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Abstract 

We study the combinatorial problem which consists, given a system of linear relations, of 
finding a maximum feasible subsystem, that is a solution satisfying as many relations as possible. 
The computational complexity of this general problem, named MAX FLS, is investigated for the 
four types of relations =, 3, > and #. Various constrained versions of MAP FLS, where a 
subset of relations must be satisfied or where the variables take bounded discrete values, are 
also considered. We establish the complexity of solving these problems optimally and, whenever 
they are intractable, we determine their degree of approximability. MAX FLS with =, 2 or 

> relations is NP-hard even when restricted to homogeneous systems with bipolar coefficients, 
whereas it can be solved in polynomial time for # relations with real coefficients. The various 
NP-hard versions of m FLS belong to different approximability classes depending on the type 
of relations and the additional constraints. We show that the range of approximability stretches 
from Apx-complete problems which can be approximated within a constant but not within every 
constant unless P = NP, to NPO PB-complete ones that are as hard to approximate as all NP 
optimization problems with polynomially bounded objective functions. While MAX FLS with 
equations and integer coefficients cannot be approximated within p’ for some E > 0, where p 

is the number of relations, the same problem over GF(q) for a prime q can be approximated 
within q but not within qE for some E > 0. MAX FLS with strict or nonstrict inequalities can 
be approximated within 2 but not within every constant factor. Our results also provide strong 
bounds on the approximability of two variants of MAX FLS with > and > relations that arise 
when training perceptrons, which are the building blocks of artificial neural networks, and when 
designing linear classifiers. 
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1. Introduction 

We consider the general problem of finding maximum feasible subsystems of linear 
relations for the four types of relations =, 2, > and #. The basic versions, named 

MAX FLS@ with 8 E {=, 2, >,#}, are defined as follows: Given a linear system 

,4x%$ with a matrix A of size p x n, find a solution x E U?’ which satisfies as many 
relations as possible. 

Different variants of these combinatorial problems occur in various fields such as pat- 
tern recognition [38, 131, operations research [23, 18, 171 and artificial neural networks 

[3,21,33,32]. 
Whenever a system of linear equations or inequalities is consistent, it can be solved in 

polynomial time using an appropriate linear programming method [27]. If the system is 
inconsistent, standard algorithms provide solutions that minimize the least mean squared 
error. But such solutions, which are appropriate in linear regression, are not satisfactory 
when the objective is to maximize the number of relations that can be simultaneously 
satisfied. 

Previous works have focused mainly on algorithms for tackling various versions of 
m FLS. Among others, the weighted variants were studied in which each relation has 
an associated weight and the goal is to maximize the total weight of the satisfied rela- 
tions. Surprisingly enough, only a few results are known on the complexity of solving 
some special cases of m FLS to optimal&y and none concerns their approximability. 

Johnson and Preparata proved that the OPEN HEMISPHERE and CLOSED HEMISPHERE 

problems, which are equivalent to MAX FLS’ and ti FLS”, respectively, with 
homogeneous systems and no pairs of collinear row vectors of A, are NP-hard [23]. 
Moreover, they devised a complete enumeration algorithm with 0( p P’ log p) time- 
complexity, where n and p denote the number of variables and relations, that is also 
applicable to the weighted and mixed variant. 

Greer developed a tree method for maximizing functions of systems of linear rela- 
tions that is more efficient than complete enumeration but still exponential in the worst 
case [ 181. This general procedure can be used to solve MAX FLS with any of the four 
types of relations. 

Recently the problem of training perceptrons, which is closely related to MAX FLS’ 
and MAX FLS a, has attracted a considerable interest in machine learning and discrim- 
inant analysis [19]. For nonlinearly separable sets of vectors, the objective is either 
to maximize the consistency, i.e. the number of vectors that are correctly classified, 
or to minimize the number of misclassifications. These complementary problems are 
equivalent to solve optimally but their approximability can differ enormously. While 
some heuristic algorithms have been proposed in [15,14,32], Amaldi extended John- 
son’s and Preparata’s result by showing that solving these problems to optimality is 
NP-hard even when restricted to perceptrons with bipolar inputs in {-1,l) [3]. In 
other words, MIXED HEMISPHERE remains NP-hard if the coefficients take bipolar values. 
Hiiffgen et al. proved in [21] that minimizing the number of misclassifications is at least 
as hard to approximate as minimum set cover. Thus, according to [9], it is very hard to 
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approximate. But nothing is known about the approximability of maximizing perceptron 
consistency. 

Variants with mixed types of relations do also occur in practice. A simple example 
arises for instance in the field of linear numeric editing. Assuming that a database is 
characterized by all vectors in a given polytope, we try to associate to every given 
vector a database vector while leaving unchanged as many components as possible [ 181. 
In terms of linear systems, this amounts to finding a solution that satisfies as many # 
relations as possible subject to a set of nonstrict inequality constraints. 

There have recently been new substantial progresses in the study of the approx- 
imability of NP-hard optimization problems. Various classes have been defined and 
different reductions preserving approximability have been used to compare the approx- 
imability of optimization problems (see [25]). Moreover, the striking results which 
have recently been obtained in the area of interactive proofs triggered new advances in 
computational complexity theory. Strong bounds were derived on the approximability 
of several famous problems like maximum independent set, minimum graph colouring 
and minimum set cover [6,3 1,9]. These results have also important consequences on 
the approximability of other optimization problems [8]. 

A remarkably well-characterized approximation problem is that relative to MAX FLS’ 
over GF(q) where the equations are degree 2 polynomials that do not contain any 
squares as monomials. H&tad et al. have shown that this problem can be approximated 
within q’/(q - 1) but not within q - E for any E > 0 unless P = NP [20]. The same 
problem over the rational numbers or over the real numbers cannot be approximated 
within ni+ for any E > 0, where n is the number of variables. 

The paper is organized as follows. Section 2 provides a brief overview of the impor- 
tant facts about the hierarchy of approximability classes that will be used throughout 
this work. In Section 3 we prove that solving the basic MAX FLS” with 9 E {=, 2, 
> } optimally is intractable even for homogeneous systems with bipolar coefficients 
and we determine their degree of approximability. Various constrained versions of the 
basic problems are considered in Sections 4 and 5. First we focus on variants where 
a subset of relations must be satisfied and the objective is to find a solution fulfilling 
all mandatory relations and as many optional ones as possible. Then we consider the 
particular cases in which the variables are restricted to take a finite number of discrete 
values. In Section 6 the overall structure underlying the various results is discussed 

and open questions are mentioned. The appendix is devoted to three interesting special 
cases whose last two arise in discriminant analysis and machine learning. 

2. Approximability classes 

Definition 1 (Crescenzi and Panconesi [ 121). An NP optimization (NPO) problem over 
an alphabet c is a four-tuple F = (~,~,&,mF,opt~), where 
0 3~ C c* is the space of input instances. The Set 3~ IInN be recognizable in poly- 

nomial time. 
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l SF(X) C C* is the space of feasible solutions on input xE9F. The only requirement 
on SF is that there exist a polynomial q and a polynomial time computable predicate 
rc such that for all x in YF, SF can be expressed as SF(x) = {y : Iy[ <q( Ixl)An(x, y)} 
where q and R only depend on F. 

l m,V : yF x z* -+ N, the objective function, iS a pOlynOhd the computable function. 

m~(x,~) is defined only when y E SF(x). 
l optF E {max,min} tells if F is a maximization or a minimization problem. 

Solving an optimization problem F given the input xE3,~ means finding a y E SF(x) 
such that mF(x, JJ) is optimum, that is as large as possible if optF = max and as small 
as possible if opt, = min. Let optF(x) denote this optimal value of mF. 

Approximating an optimization problem F given the input x E _%F means finding any 
y’ E SF(x). How good the approximation is depends on the relation between m&x,/) 
and optF(x). The performance ratio of a feasible solution with respect to the optimum 
of a maximization problem F is defined as &(x, JJ) = opt&)/mF(x, y) where x E 3F 
and y E SF(x). 

Definition 2. An optimization problem F can be approximated within c for a constant 
c if there exists a polynomial-time algorithm A such that for all instances x E $,c, 
A(x) E SF(x) and &(x,&))<c. More generally, an optimization problem F can be 
approximated within p(n) for a function p : Z+ ---f W if there exists a polynomial- 
time algorithm A such that for every n E Z+ and for all instances x E 9.~ with 1x1 = n 
we have that A(x) E &(x) and &&A(x)) < p(n). 

Although various reductions preserving approximability within constants have been 
proposed (see [7,10,26,35]), the L-reduction is the most easy to use and the most 
restrictive one [25]. 

