that diff and bdiff exe-
cule wilh similar speeds, but Lhat bdiff produces deltas thal are, on the average,
only aboul 7% smaller. Apparently, block moves and duplicate lines in program
lext are not frequent enough to obtain significant space savings over LCS algo-
rithms., We expect thal the situation is more advantageous for block moves in

Lite other applications mentioned in the introduction.

Second Improvement of the Basie Algorithm

A different improvernent speeds up our basic algorithm even if the source
slring contains numerous duplicaicd symbols. The improvement involves an
adiaptabion of the Knuth-Merris-I’ratl slring malching algoritlhm{ 8], which allows
W pulleru of length £ Lo be found in a siring of lenglh m in O(m +1) sleps. Thus,
tf ¥ is of length m, 7T is of length »n, and the average block move is of length ¢,
our algorithm should operate in O({m+i)*{(n/L)) = O(mn/1) steps. Note that

the ralic m /! is a measure of the "difference” of 5 and 7. and that the runtime

- 10 -

of the algorithm is proportional to that ratio. Note also that this measure is
independent of the permutation of the common substrings in 7 with respect to
N

An important element in the Knuth-Morris-Pratt algorithm is an auxiliary
array N which indicales how far to shift a pariially matched pattern or bleek
move after a mismatech. The array N is as long as the pattern, and is precom-
puted before the match. Precomputing N poses a problermn for our algorithm.
Since we do not know how long a block move is going to be, we would have to
precomnpute N for the entire unprocessed tail of T, although we would normally
use only a small portion of it. Fortunately, N can also be computed ineremen-

tally. The outline of the adapted pattern matching algorithm is as follows.

Assume the next unmatched symbol is T'{g]. Start by initializing N{g] and
apply the Knuth-Morris-Pratt algorithm to find the first occurrence of T[gq].
(Nole thal this is a pattern of length 1.) If this pattern cannot be found, there is
no block move including T[g]. Otherwise, expand the pattern by 1, compute the
nexl entry in N, and reapply the Knuth-Morris-Pratt algorithm to find the first
cccurrence of the expanded pattern. Start the search with the previeus match.
Continue this process, until the pattern reaches a length for which there is no

match. At that point, the previous match is the maximal block move.

Suppose the maximal common block move starting with T[g] is L. The last
altempled patlern maleh is Lherefore of length {+1, and fails. The incremental
computalion of the entries N(g,....g+I+1] at a Lotal cost proportional to {

assures Lhat Lhe cost of the average match remains 0(m +i),

The delailed program is given in the appendix. It is useful for applications
{3} and (4) mentioned in the intreduction. The idea of incrementally computing
auxiliary data structures can also be applied to the Boyer-Moore pattern match-

ing algorithm[1], resulting in a program that runs even faster on the average.

Reconstructing the Target String

An edil scripl thal reconstructs target slring T from source string 5 is a
scyuence of move and add commands. The commands build a string 7 left-lLo-
right. Fach block tnove (p.g.t) in Ag(7) is represented by a eommand of the
lfortn M p ., which copies Lhe string S|p.. ... p+i—1] to the end of the string
7. For any substring 7w, ..., v] consisting entirely of symbols that do not

occur in .5, the edit script contains the command 4 T[w,...v], which simply

=11 -

appends the unmatchable substring to T'. After completion of all edit com-

mands, T =T.

In general, T cannot be constructed in a single pass over S, because block
moves may cross (cl. examples in Sect. 3). If S is a sequential file, one can
minimize the number of rewind operations caused by crossing block moves as
follows. During the generation of the edit script, it does not matter which one of
2 or more equivalent block moves is chosen. For example, suppose we have the
following equivalent, maximal block moves starting with T[q): Bi = (p,.q.0) and
B2 = (pag.l). with p,<pp. If the previous block move emitted had its S-
endpoint between S[p,] and S{p.]. choosing the block move K2 saves one
rewind operation for S. Our algorithms are easily modified to accomrnodate this
idea. Rather than starting at the left end of 5 while searching for the longest
possible match, they must start with the endpoint of the previous rnatch and

"wrap around" at the end of S.

So far, we have presented our edit scripts as constructing 7 separately
from S. It is also possible to transform S "in place”. The following paragraphs

discusses the algorithm in some detail.

