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a  b  s  t  r  a  c  t

Due  to the  inherent  non-linearity  and  non-stationary  characteristics  of  financial  stock  market  price  time
series,  conventional  modeling  techniques  such  as the  Box–Jenkins  autoregressive  integrated  moving
average  (ARIMA)  are  not  adequate  for stock  market  price  forecasting.  In this  paper,  a  forecasting  model
based on  chaotic  mapping,  firefly  algorithm,  and  support  vector  regression  (SVR)  is proposed  to  predict
stock market  price.  The  forecasting  model  has  three  stages.  In the  first  stage,  a delay  coordinate  embed-
ding method  is used  to  reconstruct  unseen  phase  space  dynamics.  In the  second  stage,  a chaotic  firefly
algorithm  is employed  to optimize  SVR  hyperparameters.  Finally  in  the  third  stage,  the  optimized  SVR
is used  to  forecast  stock  market  price.  The  significance  of  the  proposed  algorithm  is 3-fold.  First,  it  inte-
grates  both  chaos  theory  and  the firefly  algorithm  to optimize  SVR  hyperparameters,  whereas  previous
studies  employ  a genetic  algorithm  (GA)  to optimize  these  parameters.  Second,  it uses  a  delay  coordinate
embedding  method  to  reconstruct  phase  space  dynamics.  Third,  it has  high  prediction  accuracy  due  to  its
implementation  of  structural  risk  minimization  (SRM).  To  show  the  applicability  and  superiority  of  the

proposed  algorithm,  we  selected  the  three  most  challenging  stock  market  time  series data  from  NASDAQ
historical  quotes,  namely  Intel,  National  Bank  shares  and  Microsoft  daily  closed  (last)  stock  price,  and
applied the  proposed  algorithm  to these  data.  Compared  with  genetic  algorithm-based  SVR  (SVR-GA),
chaotic  genetic  algorithm-based  SVR  (SVR-CGA),  firefly-based  SVR  (SVR-FA),  artificial  neural  networks
(ANNs)  and  adaptive  neuro-fuzzy  inference  systems  (ANFIS),  the  proposed  model  performs  best  based

amel
on two  error  measures,  n

. Introduction

Stock market price prediction is regarded as one of the most
hallenging tasks of financial time series prediction. The diffi-
ulty of forecasting arises from the inherent non-linearity and
on-stationarity of the stock market and financial time series. In
he past, Box–Jenkins models [1],  such as the autoregressive (AR)

odel and the autoregressive integrated moving average (ARIMA)
odel, were proposed to tackle this problem. However, these mod-

ls were developed based on the assumption that the time series
eing forecasted are linear and stationary. In recent years, nonlinear

pproaches have been proposed, such as autoregressive conditional
eteroscedasticity (ARCH) [2],  generalized autoregressive condi-
ional heteroscedasticity (GARCH) [3],  artificial neural networks

∗ Corresponding author.
E-mail address: Farookh.Hussain@uts.edu.au (F.K. Hussain).

568-4946/$ – see front matter. Crown Copyright © 2012 Published by Elsevier B.V. All ri
ttp://dx.doi.org/10.1016/j.asoc.2012.09.024
y  mean  squared  error (MSE)  and  mean  absolute  percent  error  (MAPE).
Crown  Copyright  ©  2012  Published  by  Elsevier  B.V.  All  rights  reserved.

(ANNs) [4–9], fuzzy neural networks (FNN) [10–13],  and support
vector regression (SVR) [14–22].

ANN has been widely used for modeling stock market time
series due to its universal approximation property [23]. Previ-
ous researchers have indicated that ANN, which implements the
empirical risk minimization principle in its learning process, out-
performs traditional statistical models [4].  However, ANN suffers
from local minimum traps and the difficulty of determining the
hidden layer size and learning rate [24,25]. By contrast, sup-
port vector regression, originally introduced by Vapnik [24,26],
has a global optimum and exhibits better prediction accuracy
due to its implementation of the structural risk minimization
principle which considers both the training error and the capac-
ity of the regression model [25,27].  The main problem with

SVR is the determination of its hyperparameters, which requires
practitioner experience. Unsuitably chosen kernel functions or
hyperparameter settings may  lead to significantly poor perfor-
mance [27–30].

ghts reserved.
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http://www.sciencedirect.com/science/journal/15684946
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Fig. 1. Data preprocessing procedure.