Definition 3 (Papadimitriou and Yannakakis [36]). Given two NPO problems F and 
G and a polynomial-time transformation f : YF + 3~. f is an L-reduction from F 
to G if there are positive constants ct and b such that for every instance x E 3,~ 

(i) optG(f (x)) G @. ’ oPtF(X)y 

(ii) for every solution y of f(x) with objective value mo(f(x),v) = c2 we can in 
polynomial time find a solution y’ of x with ??rF(x, y’) = ci such that [opt&) - cl 1 

GP bptG(f(x)) - c21. 
If F L-reduces to G we write F <iG. 

The composition of L-reductions is an L-reduction. If F L-reduces to G with con- 
stants a and /? and there is a polynomial-time approximation algorithm for G with 
worst-case relative error E, then there is a polynomial-time approximation algorithm 
for F with worst-case relative error a/k [36]. Obviously, an L-reduction with tl = /I = 
1 is a cost preserving transformation. 
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Definition 4 (Berman and Schnitger [lo] and Kolaitis and Thakur [29]). An NPO pro- 
blem F is polynomially bounded if there is a polynomial p such that 

vx E YF vy E SF(x), mF@, u) 6 p( 1x1). 

The class of all polynomially bounded NPO problems is called NPO PB. 

All versions of MAX FLS are included in NPO PB since their objective function is 
the number of satisfied relations or the total weight of the satisfied relations. 

Definition 5. Given an NPO problem F and a class C, F is C-hard if every G f C 

can be L-reduced to F. F is C-complete if F E C and F is C-hard. 

The range of approximability of NPO problems stretches from problems that can be 
approximated within every constant, i.e. that have a polynomial-time approximation 

scheme, to problems that cannot be approximated within nE for some E > 0, where n 
is the size of the input instance, unless P = NP. 

In the middle of this range we find the important class AFJX, which consists of 
problems that can be approximated within some constant, and the subclass MAX SNP, 
which is syntactically defined [36]. Several maximization problems have been shown 
to be MAX SNP-complete, and recently it was shown that these problems are also 
&x-complete [28,7]. 

Provided that P # NP it is impossible to find a polynomial-time algorithm that 
approximates a MAX SNP-hard (or Apx-hard) problem within every constant [6]. Thus 
showing a problem to be Apx-complete describes the approximability of the problem 
quite well: it can be approximated within a constant but not within every constant. 

The maximum independent set problem cannot be approximated within n” for some 
E > 0, where n is the number of nodes in the input graph [6]. If there is an approx- 
imation preserving reduction from MAX IND SET to an NPO problem F we say that 
F is MAX IND SET-hard, which means that it is at least as hard to approximate as the 
maximum independent set problem. 

There exist natural problems that are complete in NPO PB, for example MAX PB O-l 
PROGRAMMING [lo]. These are the hardest problems to approximate in this class since 
every NPO PB problem can be reduced to them using an approximation preserving 
reduction [ 111. 

The purpose of this paper is to show where the different versions of MAX FLS are 
placed in this hierarchy of approximability classes. We will see that the approximability 
of apparently similar variants can differ enormously. 

3. Complexity of MAX FLS-@ 

In this section we focus on the basic MAX FLS” with 2 f {=, 2, > ). We first 
prove that these problems are hard to solve optimally and then determine their degree 
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of approximability. Several special cases that can be solved in polynomial time are also 
mentioned. Note that MAX FLS with # relations is trivial because any such system 
is feasible. Indeed, for any finite set of hyperplanes associated with a set of linear 
relations there exists a vector x E 08” that does not belong to any of them. 

3.1. Optimal solution 

In order to determine the complexity of solving MAX FLS” with W E { =, 2, > } to 
optimality, we consider the corresponding decision versions that are no harder than the 
original optimization problems. Given a linear system AxBb where A is of size p x n 
and an integer K with 1 <K < p, does there exist a solution x E ET satisfying at least 
K relations of the system? 

In the homogeneous versions of M,u FLS” with Se E {=, 2 } we are not interested 
in the trivial solutions where all variables occurring in the satisfied relations are zero. 

Geometrically, homogeneous MAX FLS’ can be viewed as follows. Given a set of 
p points in UP, find a hyperplane passing through the origin and containing the largest 
number of points. 

Theorem 1. MAX FLS= is NP-hard even when restricted to homogeneous systems with 

ternary coefficients in { - 1, 0, 1). 

Proof. We proceed by polynomial-time reduction from the known NP-complete prob- 
lem EXACT ~-SETS COVER that is defined as follows [16]. Given a set S with ISI = 3q 

elements and a collection C = {Cl,. . . , C,,,} of subsets Cj C S with ]Cj] = 3 for 
1 <j < m, does C contain an exact cover, i.e. C’ & C such that each element si of S 
belongs to exactly one element of C’ ? 

Let (S,C) be an arbitrary instance of EXACT ~-SETS COVER. We will construct a 
particular instance of ti FLS’ denoted by (A, 6) such that the answer to the former 
one is affirmative if and only if the answer to the latter one is also atkrnative. 

The idea is to construct a system containing one variable xj for each subset Cj E C, 
16 j <m, and at least one equation for each element Si of S, 1 <i < 3q. We consider 
the following set of equations: 

CaijXj = 1 for i = 1,...,3q, 
j=l 

where aij = 1 if the element si E C’ and aij = 0 otherwise, as well as the additional 
ones 

Xj = 1 forj = l,...,m, (2) 

Xj = 0 forj = l,...,m. (3) 

Moreover, we set K = 3q + m. Clearly K is equal to the largest number of equations 
that can be simultaneously satisfied. 
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Given any exact cover C’ C C of (S, C), the vector x defined by 

1 1 
Xj = 

0 

if Cj E C’, 
otherwise 

satisfies all equations of type (1) and exactly m equations of types (2)-(3). Hence x 
fulfils K = 3q + m equations. 

Conversely, suppose that we have a solution x that satisfies at least K = 3q + m 
equations of (A, b). By construction, this implies that x fulfils all equations of type (1) 
and m equations of types (2) - (3). Thus the subset C’ C C defined by Cj E C’ if and 
only if Xj = 1 is an exact cover of (S, C). 

The reduction can easily be extended to homogeneous MAX FLS’. We just need to 
add a new variable x,+1 with ai,+, = -bi for all i, 1 <i < p, and to observe that in 
any nontrivial solution x we must have x,+1 # 0. Indeed, x,,,,~ = 0 would necessarily 
imply Xj = 0 for all j, 1 <j < m. 0 

The question arises as to whether the problem is still intractable for systems with 
bipolar coefficients in { - 1,l). 

Corollary 2. MAX FLS= remains NP-hard for homogeneous systems with bipolar co- 
efficients. 

Proof. We extend the above reduction by using a duplication technique that allows to 
reduce systems with ternary coefficients in { - 1, 0, 1) to systems with bipolar coeffi- 
cients in { - 1, 1). The idea is to replace each variable xj, 1 <j <n, by two variables 
that are forced to be equal and that have only bipolar coefficients. 

Consider an arbitrary instance of homogeneous MAX FLS’ with ternary coefficients 
arising from an instance of EXACT ~-SETS COVER. Without loss of generality, we can 
assume that aij E {-2,0,2}. This simple multiplication by a factor 2 does not affect 
the set of solutions but makes all coefficients even. Since the absolute value of aij is 
either 0 or 2, we can construct a system with bipolar coefficients that is equivalent to 
( 1) - (3) by duplicating the variables and adding new equations. 

Suppose that n different variables occur in (1) - (3). We associate with each equation 
ux = 0 with n variables an equation riy = 0 with 2n variables. The coefficient vector a” 
is determined as follows: 

zj = 
{ 

1 ifa. I,/21 = 2 or arj/21 = 0 and j is odd, 
- 1 if arj/21 = -2 or aIj/zl = 0 and j is even, 

where 1 <j < 2n. This defines a mapping from { -2,O, 2)” into { - 1, 1}2n that associates 
to each component ai of u the two components Zzi_r and ci2i of d such that ai = 
&i_i + & for all i, 1 <i < n. For any x E OX” satisfying ex = 0, the vector y E 
R2” given by yj = xrj/zl satisfies the corresponding equation & = 0. Furthermore, 
if y2i = yzi_i for 1 <i < n and rSy = 0 then the vector x given by xi = yzi_1, 
1 < i <n, is a solution of ax = 0. Thus, in order to construct an equivalent system with 
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only { - 1,l) coefficients we must add new equations that eliminate the n additional 
degrees of freedom that have been introduced by mapping the original n-dimensional 
problem into the 2n-dimensional one. In particular, we should ensure that y2i = y2i_1 
for all 1 <i <n. This can be achieved by satisfying simultaneously the 2 following 
homogeneous equations with bipolar coefficients: 

Y2i - Y2i-1 + C (Y2r - Y2/-1) = 03 
l<lSn, I#i 

(4) 
Y2i - YZi-1 - c CY21 - Y21-1) = 0. 

I<lSn, l#i 

Indeed, u + w = 0 and u - w = 0 necessarily imply u = w = 0. Many equivalent 
equations of type (4) are needed in order to guarantee that y2i = yzi_1 for each i, 
1 <i <n. For each constraint y2i = y2i-1, we include a number of pairs of Eqs. (4) 
that is larger than the number of equations of type (1) - (3). This can always be done 
by selecting the coefficients &I, &r-i E { - 1,l) occurring in 

c 221y21+ cizklY261 
lgl<n, r#i 

in different ways (any choice with 521 = -k&-r is adequate). 
It is worth noting that this general technique can be adapted to reduce any system 

of equations whose coefficients are restricted to take a finite number of values to an 
equivalent system with only bipolar coefficients. 0 

This result has an immediate consequence on the complexity of m FLS” that is 
stronger than that established in [23]. 

Corollary 3. MAX FLS” is NP-hard for homogeneous systems with bipolar coeffi- 
cien ts. 

Proof. By simple polynomial-time reduction from MAX FLS’. Let (A, b) be an arbitrary 
instance of MAX FLS’. For each equation uix = 0 where ui denotes the ith row of A, 

1 <i < p, we consider the two inequalities six 20 and -a’x~O. Clearly, there exists 
a vector satisfying at least K equations of (A,b) if and only if there exists a solution 
satisfying at least p + K inequalities of the corresponding system with 2p inequalities. 

This is also true for systems with strict inequalities. 

Theorem 4. MAX FLS’ is NP-hard for homogeneous systems with bipolar coeffi- 
cients. 

Proof. We proceed by polynomial-time reduction from the known NP-complete prob- 
lem MAX IND SET that is defined as follows [ 161. Given an undirected graph G = ( V, E), 
find a largest independent set V’ c V, i.e. a largest subset of nonadjacent nodes. 
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Let G = (V, E) be an arbitrary instance of MAX IND SET. For each edge (vi, vi) E E 

we construct the inequality 

Xi +Xj < 0 (5) 

and for each node ri E V the inequality 

Xi > 0, (6) 

Thus we have a system with (VI variables and IEl + IV( strict inequalities. 
We claim that the given graph G contains an independent set Z of size s if and only 

if there exists a solution x satisfying all inequalities of type (5) and s inequalities of 

type (6). 
Given an independent set Z c V of size s, the solution obtained by setting 

Xi = 
1 if Ui E Z, 

-2 otherwise 

satisfies all edge-inequalities (5) and all the node-inequalities (6) corresponding to a 
node ui E I. Moreover, the 1 V 1 - s inequalities associated with uj $ Z are not fulfilled 
because Xi < 0. 

Conversely, given an appropriate solution x we consider the set Z C V containing 
all nodes whose second type inequality is satisfied. The size of Z is obviously equal 
to s. We verify by contradiction that Z is an independent set. Suppose that x fulfils 
all edge-inequalities and s node-inequalities. If Z contains two adjacent nodes vi and 
Vi, then we must have, on one hand, xi > 0 and Xj > 0 and, on the other hand, 
xi + xj < 0, which is impossible. Hence Z is an independent set of cardinal@ s. 

In order to complete the proof we must make sure that all edge-inequalities are 
satisfied. This can be achieved by adding IVJ equivalent copies of each one of them, 
and in particular by multiplying each edge-inequality by different integer factors f E 
{2,...,(V(+l}. Th us we have a system with (I VI + l)(E( inequalities of the first type 
and 1 VJ of the second one. Clearly, the given graph G contains an independent set 
Z of size s if and only if there exists a solution x satisfying (I VI + 1)IEl + s strict 
inequalities. 

This polynomial-time reduction can be extended to ti FLS’ with bipolar coef- 
ficients by applying Carver’s transposition theorem [37]. According to this result, a 
homogeneous system Ax < 0 is feasible if and only if y = 0 is the unique solution of 

A’y = 0, y>o. (7) 

Thus any instance of MAX FLS’ can be associated with such a system. Using the 
technique described in the proof of Corollary 2, it is then possible to construct, for each 
system (7) with integer coefficients taking their values in {-(I VI + 1 ), . . . , 0, . . . , ) VI + 1 }, 

an equivalent system with only bipolar coefficients. It suffices to add a large enough 
number of appropriate equations forcing the new variables associated with any original 
variable to be equal. 0 
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Consequently, MAX FLS” with W E {=, 2, > } is intractable not only when the 
points corresponding to the rows of A lie on the n-dimensional hypersphere but also 
when they belong to the n-dimensional hypercube. In such instances no pairs of rela- 
tions differ by a multiplicative factor. 

Since these problems are NP-hard for bipolar coefficients, they turn out to be strongly 
NP-hard, i.e. intractable even with respect to unary coding of the data. According to a 
well-known result concerning polynomially bounded problems [16], they do not have 
a fully polynomial-time approximation scheme (an E-approximation scheme where the 
running time is bounded by a polynomial in both the size of the instance and I/E) 
unless P = NP. 

Before turning to the approximability of MAX FLS, it is worth noting that some sim- 
ple special cases are polynomially solvable. If the number of variables n is constant, 
MAX FLS” with 9? E { =, 2, > } can be solved in polynomial time using Greer’s algo- 
rithm that has an O(n . p”/2”-’ ) time-complexity, where p and n denote, respectively, 
the number of relations and variables. For a constant number of relations, these prob- 
lems are trivial since all subsystems can be checked in time O(n). Moreover, they are 
easy when all maximal feasible subsystems (with respect to inclusion) have a maxi- 
mum number of relations because a greedy procedure is guaranteed to find a maximum 
feasible subsystem. 

3.2. Approximate solution 

The previous NP-hardness results make extremely unlikely the existence of poly- 
nomial time methods for solving the three basic versions of MAX FLS to optimal@. 
But in practice optimal solutions are not always required and approximate algorithms 
providing solutions that are guaranteed to be a fixed percentage away from the actual 
optimum are often satisfactory. 

We will now show that MAX FLS9 with 9 E {=, 2, > } and integer coefficients 
cannot be approximated within every constant unless P = NP. The proofs are by L- 
reductions from the known Arx-complete problem MAX ~SAT that is defined as follows 
[ 161. Given a finite set X of variables and a set C = {Cl,. . . , Cm} of disjunctive clauses 
with at most 2 literals in each clause, find a truth assignment for X that satisfies as 
many clauses of C as possible. 

In homogeneous MAX FLS” with W E { =, 2 } we are only interested in solutions 
where the variable(s) occurring in the largest number of satisfied equations are nonzero. 
This rules out the trivial solutions as well as those obtained by setting all variables to 
zero except one of the variables occurring in the smallest number of equations. 

Theorem 5. MAX FLS” with B E {=, >} is Apx-hard even when restricted to ho- 
mogeneous systems with discrete coefficients in { -4, -3, -2, - 1, 0, 1,2,3,4} and no 
pairs of identical relations. 

Proof. We first consider MAX FLS’. Let (X, C) with C = {Cl,. . , Cm} be an arbitrary 
instance of MAX 2SAT. For each clause Ci, 1 < i <m, containing two variables Xi, and Xjz 
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we construct the following equations: 

Uij, Xj, + Uij2Xjz = 2, (8) 
Uij, Xjl + Uij2Xj2 = 0, (9) 

Xjl,Xj2 = 13 (10) 

Xj,,Xj2 = -1, (11) 

where au = 1 if Xj OCCUR+ positively in Ci and aij = -1 if xj occurs negatively. Thus 
we have a system with 6m equations. 

Given a truth assignment that satisfies s clauses of the MAX ~SAT instance, we 
immediately get a solution x that satisfies 2m + s equations of the MAX FLS’ instance. 
This is simply achieved by setting the variables Xj to 1 or-l depending on whether 
the corresponding boolean variable is TRUE or FALSE in the assignment. 

Consider any solution x of the MAX FLS’ instance. For each i, 1 <i gm, at most 
3 equations can be simultaneously satisfied: at most one of (8) - (9) and at most one 
of (10) - (11) for each of the two variables. If any component of x is neither 1 nor 
- 1, we can set it to 1 without decreasing the number of satisfied equations. In other 
words, we can suppose that any solution x has bipolar components. 

Consequently, we have a correspondence between solutions of the MAX ~SAT in- 
stance satisfying s clauses and solutions of the MAX FLS= instance fulfilling 2m + s 
equations. Since opt[MAx FLS=] < 3m and since there exists an algorithm providing 
a truth assignment that satisfies at least [m/2] of the clauses in any MAX ~SAT in- 
stance (see for example [22]), we have opt[MAx FLS=] <6 . opt[MAx ~SAT]. Thus all 
conditions for an L-reduction are fulfilled. 

This L-reduction can be extended to homogeneous systems with coefficients in 
{-4,-3,-2, -1,0,1,2,3,4} d an no pairs of identical equations. For each clause Ci, 
1 < i G m, we add a new variable xlxI+i and we consider the following equations: 

aij,xj, + aij2Xj2 - 2xlXl+i = 0, 

aij,Xj, + UijzXjz = 0, 

Xjl -x(XI+i = 03 

Xjl + xIXI+i = 03 

xj2 - xIX(+i = 0, 

Xjz +xlXl+i = 03 

fxlXl+i - fXJXl+m+l = 0 for all f E {1,2,3,4}, 

-fxlXl+i + fXIXl+m+l = 0 for all f E {1,2,3,4}, 

(12) 

(13) 

(14) 

(1% 

(16) 

(17) 

(18) 

(19) 

where the coefficients au are defined as above. Thus we have a system with 14m 
equations and p] + m + 1 variables. Here the correspondence is between solutions of 
the MAX ~SAT instance satisfying s clauses and feasible solutions x fulfilling 10m + s 

equations of this homogeneous system. 
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Given a truth assignment that satisfies s clauses, the solution obtained by setting 
xj = f 1 for 1 <j < 1x1 depending on whether the corresponding boolean variable is 

TRUE or FALSE and xlXlfi = 1 for 1 6 i <m + 1 satisfies at least 10m + s equations. 
Conversely, consider an arbitrary solution x satisfying 10m + s equations. By definition 
of homogeneous MAX FLS’, we know that xl~l+~+i is nonzero for m 23 because 
it occurs in at least 4m + s satisfied equations while any Xj with 1 <j< 1x1 occurs 
in at most 4m equations and any xlXlfi with l<idm in at most 13. If x~~I+~ # 

x~~l+~+~ for any i, 1 <i<m, we can set it to XI~I+~+~ without decreasing the number 
of satisfied equations. According to the same argument, any xj with 1 <j 6 1x1 that is 

neither xl~l+~+i nor -xl~l+~+i can be set to xlXlfm+i since XIXI+i =x~xl+~+~ # 0 for 
1 <i <m. Thus we can assume that all equations of types ( 18) - (19) are satisfied, that 
xj = k~lXl+~+i for 1 <j< 1x1 and therefore that s equations of types (12)-(13) are 
fulfilled. 

Now ~lXl+~+i is either positive or negative. If ~l~l+~+i > 0 it is equivalent to 
satisfy 10m + s equations of the above system and to satisfy 2m + s equations of the 

system (g)-(11). Ifx~Xl+~+i < 0 the truth assignment given by 

TRUE 
Yj = 

FALSE 

if xj = -XIXI+~+I, 

otherwise 

fulfils at least s clauses of the MAX ~SAT instance. 
A similar construction can be used to show that MAX FLS” is Apx-hard. For each 

clause Ci, 1 <i Gm, containing two variables xj, and Xjz we consider the following 
equations: 

Uij,Xj, + aij2Xj22 - 17 (20) 

xjj 3 xi,219 (21) 

-xjl Y -Xi22 - 1, (22) 

Xj,, Xjz2- 19 (23) 

-Xjl, -Xi,>17 (24) 

where av = 1 if xj occurs positively in Ci and oij = -1 if xj OCCLKS negatively. The 
overall system has 9m inequalities. 

Clearly, any solution x satisfies at least two and at most three of Eqs. (21)-(24) 
for each variable and when three of them are simultaneously satisfied then it is ei- 
ther equal to 1 or to - 1. If in any MAX FLS” solution a variable is neither 1 nor 
- 1, we can modify it without decreasing the number of satisfied equations. Thus 
we have a correspondence between solutions of the MAX ~SAT instance satisfying s 
clauses and solutions of the MAX FLS> instance fulfilling 6m + s inequalities. More- 
over, opt[Max FLS a ] < 14 . opt[MAx ~SAT] since opt[MAx FLS “I< 7m. 

As for MAX FLS’, this L-reduction can be extended to homogeneous systems with 
discrete coefficients in (-4, -3, -2, -l,O, 1,2,3,4} and with no pairs of identical re- 
lations. q 
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The question of whether this result holds for homogeneous systems with bipolar 
coefficients is still open. The duplication technique described in Corollary 2 leads to 
a polynomial-time reduction but not to an L-reduction because the new systems have 
0(m2) equations, where m is the number of clauses in the MAX ~SAT instance. 

By taking the right-hand side terms with 0.1 or 0.9 absolute values, the L-reduction 
for MAX FLS” can be adapted to show that MAX FLS’ with no pairs of identical 
relations is Arx-hard. This holds for homogeneous systems with no identical inequalities 
and integer coefficients. 

If identical relations are allowed, MAX FLS” is Arx-hard for systems with ternary 
coefficients while the L-reduction for MAX FLS’ can be extended to bipolar coefficients 
using the duplication technique of Theorem 4. 

The following results give a better characterization of the approximability of MAX 
FLS” with 3? E { =, 2, > } in terms of the various classes mentioned in Section 2. 

MAX FLS= can obviously be approximated within p/min{n - 1, p}, where p is the 
number of equations and n the number of variables occurring in the system. The next 
proposition shows that it cannot be approximated within a constant factor. 

Proposition 6. MAX FLS’ restricted to homogeneous systems with integer coefficients 
is not in APX unless P = NP. 

Proof. Suppose that MAX FLS’ can be approximated within a constant c > 1 and 
consider an arbitrary instance with p homogeneous equations el = 0,. . . , ep = 0. Let 
s be the number of equations contained in a maximum feasible subsystem. 

Construct a new problem with the equations C?i,j,k = 0 where f?i,j,k = ei + k . ej, 

1 < i < p, 1 <j < p, 1 <k < T for an integer T. Since ei = 0 and ej = 0 imply ei, j,k = 

0 for every value of k, the s satisfied equations of the original problem give T . s2 

satisfied equations of the new problem. However, some additional equations may be 
satisfied when ei = -k . ej and ei # 0. But no more than p2 equations are fulfilled in 
such a way because there is at most one such equation for each pair (i, j). 

Since the optimal solution contains at least T.s2 satisfied equations, the approximation 
algorithm provides a solution that fulfils at least T . s2/c equations. We examine the 
satisfied equations and throw away every equation ei + k . ej where ei # 0. This leaves 
us with at least T . s2/c - p2 equations. Since there are at most T equations for every 
pair (i, j), we obtain at least 

satisfied equations of the original problem. If we run the approximation algorithm 
directly on the original problem we are guaranteed to find s/c satisfied equations. 

By choosing 
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more equations are satisfied by applying the approximation algorithm to the eijk prob- 
lem than by applying it to the original problem. This can be done over and over again 
to get better constants in the approximation. But Theorem 5 states that MAX FLS’ is 
Arx-hard and thus there exists a constant 6 between 0 and 1 such that it cannot be 
approximated within a smaller constant than l/(1 - 6). Hence MAX FLS’ is not in 
APX. 0 

By using tuples of log p equations instead of pairs of equations and by using walks 
on expander graphs in order to choose a polynomial number of these tuples it is 
possible to show a yet stronger result. 

Theorem 7. Unless P = NP, there is a positive constant E such that homogeneous 

MAX FLS’ cannot be approximated within p’, where p is the number of equations. 

Proof. We start as in the proof of Proposition 6 with an arbitrary instance of MAX 
FLS= with p homogeneous equations ei = 0,. . . , e,, = 0 and let s be the number 
of equations contained in a maximum feasible subsystem. In this proof we assume 
that a fixed percentage of the equations can be satisfied, i.e. that s/p2t9, where p 
is a constant. The Arx-hard problem instances constructed in the first reduction in 
Theorem 5 have p > 10/14, but we can increase jI by adding a lot of trivially 
satisfiable equations in a new variable. 

Instead of using pairs of equations when constructing the new problem we take 
m-tuples of equations, where m is about log p. Let us consider 

eip = Feiik’ with l<i<N,l<k<T 
j=l 

for some integers N and T to be determined. For each i with not all eij = 0 the 
polynomial equation C e,xj = 0 can have at most m solutions of which one is x = 0. 
Thus at most m - 1 of the T equations ei$ = 0,l <k < T, can be satisfied unless ei, = 0 
for all j in [ 1 . . . m]. We call an m-tuple for which every ei, = 0 a good tuple. 

The problem here is that we cannot form new equations from every m-tuple of old 
equations, since there are pm N p “gp tuples, that is more than a polynomial number. 
We would like to find a polynomial subset of all possible m-tuples such that the 
proportion of good tuples in the subset is about the same as the proportion of good 
tuples in the set of all possible m-tuples, which is sm/p”‘. 

We need the following lemma, proved by Alon et al. [l] using [2,24]. 

Lemma 8. Let G be a d-regular, p-node graph in which the absolute value of every 
nontrivial eigenvalue (of the adjacency matrix) is at most Ad. Let S be a set of s 
nodes of G and u = s/p. Let P = P(S,m) be the total number of walks of m nodes 
that stay in S (i.e. the number of m-paths where every node is in S). Then for every 
odd integer m we have 

p<P(P++(l -p))“-‘. 
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We will consider Ramanujan graphs as G. By definition, a Ramanujan graph is a 
connected d-regular graph whose eigenvalues are either &d or at most 2m in 
absolute value. Thus we can take I = 2/&. Infinite families of Ramanujan graphs 
can be constructed when d - 1 is prime congruent to 1 modulo 4 [24,30]. 

Choose m as the least odd integer greater than log p (where log is the logarithm in 
base 2). We identify each node in G with an equation ei = 0, 1 <i < p. As m-tuples 
in the constructed problem we use every possible m-path in G. There are p . d”-’ 
m-paths in G so N = p.dm-‘. 

If S is the set of nodes corresponding to the s equations contained in some maximum 
feasible subsystem, P(S,m) will be exactly the number of good m-tuples. 

By assigning variables as in the optimal solution of the original problem we will 
satisfy at least T . P(S, m) equations, so we know that any optimal solution of the new 
problem fklfils at least 

(25) 

(rounded to an integer) equations. On the other hand, we know that if the optimal 
solution of the original problem only had satisfied [s( 1 - S)J equations, for some 6 
between 0 and 1, then any optimal 

NT4l -6) U-6) +I 
_ ~ 

1 

P ( P ( 
solution of the new problem would ti.dfil at most 

S(1 - 6) 

1) 

m-1 
-- +N(m - 1) (26) 

P 

(rounded to an integer) equations. 
We will show that the quotient between (25) and (26) can be bounded from below 

by (NT)” for some E > 0. If there exists an algorithm approximating MAX FLS’ within 
pE (where p is the number of equations) we can apply it to the constructed problem 
with NT equations and be sure that it gives us a solution containing more satisfied 
equations than (26). Therefore the assignment given by the algorithm will approximate 
the original problem within l/( 1 - 6), but this is NP-hard since MAX FLS’ is &x-hard 
(by Theorem 5). 

Thus we just have to bound the quotient between (25) and (26) appropriately. 
Let I = a/$ where u is a positive constant to be defined later. Then a/I = 2/d and 

log d = 2 + 2 log (l/a/?). Hence N = p . dm-’ M p . p“‘gd = p3+2 ‘“g(“‘B and 

(25) > NT; (4 - o$) “~--l >NT; (;(I - @)m-’ 

2 NTp(fi(l - ~))~-l x NTjjp-‘“g[‘/fl(‘-a)]. (27) 

First we consider the first term of (26): 

>) 
m-l 
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=NT41 -6) 41-a 
m-l ~ +crp 

P P > 
m-l 

<NT y ;(M+a)) 
( 

. (28) 

Using (27) and (28) we can bound the quotient between (25) and the first term of 
(26) from below by 

NT(s/p) (f,( 1 - c$+’ 

NT[s(l -6)/p] (;(l - 6 + ,))m-’ 

_ 1 ! 6 ( 1 L-J J- ~ ~plogK-a):(L-d+all > plogRI-r)i(l--6t1)1~29) 

We now consider N(m - l), the second term of (26). In this case, we have 

(25) > NTBP- tosll/B(i-~)l 

N(m - 1) Nlogp 
> Tp- t“s[i/B(i-a)l-s’ for every 6’ > 0 

We would like both plog[(l--ol)/(l--S+a)l and Tp-10g[1~fl(1-a)l-6’ to be greater than 2(NT) 

for some constant E > 0. If we choose T = [p’“g[l~fl(l-s+a)ll the second expression is 
greater than 

P 
log[l/B(l-_g+a)]--log[l/~(l-a)]-6’ = p10g[(l-a)/(l-6+a)1_6’ 

9 

which is less than the first quotient p log [(l-a)/(l-d+a)l for every 6’ > 0. Thus we only 
have to bound p”g u-~)~(~-~+~)]-~’ from below by 

2(NT)E E p ~(3+2log(I/aB)+log[l/B(l-S+a)l) = p~(3+3 log(l/p)+2 log(l/a)+log[l/(l--6+(r)]) 

Let c1 = ~‘6 for some e’ > 0. Then we must satisfy 

log[( 1 - &‘@/( 1 - 6 + &‘8)] - 6’ 

& < 3 + 3 log( l//3) + 2 log( l/E’@ + log[ l/( 1 - 6 + &‘8)] 

6(1-2&)-a’ In 2 

M 3ln2+3ln(l/~)+2ln(1/e’)+2ln(1/6)+6(1 -E’)’ 

which, given /I and choosing 6’ and E’ small enough, is a positive constant, slightly 
smaller than s/ln(l/s2). 0 

While completing this paper we discovered that Arora, Babai, Stem and Sweedyk 
simultaneously addressed the complexity of one variant of this broad class of problems, 
namely MAX FLS’ [5]. They independently proved that the problem cannot be approx- 
imated within any constant factor unless P = NP, and not within a factor 210s0’5-En 
for any E > 0 unless NP 2 DTIME(npolylos ’ ), where n is the number of variables or 



E. Amaldi, V. KannITheoretical Computer Science 147 (1995) 181-210 197 

equations. But Theorem 7 is stronger because, on one hand, for large n the factor 
pg”5-E n . 

IS smaller than n6 for any fixed 6 > 0 and, on the other hand, P # NP is 
more likely to be true than NP $ DTIME(n~“‘~‘os “). 

MAX FLS” and MAX FLS’ turn out to be much easier to approximate than MAX 
FLS’. 

Proposition 9. MAX FLS” with 93 E { 2, > } is APx-complete and can be approxi- 

mated within 2. 

Proof. Both problems can be approximated within 2 using the following simple algo- 
rithm. 
Algorithm: 

Input: An instmce (A,b) of MAX FLS” with .% E { >, >} 
Init: X := {variables occurring in (A,b)} and 

E := {inequalities in (A,b)} 

WHILE E # 8 DO 
IF there are inequalities in E that contain a single variable 

THEN 
U:= {x EX Ix occurs as a single variable in at least 

one inequality of E} 
Pick at random y E U 

F(y) := {e E E 1 e contains only the variable y} 
Assign a value to y that satisfies as many inequalities 

in F(y) as possible 

E:=E-F(y) 
ELSE 

Pick at random a variable y and assign a random value to it 

Reevaluate the inequalities in E that contain y 
END IF 
X:=X-(y) 

END WHILE 
This algorithm is guaranteed to provide a 2-approximation because we can always 

assign to y a value that satisfies at least half of the inequalities in F(y). Moreover, 
it runs in polynomial time since each variable and each inequality are considered only 

once. 
Since MAX FLS” with 9 E { 2, > } is &x-hard and can be approximated within 

2, both problems are APx-complete. 0 

Notice that this greedy-like method is similar to the 2-approximation algorithm that 
has been proposed for MAX SAT [22]. As for MAX SAT [39], there could exist a better 
polynomial-time algorithm that guarantees a smaller performance ratio. 
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Provided that P# NP, the previous results describe the approximability of MAX FLS@ 
with W E {=, 2, > } quite well. While MAX FLS’ cannot be approximated within pE 

for some E > 0 where p is the number of equations, W FLS a and MAX FLS ’ can 
be approximated within a factor 2 but not within every constant. 

One can observe that MAX FLS” and MAX FLS’ share a common property: a 
constant fraction of the relations can always be simultaneously satisfied. The above 
2-approximation algorithm is optimal in the sense that no constant fraction larger than 
i can be guaranteed. Of course no such a property holds for MAX FLS’. 

In the appendix we deal with two interesting special cases of MAX FLS% with W E 
{ =, > , > } related, on one hand, to finite field computation and, on the other hand, to 
discriminant analysis and machine learning. 

Finally we should point out that in many practical situations different relations may 
have different importances. This can be modeled by assigning a weight to each relation 
and looking for a solution that maximizes the total weight of the satisfied relations. 

Such weighted versions of MAX FLS turn out to be equally hard to approximate 
as the corresponding unweighted versions. If the weights are polynomially bounded 
integers, we just need to make for each relation a number of copies equal to the 
associated weight. Otherwise we reduce to the polynomially bounded case by dividing 
the weights by G/p, where G is the largest weight, and rounding them to the nearest 
integer. It is easily verified that the absolute error due to scaling and rounding is 
bounded by a constant times the optimum value. 

4. Hardness of constrained MAX FLS 

An interesting and important special case of weighted MAX FLS is the constrained 
version, denoted by C MAX FLS, where some relations are mandatory while the others 
are optional. The objective is then to find a solution that satisfies all mandatory relations 
and as many optional ones as possible. Any instance of COAX FLS is equivalent to 
the particular instance of weighted MAX FLS where each optional relation is assigned 
a unit weight and each mandatory relation a weight larger than the total number of 
optional ones. 

However, while the weighted versions of MAX FLS are equally hard to approximate 
as the unweighted versions, most of the constrained versions turn out to be at least as 
hard to approximate as MAX IND SET. Thus, unless P = NP, they cannot be approximated 
within mE for some E > 0, where m is the size of the instance. 

When considering mixed variants of CMAX FLS with different types of mandatory 
and optional relations, CMAX FLS”1;“2 with 91, 93~ E {=, >, >,#} denotes the 
variant where the mandatory relations are of type 91 and the optional ones of type 

g2. 

Theorem 10. C MAX FLS91;“2 with W,, B?r E { 2, >} is MAX IND SET-hd even for 

homogeneous systems. 
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Proof. The proof is by cost preserving polynomial-time transformations from MAX IND 

SET. We proceed like in the first part of the reduction of Theorem 4 and start with 
CMAX FLS’;‘. 

Let G = (V, E) be an arbitrary instance of MAX IND SET. For each edge (oi, ui) E E 

we construct the mandatory inequality 

Xi + Xj < 0 

and for each ui E V the optional inequality 

(30) 

Xi > 0. (31) 

Thus we have a system with 1 Yl variables and [El + ( VI strict inequalities. As shown 
in the proof of Theorem 4, the given graph G contains an independent set Z of size 
s if and only if there exists a solution x satisfying all mandatory inequalities and s 
optional ones. 

This cost preserving transformation can easily be adapted to show that the other 
problems are lvkx IND SET-hard. For C MAX FLS %’ we just change the mandatory 
inequality of type (30) to xi + Xj GO. The proof is the same, 

For C MAX FLS”;” an additional variable x,+, needed. We include the mandatory 
inequality 

XII+1 20 

and for each edge (Di,Uj) E E the mandatory inequality 

(32) 

Xi +Xj,<O. 

For each vi E V we consider the optional inequality 

(33) 

Xi - X,+1 2 0. (34) 

Thus we have a system with I VI + 1 variables and [El + I VI + 1 inequalities. 
Now the given graph G contains an independent set Z of size s if and only if there 

exists a solution x satisfying all inequalities of types (32) - (33) and s inequalities of 
type (34). Given an independent set Z s V of size s, the solution obtained by setting 

{ 

1 
Xi = 

if Vi E Z or i = n + 1, 
-2 if l<i<lVI and Vi $Z 

satisfies all mandatory inequalities and all the optional ones that correspond to a node 
Vi E I. The I VI - s optional inequalities associated with Vi $ Z are not fulfilled be- 
cause xi < x,+1. Conversely, given an appropriate solution x that fulfils all mandatory 
inequalities and s optional ones. Since the variable x,+1 is included in every optional 
inequality and hence is the most common one, it cannot be zero and must be positive 
because of relation (32). The set Z c V containing all nodes associated to variables 
with values larger than x,+1 is then an independent set of cardinality s. 
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Finally, by simply changing the mandatory inequalities in this reduction to strict 
inequalities we get a reduction to C MAX FLS’;&. 0 

Thus forcing a subset of relations makes MAX FLSYl harder for 9 E { 2, > }: MAX 
FLSg is Apx-complete while CMAX FLSBig is MAX IND SET-hard. This is not true 
for MAX FLS’ since any instance of C MAX FLS=;” with 8 E {=, 2, > } can be 
transformed into an equivalent instance of MAX FLS” by eliminating variables in the 
set of optional equations using the set of mandatory ones. 

Nevertheless, two simple variants of CMAX FL%;= and MAX FLS= turn out to be 
MAX IND W-hard. Replacing the strict inequality of type (30) by xi + xj61 and that 
of type (3 1) by xi = 1, one verifies that C MAX FLS a;= is MAX IND SET-hard even for 
systems with ternary coefficients and bipolar right-hand-side components. This has an 
immediate implication on the hardness of MAX FLS= with the natural nonnegativeness 
constraint. 

Corollary 11. MAX FLS’ restricted to systems with ternary coefficients and nonneg- 

ative variables is MAX IND k-hard. 

Proof. By adding a nonnegative slack variable for each mandatory inequality of any 
CMAX FLS”;= . instance, we obtain a particular instance of CMAX FLS’;’ that can be 
transformed into an equivalent instance of MAX FLS’. Any variable xi unrestricted in 
sign can then be replaced by two nonnegative variables xi and x’. The coefficients of 
these two auxiliary variables have the same absolute value as the coefficient of xi but 
opposite signs. 0 

The question of whether MAX FLS’ becomes harder to approximate when the vari- 
ables are restricted to be nonnegative or whether the basic version is already MAX 
IND SET-hard, is still open. Note that the positiveness constraints do not affect CMAX 
FLS”;” since they can be viewed as additional mandatory inequalities. 

The approximability of mixed variants involving # mandatory relations is somewhat 
different. 

Proposition 12. While C MAX FLS#;’ is MAX IND SET-hard, C MAX FL@’ and C MAX 
FLS f;” are APx-complete and can be approximated within 2. 

Proof. For CMAX FL@=, we proceed by cost preserving transformation from MAX 
IND SET. For each edge (Vi, vj) E E we consider the mandatory relation Xi + xj # 2 
and for each node ai E V we consider the optional relation xi = 1. Clearly, there 
exists an independent set of size s if and only if there exists a solution x satisfying 
all mandatory relations and s optional ones. 

According to Theorem 5, m FLS” and MAX FLS’ are &x-hard and the con- 
strained versions CMAX FL@” and C MAX FL@’ must be at least as hard. To 
approximate these problems within 2 we modify the greedy algorithm in Proposition 9 
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so that it also takes into account the mandatory relations. When a variable value is 
chosen it should not contradict any of the mandatory relations that have a single unas- 
signed variable. This is always possible since there is only a finite number of such 
relations while the number of possible values satisfying the largest number of optional 
relations is infinite. 0 

5. Approximability of MAX FLS with bounded discrete variables 

In this section we assess the approximability of MAX FL@ with 9 E { =, 2, > } 

when the variables are restricted to take a finite number of discrete values. Both extreme 
cases with binary variables in (0, 1) and bipolar variables in { -1,l) are considered. 
The corresponding variants of MAX FLS are named BIN MAX FLS9 and BIP MAX FLS”, 
respectively. 

Theorem 13. BINMA~ FL@ with 9%’ E {=, 2, > } is MAX IND SET-hard even for 

systems with ternary coefficients. 

Proof. The proof is by cost preserving polynomial transformation from MAX IND SET. 

We first consider MAX FLS’ . 

Let G = (V,E) be the graph of an arbitrary instance of MAX IND SET. For each node 
vi E V we construct the strict inequality 

Xi - C Xj > 0, 
jEN(vi) 

where j is included in N(Q) if and only if Uj is adjacent to Vi. Thus we have a 
system of JV( homogeneous inequalities with ternary coefficients. By construction, the 
ith inequality is satisfied if and only if xi = 1 and xj = 0 for all j, 1 <j < ( V 1, such 
that Uj = -1. 

It is easy to verify that given an independent set I C V of size s we get a binary 
solution satisfying the s corresponding inequalities by setting xi = 1 if vi E I and 
xi = 0 otherwise. Conversely, given any binary solution x satisfying s inequalities we 
obtain an independent set of size s by including in I all nodes ui, 1 < i < I V 1, such that 
Xi = 1. 

Notice that this cost preserving polynomial transformation works also for Ax > 1 or 
Ax = 1. This construction can be adapted to show that BINMAX FL@ with R E { =, 
3, > } is hard to approximate even when restricted to homogeneous systems. However, 
we must allow the coefficients to take their values in { -2,O, 1) instead of in { - 1, 0, 1). 

0 

Corollary 14. BIP MAX FLSg with .% E {=, 2, > } is MAX IND SET-hard even for 
systems with ternary coefficients and integer right-hand-side components, 
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Proof. By simple cost preserving transformation from BIN MAX FLS” with .@ E {=, 
2, > }. For any relation 

with binary variables Xj E (0, 1) and 1 < i < p, we can construct an equivalent relation 

with bipolar variables yi E (-- 1, 1) using the variable substitution yj = tij - 1. q 

Although the above transformation does not preserve homogeneity, we know from 
the L-reductions used to prove Theorem 5 that homogeneous BIPMAX FLS” with 43 E 
{=, 2, > } is Arx-hard. In fact, homogeneous BIP MAX FLSa and BIP MAX FLS> are 
Arx-complete. 

Proposition 15. Homogeneous BIP MAX FLS a can be approximated within 2 and ho- 

mogeneous BIPMAX FLS’ can be approximated within 4. 

Proof. We first deal with homogeneous BIP MAX FLS >. Take an arbitrary bipolar vec- 
tor x and consider the number of satisfied relations for x and -x. If the left-hand side 
of a relation is positive for x it will be negative for --x and vice versa. Thus one of 
these antipodal vectors satisfies at least half of the inequalities. 

This trivial algorithm does not work for homogeneous BIPMAX FLS’ because many 
relations may be zero for both antipodal vectors. Therefore we first look for a solution 
with many nonzero relations. A greedy approximation algorithm similar to the one in 
Proposition 9 provides a solution x for which at least half of the relations are nonzero. 
Now one of x and --x makes at least half of these relations, and therefore a quarter 
of all relations, positive. 0 

Thus restricting the systems to be homogeneous makes BIP MAX FLS a and BIP MAX 
FLS’ much easier to approximate. The situation is quite different for homogeneous 
BIPMAX FLS’ with integer coefficients. According to the same arguments as in the 
proof of Theorem 7, this problem cannot be approximated within p” for some E > 0. 

Proposition 16. BmMAx FLSf and BIPMAX FLS# are Apx-complete and can be ap- 
proximated within 2. 

Proof. For both problems the proof is by cost preserving transformation from MAX 
2s~~. We tirst consider BIPMAX FLS#. Let (X, C) be an arbitrary instance of MAX 
2s~~ with C = {Cl,..., Cm}. For each clause Ci, 1 <i<m, containing two variables 
Xi, and XjZ we consider the relation 

aj,xj, + ajzXjz # -29 
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where Qj = 1 if the boolean variable xj occws positively in Ci, Uj = -1 if Xj occws 
negatively in Cl, and aj = 0 otherwise. Thus we have a system with m relations. 
Clearly, there exists a truth assignment satisfying s clauses of (X, C) if and only if 
there exists a solution x satisfying s relations. 

A similar reduction is used for BINMAX FLS#. Both problems are in APX since 
they can be approximated within 2 using a greedy algorithm similar to the one in 
Proposition 9. 0 

The following result shows that the constrained variants of BINMAX FLS” with 
mandatory relations, named CBINMAX FLS”l@ 2, are NPO PB-complete, that is, at 
least as hard to approximate as every NP optimization problem with polynomially 
bounded objective function. 

Proposition 17. C BIN MAX FLS@I;~Z isNP0 PB-completefor .%l,W2 E {=, 2, >,#}, 

even for systems with ternary coefficients. 

Proof. We first show the result for the problem CBm MmFLS’;‘and then extend the 
result to the other variants. 

We proceed by cost preserving transformations from MAX DONES that is known to 
be NPO PB-complete [25] and is defined as follows [35]. Given two disjoint sets X,Z 
of variables and a collection C = {Cl,. . . , Cm} of disjunctive clauses of at most 3 
literals, find a truth assignment for X and Z that satisfies every clause in C so that the 
number of Z variables that are set to TRUE in the assignment is maximized. 

Suppose we are given an arbitrary instance of M= DOIES with the boolean variables 
yl,...,y,, where yj E Z if l<j<lZl and yj E X if IZI < j<n. For each clause 
lj, V lj2 V lj3 E C we consider the mandatory inequality 

tjj + tj2 + tj3 > 0, (35) 

where, for 1 <k < 3, tjk = xj if ljk = yjk, tjk = 1 - xjk if ljk = Fit, and tjfi = 0 if there 
is no ljk (i.e. if the clause contains less than three literals). For each variable yj E Z 
with 1 <j < JZJ we consider the optional inequality 

Xj > 0. (36) 

Thus we have a system with 1x1 + IZ( variables, IZI optional relations and m mandatory 

ones. 
We claim that there is an assignment to X and Z with s variables from Z set to 

TRUE if and only if there exists a solution x E (0, 1)" that satisfies s optional relations 
of the corresponding linear system. 

Given an assignment, the solution x defined by 

1 if yj iS Set t0 TRUE, 
Xj = 

0 otherwise 
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satisfies all mandatory relations and s of the optional ones. Conversely, given a solution 
vector x that satisfies s of the optional relations, the corresponding assignment (yi is 
TRUE if and only if Xj = 1) satisfies all clauses (because of the mandatory relations), 
and s of the Z variables are true (since s of the optional relations are satisfied). 

For the other constrained problems C BIN MAX FLS”1;92, we use the same reduction 
as above but the right hand side of the relations must be substituted according to the 
following table. 

type 2 type > type # type =’ 

type (35) 21 > 0 = 1 +x’ +x” 

type (36) 81 > 0 ;: =l 

In the case of mandatory equations we need to introduce two additional slack variables 
X’ and x” in each equation (a total of 2m new variables). q 

These results imply, using the same argument as in corollary 14, that the correspond- 
ing bipolar versions CBINMAX FLS %@z with Wi,9)~ E {=, 2, >,#} are NPO PB- 
complete for systems with ternary coefficients and integer right-hand-side components. 

Since MAX DONES cannot be approximated within ]Z]‘-E, for any E > 0, unless 
P = NP [ 111, the same nonapproximability bound p ̂ ‘-’ is valid for all versions of 
C BIN MAX FLS9p’;“2 and C BINMAX FLS”‘;“2, where i, is the number of optional 

relations. 

6. Conclusions 

The various versions of MAX FLS9 with 99 E { =, 2, > , #} that we have considered 
are obtained by placing constraints on the coefficients (left- and right-hand sides), on 
the variables and on the relations that must be satisfied. 

Table 1 summarizes our main approximability results. All these results hold for 
inhomogeneous systems with integer coefficients and no pairs of identical relations, 
but most of them are still valid for homogeneous systems with ternary coefficients. 

Thus the approximability of similar variants of MAX FLS can differ enormously 
depending on the type of relations. Nevertheless, there is some structure: all basic 
versions of MAX FLS=@ with &? E (=, 2, > } are AEx-hard, restricting the variables to 
binary (bipolar) values or introducing a set of relations that must be satisfied makes 
them harder to approximate, and if both restrictions are considered simultaneously all 
problems become NPO PB-complete. The case of MAX FLS# is considerably different. 
Its constrained variants are intrinsically easier than the corresponding problems with 
the other types of relations except when constraints are imposed both on the relations 
and the variables. 

As shown in the appendix, W FLS’ over GF(q) and therefore C MAX FLS=;= over 
GF(q) are approximable within q but not within qE for some E > 0, while MAX FLS’ 
as well as CMAX FLS’;’ restricted to nonnegative variables are M,G IND SET-hard. 
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Table 1 
Main approximability results for MAX FLS variants. 9t denotes any relational operator in (=, 2, 1, #}. 
Nonstrict inequality ( 3 ) can be substituted by strict inequality ( > ) in every place in the table. 

MAX FLS’ 
MAX FLS” 
MAX FLSS 
C MAX FLS’;’ 
C MAX FLS=;” 
CMAX FLS>;= 
C MAX FLS”;” 
C MAX FLSA’ 
C MAX FLSA a 
CMAX FLS*# 

Real variables 

Not within pE for some E > 0 
Arx-complete (within 2) 

Trivial 
Not within p’ for some E z=- 0 

Apx-complete (within 2) 
MAX IND SET-hard 
MAX IND SET-hard 
MAX IND SET-hard 

Arx-complete (within 2) 
Trivial 

Binary variables 

MAX IND SET-hard 
MAX Itm SET-hard 

Arx-complete (within 2) 
NPO PB-complete 
NPO PB-complete 
NPO PB-complete 
NPO PB-complete 
NPO PB-complete 
NPO PB-complete 
NPO PB-complete 

Moreover, our nonapproximability bounds for basic MAX FLS do also hold for the 
weighted versions. In the appendix we determine the approximability of two important 
variants of mixed MAX FLS’ and MAX FLS” related to discriminant analysis and 
machine learning. 

Whenever possible we studied the complexity results for homogeneous systems 
whose coefficients can take as few values as possible. In order to avoid trivial so- 
lutions we required the variables occurring most frequently in the satisfied relations to 
be nonzero. It is worth noting that some problems, like BIPMAX FLS’ and BIPMAX 
FLS” , become harder to approximate when inhomogeneous systems are considered. 

Several interesting questions are still open. Are there better approximation algorithms 
for MAX FLS’ and MAX FLS”? Does MAX FLS’ become harder when the variables 
are constrained to be nonnegative or is it already MAX IND SET-hard? One could also 
wonder whether the problems we have shown MAX IND SET-hard are in fact NPO PB- 
complete. 

The approximability of the complementary minimization problems where the ob- 
jective is to minimize the number of unsatisfied relations instead of maximizing the 
number of satisfied ones have been studied elsewhere [4,5]. 
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Appendix: Three particular cases 

Three interesting special cases of unconstrained and constrained MAX FL!?@ with R E 
{=, 3, > } are considered. The last two arise in the important fields of discriminant 
analysis and machine learning. 

The first problem, named MAX FLS= over GF(q), is obtained by restricting MAX 
FLS’ to systems where the equations are in GF(q), that is modulo a prime q. 
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Proposition A.1. For any prime q, MAX FLS’ over GF(q) is A%complete and can 

be approximated within q. 

Proof. The L-reduction from MAX ~SAT to MAX FLS’ can be used to show that MAX 
FLS’ over GF(q) is Apx-hard for 923. However, it breaks down for q = 2 because 
in that case an equation of the type Xi + X_/ = 0 has both solutions Xi = Xj = 0 and 
Xi = Xj = 1. 

For q = 2 we proceed by reduction from MAX Cur that is defined as follows [ 161. 
Given an undirected graph G = (V,E), find a set of nodes V’ c V such that the number 
of edges (Vi, Vi) E E with vi E F” and vj E V - V’ is as large as possible. 

For every edge (ui,‘vj) we introduce the equation xi+xj = 1 (mod 2). An equation is 
satisfied if and only if one of the variables is odd and the other is even. The oddness 
and evenness partition the graph and the size of the cut is exactly the number of 
satisfied equations. This construction is clearly an L-reduction. 

When the equations are in GF(q), it is easy to find a solution that satisfies at least 
l/q of the equations. This can be achieved using a simple greedy algorithm similar to 
that presented in the proof of Proposition 9. 0 

For example, if all coefficients take their values in (0, 1) and if all computations are 
performed modulo 2, MAX FLS’ can be approximated within 2. This result is clearly 
not applicable when standard computations are used. 

Using proposition A.1 and proof techniques from Theorem 7 we can show a better 
lower bound on the approximability of m FLS’ over GF(q). 

Theorem A.2. For any prime q there is a constant E > 0 such that MAX FLS’ over 
GF(q) cannot be approximated within qE. 

Proof. We use the same construction as in the proof of theorem 7 but we choose m as 
the least odd number greater than logq (instead of log p). Then N = p-d”-l z pq’Ogd. 
We let T = q - 1, which means that we consider every number in GF(q) except 0 as 
constants in the constructed equations. 

Since MAX FLS’ over GF(q) is Arx-complete there is a constant 6 > 0 such that 
it cannot be approximated within l/( 1 - 6). The quotient between (25) and the second 
term of (26) now is 

(25) 3 NT/%- bW(1--ol)l 

N(m - 1) Nlogq 
~q’-w’/S(w-~’ for every 6’ > 0 , 

and the quotient between (25) and the first term of (26) is, using (27) and (28), 
bounded by 

NWP)WP)(~ - a))“-’ 1 log[( 1 -cr)/( 1 -s+a)] 

NW1 - WPIWP)U - 6 + aHm-’ 
=1_q 

> q’OB[(‘-“)/M1-s+cc)l. 
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If we choose a < d2, /3 > l/(2 - 26) and 6’ < a2 both quotients will be bounded by 
qE where E is approximately 6. 0 

The second problem, MAX H-CONSISTENCY, is a special case of mixed MAX FLS’ 
and MAX FLS” . It arises when training perceptrons or designing linear classifiers [ 191. 
Given a set of vectors S = {uk}lGkgp c II?’ labeled as positive or negative examples, 

we look for a hyperplane H, specified by a normal vector w E R” and a bias WO, 
such that all the positive vectors lie on the positive side of H while all the negative 
ones lie on the negative side. A halfspace H is said to be consistent with an example 
a“ if WVZ~ > WO or W& <WO depending on whether ak is positive or negative. In the 
general case where S is nonlinearly separable, a natural objective is to maximize the 
consistency, i.e. to find a hyperplane that is consistent with as many ak E S as possible 
[3,15,32]. 

Proposition A.3. lMAx H-CONSISTENCY is APx-complete and can be approximated 
within 2. 

Proof. MAX H-CONSISTENCY can clearly be approximated within 2 using the greedy 
algorithm of proposition 9. 

In order to show that it is &x-hard we adapt the L-reduction from MAX ~SAT to MAX 
FLS” given in the proof of Theorem 5. Starting with the system of 9m inequalities 
(20)-(24), we add two extra variables WIXI+~ and WO (the bias) as well as a large 
enough number of nonstrict inequalities forcing WO,WI~I+~~O. For each clause Ci, 
1 < i Gm, containing two variables xj, and xjZ we consider the 10 positive examples in 
R” with n = 1x1 + 1 associated to the following inequalities: 

10&j, Wj, + lO@i,Wi, + 2Wwl+, > Wo, 

1OWj, - ~WIXI+I > WO, 

-lOWj, + 12WlXl+l > Wo, 

lowj, + 12WlXl+l > WO, 

-lOWj, - 8wl~l+1 > ~0, 

1OWjz - ~WIX~+I > ~0, 

-lOWi, + 12WlXl+l > Wo, 

lowj2 + 12WlXl+l > WO9 

-1Owjz - ~WIXI+I > ~0, 

qq+1 > wo- 

(A.1) 

(A.21 

(A.3) 

(A.4) 

(A.51 

(A.6) 

(A.7) 

(A.81 

(A.91 

(A.lO) 

Moreover, we include 3m identical negative examples 0 implying the inequality wo 20. 
Thus we have a MAX H-CONSISTENCY instance with 10m positive examples and 3m 
negative ones. 
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It is easy to verify that there is a correspondence between solutions of the MAX ~SAT 

instance satisfying s clauses and hyperplanes classifying correctly 10m + s vectors of 
S. In fact, in any solution (w,wo) that fblfils 10m + s inequalities we have WI~I+~ > 
wo L 0 because the corresponding hyperplane must correctly classify at least a negative 
example and a positive one of type (A.lO). As far as the L-reduction is concerned, the 
inequalities (A. 1) -(A. 10) are therefore equivalent to the inequalities (20) - (24). 

This L-reduction can be extended to the case where the negative examples are not 
all identical by considering (n + 3m)-dimensional examples instead of n-dimensional 
ones. We construct the same 10m positive examples (all additional components are 0) 
and 3m pairs of negative examples implying the following inequalities: 

WIXl+i+l < wo, 
-WIXl+i+l < wo, 

where 1 <i <3m and WIXI+~+I are (free) variables occurring in a single inequality. 
Clearly, any solution (w, wg) satisfying at least one pair of inequalities is such that 
wg 20. Since the absolute values of all WIxI+i+l can be taken as small as needed 
(these variables are unconstrained) and since at most 7m inequalities of types (A.2)- 
(A. 10) can be simultaneously satisfied, we have a correspondence between solutions 
of the MAX ~SAT instance satisfying s clauses and hyperplanes classifying correctly 
13m + s vectors of S. 0 

The same nonapproximability result holds in the symmetric case where we look for 
a hyperplane containing no examples, i.e. such that wak > wo for all positive examples 
a’ while w(lk c wo for all negative ones. Note that MAX H-CONSISTENCY is easier to 
approximate than the complementary problem that consists of minimizing the number 
of misclassifications [4,5,21]. 

A variant of MAX H-CONSISTENCY, which is a special case of C MAX FLS”;‘, oc- 
curs as a subproblem in various constructive methods for building multilayer networks 
[34,33]. In this problem, named MAX H-COVERING, only a single type of misclassifi- 
cations is allowed. Given a set of examples, we look for a hyperplane that correctly 
classifies all negative examples and as many positive ones as possible. 

Corollary A.4 MAX H-COVERING is MAX IND SET-hard. 

Proof. By L-reduction from MAX 2 ONES NEG, which is known to be MAX IND SET- 

hard [35] and is defined as follows [16]. Given a finite set X of variables and a 
set C = {Cl,..., Cm} of 2-literal clauses with only negated variables, find a truth 
assignment for X that satisfies every clause and that contains as many TRUE variables 
as possible. 

For each clause xi, V fjz we construct a negative example u E IF!” with n = 1x1, 
aj, = ajZ = 1 and aj = 0 for 1 <j <n with j # jl and j # jz. The trivial vector 0 is 
also included as a negative example. Finally, we construct for each boolean variable 
Xj the positive example u where aj = 1 and al = 0 for 1 < 1 <n with 1 # j. 
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We claim that there exists a truth assignment with s TRUE variables satisfying all 
clauses if and only if there exists a hyperplane H classifying correctly all negative 
examples and s positive ones. Given an appropriate truth assignment, the hyperplane 
H specified by the bias wo = 1 and the normal vector w defined by 

Wj = 
2 if Xj k TRUE, 

-2 otherwise 

correctly classifies all negative examples and the positive ones corresponding to a TRUE 

variable. Moreover, the n - s positive examples associated with a FALSE variable are 
misclassified. Conversely, given an appropriate hyperplane H we consider the set of 
boolean variables Y c_X associated to a positive example that is correctly classified. It 
is easily verified that the assignment where the s variables in Y are TRUE and all the 
other ones are FALSE satisfies all the clauses of (X,C). 0 

The symmetric variant of MAX H-COVERING where the objective is to correctly clas- 
sify all positive examples and as many negative examples as possible is also MAX IND 
SET-hard. 
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