Suppose we have a bufler B[0,..., Maz(m,n)] initialized to &, ie.,
[i] = S[i] for 0<i=n. The goal is Lo transform the contents of 2 to 7. The key
to this algorithm is an auxiliary array A[O, ... ,n], which keeps track of the
positions of Lhe original symbols S(i] in 8. Initially, A[1] =% for 0=i=n. A
marker A moves through A from left to right, giving the index of the rightmost
symbol involved in a block move so far. Thus, for the &'Lh mowve command
M pe.le, b = Max(p;+i;,0=j<k). There is also a marker ¢ indicaling the index of

the last symbol processed inB.

The first step is to remove all symbeols from B which are not in T. This step
preprocesses the edit script to isclate the symbols to be deleted, and then actu-
ally removes them from 8. It also updates the mapping array A to reflect the
compression, and marks Lthose entries of A as undefined whose counterparts in
i were deleled. The second slep processes the edit commands in sequence. An
add command simply inserls the given string Lo Lthe right ol ¢, and resels { to
poinl to Lhe last symbol so inseried. It also updates the array A for the symbols
shilted righl by lhe insertion. For each move of Lhe form # p I, compare p and
the current value of . If p>h, then the current block move is to the right of

the previous one. The symbols belween k and p, ie., B[A[h+1). ... CAlp—1]],

.12 -

arc not included in the current move, but will be moved later. Mark them as
such and set h to p+i-1 and £ to A[k]. Thus, the characters S[p, ... ,p+l—1]
will be included in the result. Otherwise, if p<h, the current bleck move crosses
the previous one, and a substring located before { must be moved or copied for-
ward. All symbols in that string that were marked for moving by an earlier com-
mand are now moved, the olhers are simply copied forward. It is conceivable
that Lhe the current block move involves symbols to the left and right of 2. In
that case, first handle the string to the left of h by moving or copying elements
of the string B[A[p].A(Min(p+I{—1,k)]] after B[¢]. The remaining (possibly
empty) string A(h+i,...,p+i-1] is simply included by setting h to
Maz(p+l—-1,k). Update A to reflect the moves and shifts, and set £ to A[&].
Below is a trace of the algorithm, transforming the string shianghai to
sakhalin by applying the edit script MQ,1; M2.1; Ak M1.2; 4"1"; M7,1; M3,1.
The algorithm can be applied to update display scereens efliciently, provided the
display offers operations for characler and line insertion and deletion, as well as
a copy /move fealurc. The laller fealure is needed for copying and moving
characler strings forward in the above algorithim. The auxiliary array 4 is allo-

cated in main memory.

J’/S f\ i P A ST
A Ll llr(irlxlx/liﬂ After vem oving
v 5 A“ ITRENTEW) 5™ A {
B [l T o gmbol

t
W
/':l- l L"ﬂ [;"[\’P’:l"J A(iw “PPI'I"“ﬁ
71?‘:"5'_:.'/ HO[‘N.'LI
b LelKlalwlil 1 11 > ’
4 /4'[!] Ls Wmar‘u.&f gpr Ao ve

1
h
3 3 ‘ — Hk‘i
3 En\ G kTI_h v | [
f.
!
\il"\"\'\qﬂilil}l Aller applyiug
_ 2 0 & M Lx s T rZ"
Iaiclh]ard n]] o

y
A- l\| '\l \lx[l’(}}'l A#Ur ap!u’,f:l,‘\j

b H -7 l; r 3 {
D [sle el [1ul ’ ?

laghe

-13-

Coneclusions

The original string-to-string correction problem as formulated in{13] per-
mitted the edlting commands edd, delele, and change. Clearly, a change com-
mand can be simulatedlwith a delefe followed by an add. Any sequence of add
and delefe commands can be transformed into an equivalent sequence of add
and move commands. This transformation works since delefe and mowve com-
mands complement each other, provided ne bloek moves cross or overlap. Our
approach of extending the editing commands by permitting crossing block
moves resulls in shorter edit sequences. We developed efficient algorithins for
compuling those sequences. Reconstructing the target string by applying the

edil sequence is efficient il the source string can be accessed randomly.

=14 -

Appendix: Using the Knuth-Morris-Pratt Pattern Matching Algorithm.