Recently, optimization algorithms such as genetic algorithm
GA) and chaotic genetic algorithm (CGA) have been used to find
he best hyperparameters for SVR [31–34].

In this paper, we propose a chaotic firefly algorithm for opti-
izing the SVR hyperparameters. Results show that our method

erforms better than SVR-FA, SVR-GA SVR-CGA, ANFIS, ANN and
ther previous algorithms.

The remainder of this paper is organized as follows. Section
 introduces new prediction model, including delay coordinate
mbedding, logistic map, support vector regression and firefly algo-
ithm. Section 3 defines the implementation steps of the proposed
odel. Section 4 describes the data used in this study and discusses

he experimental findings. Conclusions and remarks are given in
ection 5.

. Support vector regression with chaotic firefly algorithm

In this section, we introduce delay coordinate embedding for
hase space reconstruction, logistic map, support vector regression
nd firefly algorithm.

.1. Delay-coordinate embedding

The analysis of time series generated by non-linear dynamic

ystems can be done in accordance with Taken’s embedding the-
ry [35]. Let univariate time series {xi}N

i=1, where N is the length
f the time series, generated from a d-dimension chaotic attractor,
Fig. 2. Chaotic firefly algorithm.

a phase space Rd of the attractor can be reconstructed by using a
delay coordinate defined as

Xi = (xi, xi−�, . . . , xi−(m−1)�) (1)

where m is called the embedding dimension of reconstructed phase
space and � is the time delay constant. Choosing the correct embed-
ding dimension is very important so that we  can predict xt+1 [36].
Takens [35] considered that the sufficient condition for the embed-
ding dimension is m ≥ 2d + 1. However, too large an embedding
dimension needs more observations and complex computation.
Moreover, if we choose too large an embedding dimension, noise
and other unwanted inputs will be highly embedded with the real
source input information, which may  corrupt the underlying sys-
tem dynamic information. Therefore, in accordance with [37], if the
dimension of the original attractor is d then an embedding dimen-
sion of m = 2d + 1 will be adequate for reconstructing the attractor.

An efficient method of finding the minimal sufficient embed-
ding dimension is the false nearest neighbors (FNN) procedure,
proposed by Kennel et al. [38]. Two near points in reconstructed
phase space are called false neighbors if they are significantly far
apart in the original phase space. Such a phenomenon occurs if we
select an embedding dimension lower than the minimal sufficient
value and the reconstructed attractor therefore does not preserve

the topological properties of the real phase space. In this case, points
are projected into the false neighborhood of other points. The idea
behind the FNN procedure is as follows. Suppose Xi has a nearest
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eighbor Xj in an m-dimensional space. Calculate the Euclidean
istance ||Xi − Xj|| and compute:

i = ||Xi+1 − Xj+1||
||Xi − Xj||

(2)

f Ri exceeds a given threshold Rtol (say, 10 or 15), the point Xj is
onsidered as a false nearest neighbor in dimension m.  We  can say
hat the embedding dimension m is sufficiently high if the fraction
f points that have false nearest neighbors is zero or considerably
mall.

Estimation of time delay � is another important issue. If � is too
mall, redundancy will occur and if � is too large, it will probably
ead to a complex phenomenon called irrelevance. In this study, we
se the first minimum of mutual information (MI) function [39] to
etermine � as follows:

I (�) =
N−�∑
n=1

P(xn, xn+�) log2

(
P(xn, xn+�)

P(xn)P(xn+�)

)
(3)

here P(xn) is the probability density of xn while P(xn, xn+�) is the
oint probability density of xn and xn+� .

.2. Logistic mapping

The simplest chaotic mapping operator (CMO), which was
rought to the attention of scientists in 1976, is logistic mapping
32].

n+1 = �xn(1 − xn) (4)
here xn is the nth chaotic number, n denotes the iteration number
nd � = 4.

Logistic mapping includes all the properties of chaotic sys-
ems such as self-similarity, ergodicity, semi-random motion,
-CFA.

and sensitivity to initial conditions. A detailed explanation about
chaotic properties can be found in [37].

As we  know, diversity in the initial solution of optimization algo-
rithms such as genetic algorithms (GA) and firefly algorithms (FA)
is vital for preventing premature phenomena. Logistic mapping can
provide more diversity than randomly selected initial solutions and
will therefore decrease the probability of premature occurrence
[31].

2.3. Support vector regressions (SVR)

Suppose we  are given a set of training patterns
(x1, y1), . . . , (x�, y�), where xi ∈ Rn, i = 1, 2, . . . , � and yi ∈ R is
the target value for each input vector xi. A regression model is
trained by these patterns and used to predict the future target
values. SVR is a non-linear kernel-based regression method which
tries to find the best regression hyperplane with smallest structural
risk in a so-called high dimensional feature space [27].

One of the most popular types of SVRs is ε-SVR which locates
the hyperplane with an ε-insensitive loss function [24]. The SVR
function is formulated as follows:

f (x) = wT ϕ(x) + b (5)

where ϕ(x) is a nonlinear mapping from the input space to the
feature space. w is a vector of weight coefficients and b is a bias
constant. w and b are estimated by minimizing the following opti-
mization problem:

minimize 1
2 ||w||2
subjected to

{
yi − (〈w, ϕ(xi)〉 + b) ≤ ε

(〈w, ϕ(xi)〉 + b) − yi ≤ ε

(6)
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To cope with feasibility issues and to make the method more
obust, points from the ε-insensitive band are not eliminated.
nstead, we penalize these points by introducing slack variables
i, �∗

i
[40]:

minimize 1
2 ||w||2 + C

�∑
i=1

(�i + �∗
i )

subjected to

⎧⎪⎪⎨
⎪⎪⎩

yi − (〈w, ϕ(xi)〉 + b) ≤ ε + �i

(〈w, ϕ(xi)〉 + b) − yi ≤ ε + �∗
i

�i, �∗
i

≥ 0

(7)
here the cost constant C > 0 determines the trade-off between
odel complexity and training error � is the number of training

atterns.
ee stock market prices.

After taking the Lagrangian and conditions for optimality, we
can find a model solution in dual representation [24,40].

f (x) =
�∑

i=1

(˛i − ˛∗
i )K(xi, x) + b (8)

In the above formulation, ˛i, ˛∗
i

are nonzero Lagrangian multi-
pliers and the solution for the dual problem. K(xi, x) is the kernel
function which represents the inner product 〈ϕ(xi), ϕ(x)〉. In this
study, we  use the radial basis function (RBF) as the kernel function
because of its capabilities and simple implementation [36].

2
K(xi, xj) = exp(−� ||xi − xj|| ) (9)

where � is the width parameter of RBF kernel and should be
selected based on heuristics.
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Fig. 5. The embedding dimension of three stock market prices.
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Fig. 6. The average of MSE  for all models.

2.4. Firefly algorithm (FA)

The firefly algorithm is a metaheuristic optimization algorithm
inspired by the flashing behavior of fireflies [41]. Fireflies use
their natural glowing mechanism to attract other fireflies. In this
algorithm, each firefly represents a possible solution and its light
intensity is proportional to its objective function value. Fireflies
with lower light intensity (fitness) move toward fireflies with
higher light intensity by the following formulation:

xi = xi + ˇ(xj − xi) + ˛(u − 0.5) (10)

ˇ = ˇ0[exp(−	 · r2
ij )] (11)

where xi is a firefly with higher light intensity, xj is a firefly with
lower light intensity; 	 is the absorption coefficient, rij is the
Euclidean distance between xi and xj; ˇ0 is the maximum attrac-
tiveness value and  ̨ is a trade-off constant which determines the
random behavior of movement. u is a random number in the inter-
val (0,1).

After such movements, all fireflies move toward the neighbor-
hood of the best firefly, improving their personal fitness. The firefly
with the highest light intensity moves randomly in the search space
to improve global fitness. After reaching the defined maximum
iterations, the firefly with the highest light intensity is consid-
ered as the best solution. The whole procedure of FA can be briefly
explained as follows. First, initial positions of fireflies are generated

randomly. Second, each firefly is evaluated by a given fitness func-
tion. Third, the fireflies with lower fitness values move toward the
fireflies with higher fitness values by Eq. (10). For the firefly with
the highest fitness value, the second part of Eq. (10) becomes zero.
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Fig. 7. The average of MAPE for all models.
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herefore it moves randomly proportional to the coefficient ˛. The
bove procedure continues until a given number of iterations are
eached.

. Proposed integrated algorithm

In this section, we introduce our proposed algorithm, including
ata pre-processing and the chaotic firefly algorithm.

.1. Data preprocessing

First, the MI  function (Eq. (3))  is calculated for the financial
ime series dataset. Second, the first delay time in which MI
unction minimum value occurs is considered as the optimum
ime delay. Third, the false nearest neighbors (FNN) method is

mployed to find the minimum sufficient embedding dimension.
ourth, according to the optimum time delay and embedding
imension, the time series phase space is reconstructed to reveal

ts unseen dynamics. Then, we use Eq. (12) to normalize the

Fig. 8. Model forecasts o
puting 13 (2013) 947–958

data in the interval (0,1) and fit them for the RBF kernel func-
tion.

xnew = xold − xmin

xmax − xmin
(12)

Finally, the time series dataset is divided into two datasets,
namely a training dataset and a testing dataset. Fig. 1 presents the
data preprocessing procedure.

3.2. Proposed chaotic firefly algorithm

Firefly algorithms (FAs), like other nature-inspired optimization
algorithms, use a random approach to generate an initial solu-
tion. However, this approach has two  major shortcomings, namely
slow convergence and becoming trapped in local optima, caused
by reduced population diversity. In this approach, the initial pos-

itions of fireflies are not necessarily fully diversified in the search
space [32]. To improve initial solution diversity and the quality of
the initial population, a CMO  (Eq. (1)) is used instead of a random
approach to generate an initial solution.

n Intel stock price.
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A random component is used by FAs to estimate the new
ositions of fireflies. However, this kind of movement does not
ecessarily search the whole solution space. Therefore, to per-

orm ergodic searching of the solution space, we use a chaotic
omponent instead of a random component. Fig. 2 shows the
owchart of the proposed procedure of the chaotic firefly algo-
ithm.

The stepwise workings of the chaotic firefly algorithm are as
ollows:

tep 1: Generate initial positions of fireflies by CMO. The values of
the three hyperparameters in a SVR model in ith iteration
can be represented as X(i)

p , p = C, � , ε. Set i = 0, and employ
Eq. (12) to map  the three parameters among the inter-
vals (Minp, Maxp) into chaotic variable x(i)

p in the interval
(0,1).
x(i)
p = X(i)

p − Minp

Maxp − Minp
, p = C, �, ε (13)
inued)

Then, adopt Eq. (4) to compute the next iteration chaotic
variable x(i+1)

p . Transform x(i+1)
p to obtain three parameters

for the next iteration, X(i+1)
p by the following Eq. (14)

X(i+1)
p = Minp + x(i+1)

p (Maxp − Minp) (14)

Step 2: Evaluate light intensity. Evaluate the light intensity (fore-
casting errors) of each firefly. In this study, we use a mean
absolute percentage error (MAPE) as the fitness function.
The MAPE is calculated as Eq. (15):

MAPE = 1
N

N∑
i=1

∣∣∣yi − fi
yi

∣∣∣ (15)

where yi and fi represent the actual and forecast values, and
N is the number of forecasting periods.

Step 3: Chaotic movement of fireflies. Fireflies with lower light
intensity (fitness) move toward fireflies with higher light

intensity and the positions of fireflies are updated. The fire-
fly with the highest light intensity moves chaotically in
the solution space using Eq. (9).  Instead of random compo-
nent, ˛(u − 0.5), we use a chaotic component, ı(x(n)), where
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The optimal � and m.

Intel National Bank shares Microsoft
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x(n) is a chaotic variable generated by Eq. (3),  and ı is the
annealing operation resulting from Eq. (14) [31]:

ı = 1 −
∣∣∣n − 1

n

∣∣∣v
(16)

where n is the iteration number and v is an integer.
tep 4: Stopping condition. If the number of iterations is equal to a

given scale, then the best fireflies (with highest light inten-
sity) are presented as a solution; otherwise go back to step
2.

Fig. 3 shows the complete procedure of the proposed SVR-CFA.

. Case study

In this section, we test the proposed algorithm with three dif-

erent daily stock market prices, namely Intel, National Bank shares
nd Microsoft. These datasets are selected from the numerous
tocks available in the NASDAQ stock market due to their chal-
enging behavior and many direction changes in the selected time

Fig. 9. Model forecasts on Nation
� 2 3 3
m 5 5  7

span. The proposed algorithm is compared with SVR-GA, SVR-CGA,
SVR-FA, SVR-CFA, ANN and ANFIS.

4.1. Data collection and performance evaluation

Daily closing (last) stock market prices for Microsoft (from
9/12/2007 to 11/11/2011), Intel (from 9/12/2007 to 11/11/2010)
and National Bank shares (from 6/27/2008 to 8/29/2011) were
extracted from NASDAQ historical quotes. The dataset was divided
into two  sets, a training dataset and a testing dataset; 80% of the

daily data (a total of 640 observations) were used for the train-
ing dataset and the remainder of the daily data (a total of 160
observations) were used for the testing dataset.

al Bank shares stock price.
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For the analysis of predicting models, MSE  (mean square error)

nd MAPE (Eq. (15)) were employed as forecasting indices to mea-
ure their performance. The formulation of MSE  is as follows:

able 2
he optimal � , C and ε.

� C ε

(a) Intel
SVR-GA 0.8291 5844.6 0.0719
SVR-CGA 5.6984 0.3109 0.0182
SVR-FA 0.1666 10,000 0
SVR-CFA 0.1011 8997.6 0

(b)  National Bank shares
SVR-GA 0.2198 2528.7 0.0781
SVR-CGA 0.2325 9112.0 0.1033
SVR-FA 0.0001 8586.5 0.1037
SVR-CFA 0.2458 5830.9 0.1042

(c)  Microsoft
SVR-GA 8.3900 934.2623 0.1321
SVR-CGA 5.6984 0.3109 0.0182
SVR-FA 0.0001 8058.0 0.0326
SVR-CFA 0.0047 7930.6 0.0415
inued)

MSE = 1
N

N∑
i=1

(yi − fi)
2 (17)

4.2. Parameter setting in CFA algorithm

The parameters of the CFA algorithm in the proposed model for
three numerical examples are experimentally set. The number of
fireflies is 20, the maximum number of iterations is 200, ˇ0 is 4,
the constant of the annealing operator is 0.25 and the absorption
coefficient is 1.

4.3. Phase space reconstruction

In the phase space reconstruction, we  used Hao Cheng’s Fractal
MATLAB toolbox to select the optimal delay time and embedding
dimension. Fig. 4(a)–(c) shows the mutual function of each dataset,
and Fig. 5(a)–(c) shows FNN results for each dataset. Table 1 shows

the optimal m and �.

These optimal embedding dimensions and delay times are used
to construct the input matrix. The data were fed to SVR, and the
hyperparameters of SVR were optimized by GA,  CGA, FA and CFA.
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Table 3
Models’ performance under MSE.

Model Intel National Bank shares Microsoft

SVR-GA 0.00107575 0.00176314 0.00192163
SVR-CGA 0.00103765 0.00158184 0.00143307
SVR-FA 0.000988423 0.00161896 0.00110032
SVR-CFA 0.000959743 0.00157299 0.00106339
ANN 0.0010064 0.001607 0.00114
ANFIS 0.000998 0.001672 0.001212

Table 4
Models’ performance under MAPE.

Model Intel National Bank shares Microsoft

SVR-GA 0.047385 0.049147 0.066795
SVR-CGA 0.046709 0.045997 0.061031
SVR-FA 0.045626 0.047267 0.052653
SVR-CFA 0.044594 0.045847 0.051907
56 A. Kazem et al. / Applied So

able 2 shows the optimized values of the hyperparameters for
ach algorithm.

We  also fed the reconstructed phase space matrix into the ANN
nd ANFIS models. The best possible ANN and ANFIS structures
ere used for comparison with the proposed model.

.4. Performance comparison

The performance comparison of six models on two  indices, MSE
nd MAPE are reported in Tables 3 and 4. The average errors of SVR-
FA for MSE  and MAPE are 0.001199 and 0.047449 respectively, and
VR-CFA is ranked first. The average errors of SVR-FA for MSE  and
APE are 0.001236 and 0.048515 respectively. SVR-FA is worse

han SVR-CFA in all measures and is ranked second. The average
rrors of ANN for MSE  and MAPE are 0.001251 and 0.049405 respec-
ively; it is ranked third. The average errors of ANFIS for MSE  and
APE are 0.001266 and 0.049494 respectively; it is ranked fourth.
he average errors of SVR-CGA for MSE  and MAPE are 0.001351 and
.051246 respectively. This model is ranked fifth. Finally, the aver-
ge errors of SVR-GA for MSE  and MAPE are 0.001587 and 0.054442

ANN 0.047088 0.046742 0.054386

Fig. 10. SVR model forecasts o
ANFIS 0.04635 0.047982 0.056344

n Microsoft stock price.
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Table 5
p-Values for paired t-tests.

Models SVR-FA SVR-CGA SVR-GA ANN ANFIS

Intel
SVR-CFA 0.039 0.240 0.058 0.026 0.043
SVR-FA 0.009 0.557 0.171 0.00
SVR-CGA 0.199 0.00 0.031
SVR-GA 0.678 0.026
ANN 0.00

National Bank shares
SVR-CFA 0.00 0.00 0.006 0.001 0.00
SVR-FA 0.047 0.377 0.190 0.109
SVR-CGA 0.205 0.154 0.00
SVR-GA 0.012 0.00
ANN 0.002

Microsoft
SVR-CFA 0.029 0.00 0.005 0.00 0.00
SVR-FA 0.00 0.011 0.004 0.00
Fig. 10.

espectively. This is the worst of all the models. Figs. 6 and 7 show
he average MSE  and MAPE values for all six models.

To present a detailed view of the fitted values of the models
gainst stock market values, the actual values and predicted values
or all SVR models are shown in Figs. 8–10.

To discuss the results of the models in more detail, paired t-tests
re performed to examine which model significantly outperforms
he other models. The paired t-test is a parametric statistical test for
wo related numerical samples with a null hypothesis of equality
n mean. A detailed explanation for the paired t-test is provided in
42]. In this study, the residuals of each forecasting model are used
o construct the t-test statistic and the p-value for each t-test on
ur three stock market datasets is then calculated and presented
n Table 5. The tests are performed at a significance level of 95%,
herefore p-values <0.05 indicate models that vary significantly.

According to Table 5, based on the significance level of 95%, there
s an almost-significant difference between the SVR-CFA model and
ther models. No statistically significant difference can be seen for

he other three SVR-based models. The ANN and ANFIS models
re significantly different from the SVR-based models. However, in
ost cases, there is no significant difference between the SVR-GA

nd ANN models.
SVR-CGA 0.211 0.00 0.00
SVR-GA 0.115 0.495

ANN 0.009

Overall, based on MSE  and MAPE measures, we conclude that
SVR-CFA performs best in terms of prediction accuracy. In addition,
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ts implementation is much easier than that of traditional models
uch as ANFIS and ANN.

. Conclusion

This study developed a novel hybrid model based on a chaotic
refly algorithm and support vector regression for stock mar-
et price forecasting. The contribution of the proposed algorithm
s mainly the integration of chaotic motion with a firefly algo-
ithm as a simple and novel optimization method. Second, this
ew integrated chaotic algorithm is incorporated to find the best
yperparameters of SVR namely, cost, RBF kernel function width
arameter and radius of the epsilon tube. Third, the implementa-
ion of phase space reconstruction in the data preprocess procedure

akes the behavior of the financial time series more recognizable
or learning machines such as ANN and SVR. The proposed model
as three stages. In the first stage, unobserved time series features
re extracted by using phase space reconstruction according to Tak-
ns’ theorem. In the second stage, a chaotic firefly algorithm is
pplied to optimize SVR hyperparameters based on MAPE. Finally in
he third stage, the optimized SVR is used to forecast stock market
rices.

Chaos, one of the most important natural motions in the world,
an be used as a powerful driver of nature-inspired search algo-
ithms such as GA and FA. A chaotic mapping operator (CMO)
mproves the search ability of the firefly algorithm in the solution
pace by increasing the quality of the initially generated population
nd prevents it from becoming trapped in local optima.

In addition, the use of structural risk minimization (SRM) in the
VR training process makes it more robust than ANN- or ANFIS-
ased models which use empirical risk minimization (ERM).

In summary, the SVR-CFA model is more suitable than the other
hree methods for describing the data relationship between input
nd output. This highly effective forecasting framework can be
pplied to other problems involving financial forecasting.
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