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Abstract 

Feature matching is at the base of many computer vi­

sion problems, such as object recognition or structure from 

motion. Current methods rely on costly descriptors for de­

tection and matching. In this paper, we propose a very fast 

binary descriptor based on BRIEF, called ORB, which is 

rotation invariant and resistant to noise. We demonstrate 

through experiments how ORB is at two orders of magni­

tude faster than SIFT, while peiforming as well in many 

situations. The efficiency is tested on several real-world ap­

plications, including object detection and patch-tracking on 

a smart phone. 

1. Introduction 

The SIFT keypoint detector and descriptor [17], al­
though over a decade old, have proven remarkably success­
ful in a number of applications using visual features, in­
cluding object recognition [17], image stitching [28], visual 
mapping [25], etc. However, it imposes a large computa­
tional burden, especially for real-time systems such as vi­
sual odometry, or for low-power devices such as cell phones. 
This has led to an intensive search for replacements with 
lower computation cost; arguably the best of these is SURF 
[2]. There has also been research aimed at speeding up the 
computation of SIFT, most notably with GPU devices [26]. 

In this paper, we propose a computationally-efficient re­
placement to SIFT that has similar matching performance, 
is less affected by image noise, and is capable of being used 
for real-time performance. Our main motivation is to en­
hance many common image-matching applications, e.g., to 
enable low-power devices without GPU acceleration to per­
form panorama stitching and patch tracking, and to reduce 
the time for feature-based object detection on standard pes. 
Our descriptor performs as well as SIFT on these tasks (and 
better than SURF), while being almost two orders of mag­
nitude faster. 

Our proposed feature builds on the well-known FAST 
keypoint detector [23] and the recently-developed BRIEF 
descriptor [6]; for this reason we call it ORB (Oriented 

Figure 1. Typical matching result using ORB on real-world im­

ages with viewpoint change. Green lines are valid matches; red 

circles indicate unmatched points. 

FAST and Rotated BRIEF). Both these techniques are at­
tractive because of their good performance and low cost. 
In this paper, we address several limitations of these tech­
niques vis-a-vis SIFT, most notably the lack of rotational 
invariance in BRIEF. Our main contributions are: 

• The addition of a fast and accurate orientation compo­
nent to FAST. 

• The efficient computation of oriented BRIEF features. 

• Analysis of variance and correlation of oriented 
BRIEF features. 

• A learning method for de-correlating BRIEF features 
under rotational invariance, leading to better perfor­
mance in nearest-neighbor applications. 

To validate ORB, we perform experiments that test the 
properties of ORB relative to SIFT and SURF, for both 
raw matching ability, and performance in image-matching 
applications. We also illustrate the efficiency of ORB 
by implementing a patch-tracking application on a smart 
phone. An additional benefit of ORB is that it is free from 
the licensing restrictions of SIFT and SURF. 

2. Related Work 

Keypoints FAST and its variants [23,24] are the method 
of choice for finding keypoints in real-time systems that 
match visual features, for example, Parallel Tracking and 
Mapping [13]. It is efficient and finds reasonable corner 
keypoints, although it must be augmented with pyramid 
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schemes for scale [14], and in our case, a Harris corner filter 
[II] to reject edges and provide a reasonable score. 

Many keypoint detectors include an orientation operator 
(SIFT and SURF are two prominent examples), but FAST 
does not. There are various ways to describe the orientation 
of a keypoint; many of these involve histograms of gradient 
computations, for example in SIFT [17] and the approxi­
mation by block patterns in SURF [2]. These methods are 
either computationally demanding, or in the case of SURF, 
yield poor approximations. The reference paper by Rosin 
[22] gives an analysis of various ways of measuring orienta­
tion of corners, and we borrow from his centroid technique. 
Unlike the orientation operator in SIFT, which can have 
multiple value on a single keypoint, the centroid operator 
gives a single dominant result. 

Descriptors BRIEF [6] is a recent feature descriptor that 
uses simple binary tests between pixels in a smoothed image 
patch. Its performance is similar to SIFT in many respects, 
including robustness to lighting, blur, and perspective dis­
tortion. However, it is very sensitive to in-plane rotation. 

BRIEF grew out of research that uses binary tests to 
train a set of classification trees [4]. Once trained on a set 
of 500 or so typical keypoints, the trees can be used to re­
turn a signature for any arbitrary keypoint [5]. In a similar 
manner, we look for the tests least sensitive to orientation. 
The classic method for finding uncorrelated tests is Princi­
pal Component Analysis; for example, it has been shown 
that PCA for SIFT can help remove a large amount of re­
dundant information [12]. However, the space of possible 
binary tests is too big to perform PCA and an exhaustive 
search is used instead. 

Visual vocabulary methods [21,27] use offline clustering 
to find exemplars that are uncorrelated and can be used in 
matching. These techniques might also be useful in finding 
uncorrelated binary tests. 

The closest system to ORB is [3], which proposes a 
multi-scale Harris keypoint and oriented patch descriptor. 
This descriptor is used for image stitching, and shows good 
rotational and scale invariance. It is not as efficient to com­
pute as our method, however. 

3. oFAST: FAST Keypoint Orientation 

FAST features are widely used because of their compu­
tational properties. However, FAST features do not have an 
orientation component. In this section we add an efficiently­
computed orientation. 

3.1. FAST Detector 

We start by detecting FAST points in the image. FAST 
takes one parameter, the intensity threshold between the 
center pixel and those in a circular ring about the center. 

We use FAST-9 (circular radius of 9), which has good per­
formance. 

FAST does not produce a measure of cornerness, and we 
have found that it has large responses along edges. We em­
ploy a Harris corner measure [11] to order the FAST key­
points. For a target number N of keypoints, we first set the 
threshold low enough to get more than N keypoints, then 
order them according to the Harris measure, and pick the 
top N points. 

FAST does not produce multi-scale features. We employ 
a scale pyramid of the image, and produce FAST features 
(filtered by Harris) at each level in the pyramid. 

3.2. Orientation by Intensity Centroid 

Our approach uses a simple but effective measure of cor­
ner orientation, the intensity centroid [22]. The intensity 
centroid assumes that a corner's intensity is offset from its 
center, and this vector may be used to impute an orientation. 
Rosin defines the moments of a patch as: 

(1) 
x,y 

and with these moments we may find the centroid: 

(2) 

We can construct a vector from the corner's center, 0, to the 
centroid, OC. The orientation of the patch then simply is: 

e = atan2(rnQ1,rnlO ), (3) 

where atan2 is the quadrant-aware version of arctan. Rosin 
mentions taking into account whether the corner is dark or 
light; however, for our purposes we may ignore this as the 
angle measures are consistent regardless of the corner type. 

To improve the rotation invariance of this measure we 
make sure that moments are computed with x and y re­
maining within a circular region of radius T. We empirically 
choose T to be the patch size, so that that x and y run from 
[-T, T] . As ICI approaches 0, the measure becomes unsta­
ble; with FAST corners, we have found that this is rarely the 
case. 

We compared the centroid method with two gradient­
based measures, BIN and MAX. In both cases, X and 
Y gradients are calculated on a smoothed image. MAX 
chooses the largest gradient in the keypoint patch; BIN 
forms a histogram of gradient directions at 10 degree inter­
vals, and picks the maximum bin. BIN is similar to the SIFT 
algorithm, although it picks only a single orientation. The 
variance of the orientation in a simulated dataset (in-plane 
rotation plus added noise) is shown in Figure 2. Neither of 
the gradient measures performs very well, while the cen­
troid gives a uniformly good orientation, even under large 
image noise. 
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Figure 2. Rotation measure. The intensity centroid (IC) per­

forms best on recovering the orientation of artificiall y rotated noisy 

patches, compared to a histogram (BIN) and MAX method. 

4. rBRIEF: Rotation-Aware Brief 

In this section, we first introduce a steered BRIEF de­
scriptor, show how to compute it efficiently and demon­
strate why it actually performs poorly with rotation. We 
then introduce a learning step to find less correlated binary 
tests leading to the better descriptor rBRIEF, for which we 
offer comparisons to SIFT and SURF. 

4.1. Efficient Rotation of the BRIEF Operator 

Brief overview of BRIEF 

The BRIEF descriptor [6] is a bit string description of an 
image patch constructed from a set of binary intensity tests. 
Consider a smoothed image patch, p. A binary test T is 
defined by: 

T(p;X,y):= { � : p(x) < p(y) 
: p(x) 2" p(y) 

, (4) 

where p(x) is the intensity of p at a point x. The feature is 
defined as a vector of n binary tests: 

fn(P):= L 2i
-1T(p;Xi,Yi) 

l;Si;Sn 
(5) 

Many different types of distributions of tests were consid­
ered in [6]; here we use one of the best performers, a Gaus­
sian distribution around the center of the patch. We also 
choose a vector length n = 256. 

It is important to smooth the image before performing 
the tests. In our implementation, smoothing is achieved us­
ing an integral image, where each test point is a 5 x 5 sub­
window of a 31 x 31 pixel patch. These were chosen from 
our own experiments and the results in [6]. 

Steered BRIEF 

We would like to allow BRIEF to be invariant to in-plane 
rotation. Matching performance of BRIEF falls off sharply 
for in-plane rotation of more than a few degrees (see Figure 
7). Calonder [6] suggests computing a BRIEF descriptor 
for a set of rotations and perspective warps of each patch, 
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Figure 3. Distribution of means for feature vectors: BRIEF, steered 

BRIEF (Section 4.1), and rBRIEF (Section 4.3). The X axis is the 

distance to a mean of 0.5 

but this solution is obviously expensive. A more efficient 
method is to steer BRIEF according to the orientation of 
keypoints. For any feature set of n binary tests at location 

(Xi, Yi), define the 2 x n matrix 

Using the patch orientation e and the corresponding rotation 
matrix Re, we construct a "steered" version Se of S: 

Se = ReS, 

Now the steered BRIEF operator becomes 

(6) 

We discretize the angle to increments of 27r /30 (12 de­
grees), and construct a lookup table of precomputed BRIEF 
patterns. As long at the keypoint orientation e is consistent 
across views, the correct set of points Se will be used to 
compute its descriptor. 

4.2. Variance and Correlation 

One of the pleasing properties of BRIEF is that each bit 
feature has a large variance and a mean near 0.5. Figure 3 
shows the spread of means for a typical Gaussian BRIEF 
pattern of 256 bits over lOOk sample keypoints. A mean 
of 0.5 gives the maximum sample variance 0.25 for a bit 
feature. On the other hand, once BRIEF is oriented along 
the keypoint direction to give steered BRIEF, the means are 
shifted to a more distributed pattern (again, Figure 3). One 
way to understand this is that the oriented corner keypoints 
present a more uniform appearance to binary tests. 

High variance makes a feature more discriminative, since 
it responds differentially to inputs. Another desirable prop­
erty is to have the tests uncorre1ated, since then each test 
will contribute to the result. To analyze the correlation and 
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Figure 4. Distribution of eigenvalues in the PCA decomposition 

over lOOk keypoints of three feature vectors: BRIEF, steered 

BRIEF (Section 4.1), and rBRIEF (Section 4.3). 
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Figure 5. The dotted lines show the distances of a keypoint to out­

liers, while the solid lines denote the distances only between inlier 

matches for three feature vectors: BRIEF, steered BRIEF (Section 

4.1), and rBRIEF (Section 4.3). 

variance of tests in the BRIEF vector, we looked at the re­
sponse to lOOk keypoints for BRIEF and steered BRIEF. 
The results are shown in Figure 4. Using PCA on the data, 
we plot the highest 40 eigenvalues (after which the two de­
scriptors converge). Both BRIEF and steered BRIEF ex­
hibit high initial eigenvalues, indicating correlation among 
the binary tests - essentially all the information is contained 
in the first 10 or 15 components. Steered BRIEF has signif­
icantly lower variance, however, since the eigenvalues are 
lower, and thus is not as discriminative. Apparently BRIEF 
depends on random orientation of keypoints for good per­
formance. Another view of the effect of steered BRIEF is 
shown in the distance distributions between inliers and out­
liers (Figure 5). Notice that for steered BRIEF, the mean for 
outliers is pushed left, and there is more of an overlap with 
the inliers. 

4.3. Learning Good Binary Features 

To recover from the loss of variance in steered BRIEF, 
and to reduce correlation among the binary tests, we de­
velop a learning method for choosing a good subset of bi­
nary tests. One possible strategy is to use PCA or some 
other dimensionality-reduction method, and starting from a 

large set of binary tests, identify 256 new features that have 
high variance and are uncorrelated over a large training set. 
However, since the new features are composed from a larger 
number of binary tests, they would be less efficient to com­
pute than steered BRIEF. Instead, we search among all pos­
sible binary tests to find ones that both have high variance 
(and means close to 0.5), as well as being uncorrelated. 

The method is as follows. We first set up a training set of 
some 300k keypoints, drawn from images in the PASCAL 
2006 set [8]. We also enumerate all possible binary tests 
drawn from a 31 x 31 pixel patch. Each test is a pair of 5 x 5 
sub-windows of the patch. If we note the width of our patch 
as wp = 31 and the width of the test sub-window as Wt = 5, 
then we have N = (wp - Wt ? possible sub-windows. We 

would like to select pairs of two from these, so we have (�) 
binary tests. We eliminate tests that overlap, so we end up 
with 1V1 = 205590 possible tests. The algorithm is: 

1. Run each test against all training patches. 

2. Order the tests by their distance from a mean of 0.5, 
forming the vector T. 

3. Greedy search: 

(a) Put the first test into the result vector R and re­
move it from T. 

(b) Take the next test from T, and compare it against 
all tests in R. If its absolute correlation is greater 
than a threshold, discard it; else add it to R. 

(c) Repeat the previous step until there are 256 tests 
in R. If there are fewer than 256, raise the thresh­
old and try again. 

This algorithm is a greedy search for a set of uncorrelated 
tests with means near 0.5. The result is called rBRIEF. 
rBRIEF has significant improvement in the variance and 
correlation over steered BRIEF (see Figure 4). The eigen­
values of PCA are higher, and they fall off much less 
quickly. It is interesting to see the high-variance binary tests 
produced by the algorithm (Figure 6). There is a very pro­
nounced vertical trend in the unlearned tests (left image), 
which are highly correlated; the learned tests show better 
diversity and lower correlation. 

4.4. Evaluation 

We evaluate the combination of oFAST and rBRIEF, 
which we call ORB, using two datasets: images with syn­
thetic in-plane rotation and added Gaussian noise, and a 
real-world dataset of textured planar images captured from 
different viewpoints. For each reference image, we compute 
the oFAST keypoints and rBRIEF features, targeting 500 
keypoints per image. For each test image (synthetic rotation 
or real-world viewpoint change), we do the same, then per­
form brute-force matching to find the best correspondence. 
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Figure 6. A subset of the binary tests generated by considering 

high-variance under orientation (left) and by running the learning 

algorithm to reduce correlation (right). Note the distribution of the 

tests around the axis of the keypoint orientation, which is pointing 

up. The color coding shows the maximum pairwise correlation of 

each test, with black and purple being the lowest. The learned tests 

clearly have a better distribution and lower correlation. 
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Figure 7. Matching performance of SIFT, SURF, BRIEF with 

FAST, and ORB (oFAST +rBRIEF) under synthetic rotations 

with Gaussian noise of 10. 

The results are given in terms of the percentage of correct 
matches, against the angle of rotation. 

Figure 7 shows the results for the synthetic test set with 
added Gaussian noise of 10. Note that the standard BRIEF 
operator falls off dramatically after about 10 degrees. SIFT 
outperforms SURF, which shows quantization etlects at 45-
degree angles due to its Haar-wavelet composition. ORB 
has the best performance, with over 70% inliers. 

ORB is relatively immune to Gaussian image noise, un­
like SIFT. If we plot the inlier performance vs. noise, SIFT 
exhibits a steady drop of 10% with each additional noise 
increment of 5. ORB also drops, but at a much lower rate 
(Figure 8). 

To test ORB on real-world images, we took two sets of 
images, one our own indoor set of highly-textured mag­
azines on a table (Figure 9), the other an outdoor scene. 
The datasets have scale, viewpoint, and lighting changes. 
Running a simple inlier/outlier test on this set of images, 

Comparison of SIFT and rBRIEF considering Gaussian Intensity Noise 
1
oo,--------.---------.--------.-�'B�R�,EF�----, 
95 SIFT-

90 180 270 360 
Angle of Rotation (Degrees) 

Figure 8. Matching behavior under noise for SIFT and rBRIEF. 

The noise levels are 0, 5, 10, 15, 20, and 25. SIFT performance 

degrades rapidly, while rBRIEF is relatively unaffected. 

Figure 9. Real world data of a table full of magazines and an out­

door scene. The images in the first column are matched to those in 

the second. The last column is the resulting warp of the first onto 

the second. 

we measure the performance of ORB relative to SIFT and 
SURF. The test is performed in the following manner: 

1. Pick a reference view Vo. 

2. For all Vi, find a homographic warp HiO that maps 
Vi ---+ Vo. 

3. Now, use the HiO as ground truth for descriptor 
matches from SIFT, SURF, and ORB. 

inlier % N points 
Magazines 

ORB 36.180 548.50 
SURF 38.305 513.55 

SIFT 34.010 584.15 
Boat 

ORB 45.8 789 
SURF 28.6 795 

SIFT 30.2 714 

ORB outperforms SIFT and SURF on the outdoor dataset. 
It is about the same on the indoor set; [6] noted that blob­
detection keypoints like SIFT tend to be better on graffiti­
type images. 
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Figure 10. Two different datasets (7818 images from the PASCAL 

2009 dataset [9] and 9144 low resolution images from the Caltech 

101 [29]) are used to train LSH on the BRIEF, steered BRIEF and 

rBRIEF descriptors. The training takes less than 2 minutes and 

is limited by the disk 10. rBRIEF gives the most homogeneous 

buckets by far, thus improving the query speed and accuracy. 

5. Scalable Matching of Binary Features 

In this section we show that ORB outperforms 
SIFT/SURF in nearest-neighbor matching over large 
databases of images. A critical part of ORB is the recovery 
of variance, which makes NN search more efficient. 

5.1. Locality Sensitive Hashing for rBrief 

As rBRIEF is a binary pattern, we choose Locality Sen­
sitive Hashing [10] as our nearest neighbor search. In LSH, 
points are stored in several hash tables and hashed in differ­
ent buckets. Given a query descriptor, its matching buckets 
are retrieved and its elements compared using a brute force 
matching. The power of that technique lies in its ability 
to retrieve nearest neighbors with a high probability given 
enough hash tables. 

For binary features, the hash function is simply a subset 
of the signature bits: the buckets in the hash tables contain 
descriptors with a common sub-signature. The distance is 
the Hamming distance. 

We use multi-probe LSH [18] which improves on the 
traditional LSH by looking at neighboring buckets in which 
a query descriptor falls. While this could result in more 
matches to check, it actually allows for a lower number of 
tables (and thus less RAM usage) and a longer sub-signature 
and therefore smaller buckets. 

5.2. Correlation and Leveling 

rBRIEF improves the speed of LSH by making the 
buckets of the hash tables more even: as the bits are less 
correlated, the hash function does a better job at partitioning 
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Figure II. Speed vs. accuracy. The descriptors are tested on 

warped versions of the images they were trained on. We used 1, 

2 and 3 kd-trees for SIFT (the autotuned FLANN kd-tree gave 

worse performance), 4 to 20 hash tables for rBRIEF and 16 to 40 

tables for steered BRIEF (both with a sub-signature of 16 bits). 

Nearest neighbors were searched over 1.6M entries for SIFT and 

1.8M entries for rBRIEF. 

the data. As shown in Figure 10, buckets are much smaller 
in average compared to steered BRIEF or normal BRIEF. 

5.3. Evaluation 

We compare the performance of rBRIEF LSH with kd­
trees of SIFT features using FLANN [20]. We train the dif­
ferent descriptors on the Pascal 2009 dataset and test them 
on sampled warped versions of those images using the same 
affine transforms as in [1]. 

Our multi-probe LSH uses bitsets to speedup the pres­
ence of keys in the hash maps. It also computes the Ham­
ming distance between two descriptors using an SSE 4.2 
optimized popcount. 

Figure 11 establishes a correlation between the speed 
and the accuracy of kd-trees with SIFT (SURF is equiv­
alent) and LSH with rBRIEF. A successful match of the 
test image occurs when more than 50 descriptors are found 
in the correct database image. We notice that LSH is faster 
than the kd-trees, most likely thanks to its simplicity and the 
speed of the distance computation. LSH also gives more 
flexibility with regard to accuracy, which can be interesting 
in bag-of-feature approaches [21, 27]. We can also notice 
that the steered BRIEF is much slower due to its uneven 
buckets. 

6. Applications 

6.1. Benchmarks 

One emphasis for ORB is the efficiency of detection and 
description on standard CPUs. Our canonical ORB detec­
tor uses the oFAST detector and rBRIEF descriptor, each 
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computed separately on five scales of the image, with a scal­
ing factor of J2. We used an area-based interpolation for 
efficient decimation. 

The ORB system breaks down into the following times 
per typical frame of size 640x480. The code was executed 
in a single thread running on an Intel i7 2.8 GHz processor: 

ORB: rBRIEF 

Time (ms) 2.12 

When computing ORB on a set of 2686 images at 5 
scales, it was able to detect and compute over 2 x 106 fea­
tures in 42 seconds. Comparing to SIFT and SURF on the 
same data, for the same number of features (roughly 1000), 
and the same number of scales, we get the following times: 

Detector ORB SURF SIFT 
Time per frame (ms) 15.3 217.3 5228.7 

These times were averaged over 24 640x480 images from 
the Pascal dataset [9]. ORB is an order of magnitude faster 
than SURF, and over two orders faster than SIFT. 

6.2. Textured object detection 

We apply rBRIEF to object recognition by implement­
ing a conventional object recognition pipeline similar to 
[19]: we first detect oFAST features and rBRIEF de­
scriptors, match them to our database, and then perform 
PROSAC [7] and EPnP [16] to have a pose estimate. 

Our database contains 49 household objects, each taken 
under 24 views with a 2D camera and a Kinect device from 
Microsoft. The testing data consists of 2D images of sub­
sets of those same objects under ditlerent view points and 
occlusions. To have a match, we require that descriptors are 
matched but also that a pose can be computed. In the end, 
our pipeline retrieves 61 % of the objects as shown in Figure 
12. 

The algorithm handles a database of 1.2M descriptors 
in 200MB and has timings comparable to what we showed 
earlier (14 ms for detection and 17ms for LSH matching in 
average). The pipeline could be sped up considerably by not 
matching all the query descriptors to the training data but 
our goal was only to show the feasibility of object detection 
with ORB. 

6.3. Embedded real-time feature tracking 

Tracking on the phone involves matching the live frames 
to a previously captured keyframe. Descriptors are stored 
with the keyframe, which is assumed to contain a planar 
surface that is well textured. We run ORB on each incom­
ing frame, and proced with a brute force descriptor match­
ing against the keyframe. The putative matches from the 
descriptor distance are used in a PROSAC best fit homog­
raphy H. 

Figure 12. Two images of our textured obejct recognition with 

pose estimation. The blue features are the training features super­

imposed on the query image to indicate that the pose of the object 

was found properly. Axes are also displayed for each object as 

well as a pink label. Top image misses two objects; all are found 

in the bottom one. 

While there are real-time feature trackers that can run on 
a cellphone [15], they usually operate on very small images 
(e.g., 120x160) and with very few features. Systems com­
parable to ours [30] typically take over 1 second per image. 
We were able to run ORB with 640 x 480 resolution at 7 
Hz on a cellphone with a lGHz ARM chip and 512 MB of 
RAM. The OpenCV port for Android was used for the im­
plementation. These are benchmarks for about 400 points 
per image: 

H Fit 
Time (ms) 20.9 

7. Conclusion 

In this paper, we have defined a new oriented descrip­
tor, ORB, and demonstrated its performance and efficiency 
relative to other popular features. The investigation of vari­
ance under orientation was critical in constructing ORB 
and de-correlating its components, in order to get good per­
formance in nearest-neighbor applications. We have also 
contributed a BSD licensed implementation of ORB to the 
community, via OpenCV 2.3. 

One of the issues that we have not adequately addressed 
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here is scale invariance. Although we use a pyramid scheme 
for scale, we have not explored per keypoint scale from 
depth cues, tuning the number of octaves, etc .. Future work 
also includes GPU/SSE optimization, which could improve 
LSH by another order of magnitude. 
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