3. array(0..m] of symbol;
T: array(0..n] of symbol;
N: array[0..n} of symbol:

q:= 0; { start at left end of T }
while ¢ <= n do
begin [Characters left in T; find longest mateh starting with T[q] }

end

k:=0; { start match at left end of 5 }

j:= q: { first symbol of pattern }

last := q; { last symbol of pattern }

N[q] := g-1; { initialize N[q] }

iN := g-1; | initialize computation of N[q+1,...]

loop | loop with exit from the middle } _
{ try to find a match for T[q]..T[last] = }
f T(q]..T{last-1] has already been matched |
kOld ;= k; | save last point of old match, if any }

while (j<=last) and (k<=m) do

begin
while (j>=q) and (S[k] <> T[j])
de j := N[j];
ko= k41 = j+1;
end

until (j<=last) || (last=n}; | exit from the middle }

{ found match; now increase last and compute N[last] }
while (iN>=q) and (T[last] <> T[iN])
do iN := N[iN];
last := last+1; iN := iN+1;
if T{last]=T[iN]
then N[last] := N[iN]
else N{last] := iN;
end { end of loop |

[print match §

if j>lasl Lthen

begin | found mateh for tail of T }
print(k-(n-q+1}, q, n-q+1);
q:=n+l;

end else if q = last then

begin | no match }
g:=q+1;

end else

begin | last match failed; take previous one }
print(kOld-(last-q), q, last-q)
q .= last;

end

..15_

References

1.

2,

10.

il.

ia.

143,

BOYER, ROBERT S. AND MOORE, J. STROTHER, “'A Fast String Searching Algo-
rithm." Communications of the ACM 20(10) p. 762-772 (October 1977).

GOSLING, JAMES, "'A Redisplay Algorithm,"” Proc. ACM SIGPLAN SIGOA Sympo-
stum on Tezt Manipuletion, p. 123-129 (June 1981).

HECKEL, PAUL, A Technique for Isolating Differences Between Files," Com-
manications of the ACM 21(4) p. 264-268 (April 1978).

HIRSCHBERG, DANILL S., “A Linear Space Algorithm for Computing Maximal
Common Subsequences.'” Comrnunications of the ACM 18(8) p. 341-343
(June 1975).

HIRSCHBERG, DANIEL S., "Algorithms for the Longest Cormmon Susbsequence
Problem.” Journal of the ACH 24(4) p. 664-675 {October 1977).

HUNT, JAMES W. AND MCILROY, M. D., “'An Algorithm for Differential File Com-
parison,” Computing Science Technical Report No. 41, Bell Laboratories
(June 19786).

HUNT, JAMES W. AND SZYMANSKI, THOMAS G., "A Fast Algorithm for Computing
Longest Common Subsequences,’”” Communications of the ACH 20(5) p. 350-
353 (May 1977).

KNUTH, DoONALD E., MORRIS, JAMES H., AND PRATT, VAUGHAN R., “Fast Pattern
Matching in Strings,” S/AM Journal of Computing 6(2) p. 323-350 {June
1977},

NAKATSU, NARAO, KAMBAYASHI, YAHIKO, AND YAJIMA, SHUZO, ‘A Longest Common -
Subsequence Algorithm for Similar Text Strings,"” Acta Mmformaotica 18 p.
171-179 (198R2).

ROCHKIND, MARC J., "'The Source Code Control System,”’ IEEE Transoctions on
Software Engineering SE-1(4) p. 364-370 (Dec. 1975).

SANKOFF, DAVID, "'Matching Sequences under Deletion/Insertion Constraints,"”
Proc. Nat. Academy of Sciences, USA 69(1) p. 4-8 (January 1972).

TICHY, WALTER I., "'Design, Implementation, and Evaluation of a Revision Con-
lrol System,” pp. 58-87 in Proceedings of the 6th International Conference
on Software Engineering, IPS, ACM, IEEE, NBS (September 1982).

WAGNER, ROBERT A. AND TISIHER, MICUAEL J., "“The String-lo-String Correcticn
Problem.” Journal of the ACM 21(1) p. 168-173 (January 1974).

	Purdue University
	Purdue e-Pubs
	1983

	The String-to-String Correction Problem with Block Moves
	Walter F. Tichy
	Report Number:

